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Abstract In this paper, we consider a biologically-inspired spiking neural
network model for motion detection. The proposed model simulates the neu-
rons’ behavior in the cortical area MT to detect different kinds of motion
in image sequences. We choose the conductance-based neuron model of the
Hodgkin-Huxley to define MT cell responses. Based on the center-surround
antagonism of MT receptive fields, we model the area MT by its great pro-
portion of cells with directional selective responses. The network’s spiking
output corresponds to an MT neuron population’s firing rates and enables
to extract motion boundaries. We conduct several experiments on real image
sequences. The experimental results show the proposed network’s ability to
segregate multiple moving objects from an image sequence and reproduce the
MT cells’ responses. We perform a quantitative evaluation on the YouTube
Motion Boundaries (YMB) dataset, and we compare the result to state-of-
the-art methods for boundary detection in videos: boundary flow estimation
(BF) and temporal boundary difference (BD). The proposed network model
provides the best results on YMB compared to BF and BD methods.
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1 Introduction

Motion detection is a basic task that the visual system performs very efficiently.
Several research studies have tried to relate our visual motion perception with
the activation of the primary visual cortex (V1, or striate cortex), with ex-
trastriate visual areas such as the medial temporal area (MT or V5) and with
medial superior temporal area (MST) [1],[2], [3]. It seems that the area the
most involved in motion processing is the MT area [4],[5], which receives in-
put motion afferent mainly from V1 [6], [7]. In [8], the author has described
the columnar structure of the middle temporal area MT, i.e., neurons in each
column respond optimally to motion in a particular direction. This propriety
is similar to that found in the striate cortex for contour orientation [9]. Ad-
jacent columns of the columnar organization in MT sometimes have opposite
preferred motion directions [8], [10]. The majority of the neurons in the middle
temporal (MT) area have receptive fields with antagonistic surrounds [11],[12].
An essential utility of surround mechanisms is to detect motion discontinuities
or motion boundaries [13],[14] based on the differential motion. There are dif-
ferent kinds of surround geometry [15],[16]. Neurons whose receptive fields
have circularly symmetric surrounds are postulated to underlie figure-ground
segregation [11],[17]. In a visual scene, spatial variations of brightness create
contrasts that define edges with particular orientations in space. Detecting
these edges’ motion requires temporal delays to compare the current input
with an earlier visual input. Recent anatomical and physiological studies sug-
gest that motion-sensitive neurons in the primate receive two sets of inputs,
one delayed for the other [18]. However, the origin of these delays remains
unknown [20]. In the visual motion information domain, it has been found
that the human visual system presents delays. These delays reside in separate
classes of slow and fast synaptic transmission [22], [21].

Spiking Neuron Networks (SNN) are often referred to as the third genera-
tion of neural networks that can solve biological stimuli problems. Opportuni-
ties of using spiking neural networks as the most advanced technic for image
processing have been proved in the literature by several authors that have
developed a bioinspired spiking neural network models [23],[24],[25].

Various Spiking Neuron Networks models have been proposed for motion
processing, such as [26], the authors have established a large-scale spiking
model of the visual area MT capable of exhibiting both component and pat-
tern motion selectivity. In [27], the authors implemented a biologically in-
spired visual system for motion detection and pursuit with a Discrete Leaky
Integrate-and-Fire (DLIF) neuron model. In [28], the authors proposed bio–
inspired motion features for action recognition and modeled different MT cells.
Each MT cell was modeled as a conductance-driven integrate-and-fire neuron.

Some approaches have focused on axonal delay for motion detection, and
those models were also validated, capturing specific properties of biological
visual systems. For example, in [29], the authors proposed a spiking neural
network to detect moving objects in a visual image sequence using the in-
tegrate and fire neuron model and axonal delay. In [30], a recurrent neural
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network model has been used to capture the responses of a representative sub-
set of MT neurons. Their model can successfully create temporal delays to 
reproduce the response of MT neurons. In [31], the authors have used the ax-
onal delays to construct a spiking neural network for moving target detection 
and classification. In [32], the authors have developed a spiking neural net-
work architecture for visual motion estimation that relies on synaptic delays 
to create motion-sensitive receptive fields.

More recently, new approaches based on deep learning have been proposed 
for motion detection from video sequences and have achieved promising per-
formance on challenging benchmarks [33], [34], [35].

Most of the spiking neural network models proposed in the literature are 
mainly based on integrate-and-fire neuron models. However, while relatively 
accurate in describing the biophysical processes that occur during potential 
action generation, the Hodgkin–Huxley neuron model [36] is not widely used in 
theoretical studies, especially in motion detection. To test its effectiveness for 
visual motion detection, we introduce the conductance-based Hodgkin–Huxley 
neuron model [36] to reproduce the complex dynamics of action potential 
generation. We conceive a spiking neural network model to simulate visual 
motion detection so that more biological neuronal behaviors can be reflected 
in the proposed network model.

Our model exhibits axonal delay [29] at network input to consider intrin-
sic differences between slow and fast synaptic transmission. We focus on the 
cortical area MT, considering the results found by Born and Bradley [11] on 
center-surround interactions in the MT area and the preferred direction of mo-
tion for describing the direction selectivity of MT cells. Our goal is to propose 
a simplified bio–inspired model for motion detection, capturing motion infor-
mation’s critical biological properties. This paper allows demonstrating how 
a neural network based on both the Hodgkin-Huxley model and the center–
surround properties of neurons in the middle temporal MT visual area can 
contribute to extract moving objects from a visual image sequence.

The paper is organized as follows. Section 2 introduces the Hodgkin-Huxley 
model. Section 3 describes the proposed spiking network structure for mo-
tion detection in which circularly symmetric surrounds receptive fields are 
described. Simulation results are presented in Section 4. The last section con-
cludes.

2 Hodgkin–Huxley Model

The Hodgkin-Huxley (H-H) describes how action potentials in neurons are 
initiated and propagated as a mathematical model. It is a ensemble of non-
linear differential equations that approximates the electrical characteristics of 
excitable cells [37]. Based on experimentations using the giant axon of the 
squid, Hodgkin and Huxley found three different types of ion current: sodium, 
potassium and a leak current that consists mainly of Cl ions [36]. Their model 
consists of four equations:



4 Hayat Yedjour et al.

C
dV

dt
= I −GKn4(V − EK)−GNam3h(V − ENa)−GL(V − EL) (1)

Where V is the membrane potential, C represents the specific membrane
capacitance per unit area, I is the total membrane current per unit area, GK
and GNa are the potassium and sodium conductances per unit area, EK and
ENa are the potassium and sodium reversal potentials, respectively, and GL
and EL are the leak conductance per unit area and leak reversal potential,
respectively. This equation’s time-dependent elements are V , GK and GNa,
where the last two conductances depend explicitly on voltage as well.

dn

dt
= αn(V )(1− n)− βn(V )n (2)

dm

dt
= αm(V )(1−m)− βm(V )m (3)

dh

dt
= αh(V )(1− h)− βh(V )h (4)

αi and βi are rate constants for the ith ion channel, that depend on the
voltage but not on time. n, m and h are dimensionless quantities between 0
and 1 that are associated with potassium channel activation, sodium channel
activation and sodium channel inactivation, respectively. A conductance model
was generated to approximate synaptic activity. The total synaptic current I
was decomposed into a sum of two independent conductances as proposed in
[38]:

I = gex(V − Eex) + gin(V − Ein) (5)

where gex and gin are, respectively, time-dependent excitatory and in-
hibitory conductances. Eex and Ein are their respective reversal potentials.

As this is generally the case for all spiking neuron models, when the mem-
brane potential V of neuron reaches the spike threshold Vth at time t, a spike
S is generated and the membrane potential V is reset to Vreset. Any further
inputs to the neuron are ignored during a time τref called absolute refractory
period. S represents a spike train array encoded by binary ones and zeros,
generated by the neuron.

if (V (t) > Vth) then S(t) = 1 and V (t) = Vreset
else S(t) = 0

(6)
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3 Spiking Network structure for motion detection

The architecture of the proposed motion model is composed of three layers as
illustrated in Figure 1. The first layer represents the input image sequence in
grayscale denoted by I named receptor surface. It is supposed that the receptor
layer can transform an image I(x, y) at time t into a spike train which is fed
to spiking neurons in an intermediate layer. Each pixel I(x, y) in the receptor
layer is then converted into a resulting spike train.

Fig. 1 SNN structure proposed for motion detection.

To models temporal delays of synaptic transmission, we consider two de-
layed spike trains generated at position (x, y) in the receptor layer referred to
as fast Spkfast(x, y) and slow Spkslow(x, y) synaptic transmissions [21],[39].
These spike trains cause a change of peak conductances qfast and qslow where
qfast(x, y) represents the peak conductance caused by the current Spkfast(x, y)
from a receptor at (x, y) and qslow(x, y) represents the peak conductance
caused by the current Spkslow(x, y) from a receptor at (x, y). They are com-
puted using the following formulas:

q(x, y, t) = gnormI(x, y, t) (7)

Where gnorm is a normalization constant, i.e., gnorm = 1/Imax. Imax is the
maximum pixel value in a grayscale image at time t.

To model the direction selectivity of the area MT [8] ; the intermediate
layer includes two neuron subpopulations responsive to motion directions ac-
cording to the center and surrounds of their receptive fields [11]. They are
modeled with a Difference-of-Gaussians (DoG) filter. The first subpopulation
in the intermediate layer is denoted MR. Each neuron MR(x,y) has excitatory
connections to the receptor layer with fast synaptic transmission. Further-
more, inhibitory connections with slow synaptic transmission and can respond
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to a rightward motion. The second subpopulation in the intermediate layer
is denoted ML. Each of its neuron ML(x,y) has excitatory connections to the
receptor layer with slow synaptic transmission and inhibitory connections with
fast synaptic transmission and can respond to a leftward motion within the
receptive field.

The distribution of the weights for excitatory and inhibitory synapses con-
nections Wex and Win are computed as follows [40]:

W ex =

{
1

2πσ2
c
exp

[
− 1

2

(
x2+y2

σ2
c

)]
if
√
x2 + y2 ≤ R

0 if
√
x2 + y2 > R

(8)

W in =

{
0 if

√
x2 + y2 ≤ R

1
2πσ2

s
exp

[
− 1

2

(
x2+y2

σ2
s

)]
if
√
x2 + y2 > R

(9)

R is the DoG center radius, σc and σs are the standard deviations of the
center and the surrounding elements of the DoG filter.

For MR neurons at the intermediate layer, the conductances gexMR(x,y)(t)

and ginMR(x,y)(t) are governed by the following equations:

gexMR(t)

dt
= − 1

τex
gexMR(t) +

R∑
r=−R

R∑
f=−R

W ex
MR(r,f)qfastex(x−r,y−f)

(10)

ginMR(t)

dt
= − 1

τin
ginMR(t) +

R∑
r=−R

R∑
f=−R

W in
MR(r,f)qslowin

(x−r,y−f)
(11)

By analogy to the MR array, the conductances gexML(x,y)(t) and ginML(x,y)(t)
for each neuron in the ML array are computed as follows:

gexML(t)

dt
= − 1

τex
gexML(t) +

R∑
r=−R

R∑
f=−R

W ex
ML(r,f)qslowex

(x−r,y−f)
(12)

ginML(t)

dt
= − 1

τin
ginML(t) +

R∑
r=−R

R∑
f=−R

W in
ML(r,f)qfastin

(x−r,y−f)
(13)

Where τex and τin are respectively synaptic decay times for excitatory
and inhibitory synapses respectively. W ex

MR and W in
MR represent the strength

for excitatory and inhibitory synapses respectively for MR neurons. W ex
ML and

W in
ML represent the strength for excitatory and inhibitory synapses respectively

for ML neurons. qexfast and qinfast represent the peak conductances for excitatory

and inhibitory of fast synapses respectively. qexslow and qinslow represent the peak
conductances for excitatory and inhibitory slow synapses respectively.

According to Eq. 1 of the conductance-based (H-H) model, the dynamics
of the membrane potential V for a neuron MR and ML at the intermediate
layer are given by the following equations:



The Hodgkin–Huxley neuron model for motion detection in image sequences 7

C
dVMR

dt
= gexMR(V−Eex)+ginMR(V−Ein)−GKn4(V−EK)−GNam3h(V−ENa)−GL(V−EL)

(14)

C
dVML

dt
= gexML(V−Eex)+ginML(V−Ein)−GKn4(V−EK)−GNam3h(V−ENa)−GL(V−EL)

(15)
The spike trains generated in the intermediate layer feed the output layer,

where the activation of each output neuron depends on the activation of
the intermediate layer. If the current Spkfast(x, y) is equal to the current
Spkslow(x, y), MR and ML neurons are silents, and consequently, the output
layer will not generate spikes. If the currents Spkfast(x, y) and Spkslow(x, y)
are different, then a movement from two consecutive input stimulus can be
assumed. In that case, MR neurons will generate a spike while respecting the
spike condition of (Eq. 6) if Spkfast(x, y) < Spkslow(x, y) and therefore, it
can respond to a rightward motion detected with MR DoG receptive fields.
For ML neurons, it will generate a spike if SSpkslow(x, y) > Spkfast(x, y),
and therefore, it can respond to a leftward motion within the receptive field.
The output layer denoted by O receives feedforward connections outputted
from the intermediate layer. Each neuron O(x, y) integrates the corresponding
neurons’ outputs from the intermediate layer and can fire if a neuron MR or
a neuron ML fires.

If we denote by SMR(t) and SML(t) the spike trains for neurons MR and
ML respectively, each output neuron O(x, y) is computed using the following
equations:

gexO(x,y)(t)

dt
= − 1

τex
gexO(x,y)(t) + (W1SMR(t) +W2SML(t)) (16)

C
dVO(x,y)(t)

dt
= gexO(x,y)(V−E

ex)−GKn4(V−EK)−GNam3h(V−ENa)−GL(V−EL)

(17)
Spike condition in Eq. 6 is applied to the output neuron O(x, y) to generate

a spike train array denoted by SO(x,y)(t). The firing rate FO(x,y) for neuron
O(x, y) during the simulation time T in the output layer is computed by the
following expression:

FO(x,y) =

∑T
t=1 SO(x,y)(t)

T
(18)

4 Simulation results and discussion

We have choosen to implement our model in MATLAB environment using
a set of parameters values as recommended by biophysical model [36]. They
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are summarized as follows: C = 1µF/cm2, EL = 10.613mV , ENa = 115mV , 
EK = −12mV , GL = 0.3mS/cm2, GNa = 120mS/cm2, GK = 36mS/cm2, 
Vth = −65mV , Vreset = −70mV , Eex = 0mV , Ein = −75mV , τex = 3ms, 
τin = 10ms, T = 100ms, τref = 10ms. Synapse weights W1 = W2 = 1. (n ; m, 
and h) for activation and inactivation and are between 0 and 1. (n0 ; m0, and 
h0) are their initial values, and are calculated using the resting states defined 
by : dn/dt = 0; dm/dt = 0 and dh/dt = 0, of Eqs. (2)-(4) respectively. With 
the value V = 0 of membrane potential, the following initial point is found:
(n0 = 0.1765; m0 = 0.0529 and h0 = 0.5961).

Table 1 summarizes the analogy between the real parameters of the (H-H)
[36] and those choosen in our simulation for action potentials generation and 
propagation in layers of the proposed SNN network.

Table 1 Biological correspondence of the (H-H) model parameters used for the proposed 
SNN network

(H-H) model parameters Real Values Experimental values
Membrane capacitance per unit area

(µF/cm2)

C = 0.91 C = 1

Leakage reversal potential (mV) EL = 10.6 EL = 10.613
Sodium reversal potential (mV) ENa = 115 ENa = 115
Potassium reversal potential (mV) EK = −12 EK = −12
Maximal channel conductance per 
unit area (mS/cm2)

GL = 0.3 GL = 0.3

Maximal sodium conductance per 
unit area (mS/cm2)

GNa = 120 GNa = 120

Maximal potassium conductance 
per unit area (mS/cm2)

GK = 36 GK = 36

Initial activation value of potassium 
channel

n0 = 0.31773241094 n0 = 0.1765

Initial activation value of sodium 
channel

m0 = 0.0529551709 m0 = 0.0529

Initial inactivation value of sodium 
channel

h0 = 0.5959943932 h0 = 0.5961

To ensure the DoG filter approximates the receptive fields of biological MT
Cells, the center-surround size ratio is set to 1.5 ( σs/σc = 1.5) [41].

By plotting the firing rates of the output layer as an image, we can obtain
visual motion boundaries representing the moving objects corresponding to the
input image sequence as shown in Figure 2. The input is an image sequence.
The directionally-selective of intermediate layer filters are applied over each
frame of the input sequence in a DoG distribution. The edges of firing neuron
groups [25] are used to produce spikes in output layer according to equations
14-17.

Figure 2 presents an example of a video sequence processing from the
Weizmann dataset [42]. The top row shows a video sequence where a person
walks in the rightward direction, the neurons that respond strongly to a right
direction of movement fail to respond to the left direction, as shown in the
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Fig. 2 Motion detecting Snn. First and third rows show frames from an input video sequence 
from the Weizmann dataset that shows a moving object. Second and fourth rows show the 
contours of the moving object obtained by the proposed approach.

second row. The second video sequence presented in the third row shows a 
person runs in the leftward direction. The neurons that respond strongly to 
a left direction of movement fail to respond to the right direction, as shown 
in the fourth row. These simulation results show that the proposed SNN can 
segregate moving objects from an image sequence consistent with the known 
properties of area MT [8].

The proposed SNN has experimented with many image sequences from the 
YouTube Motion Boundaries dataset (YMB) [35]. This dataset contains 60 se-
quences captured from real-world scenes with complex background including 
varieties of persons, objects and poses. The number of frames per sequence 
varies and can be reach until 100 frames. In each sequence, motion boundaries 
in one frame are provided by three independent annotators. The dataset in-
cludes two types of videos: 30 sequences from the YouTube Objects dataset [44] 
representing 10 object categories, such as train, car or dog, and 30 others from 
the Sports1M [45] dataset comprises 487 classes. Videos from YouTube Objects
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have a lower resolution (225x400) than the ones from Sports1M (1280x720). 
Both datasets contain large motions.

The SNN takes input an image from an image sequence where motion de-
tection is performed at each time step. The presented image sequences concern 
position invariant patterns positions invariance and also contain right and left 
translations. In Figure 3, we present results from the YMB dataset using the 
proposed approach.

Fig. 3 Motion detection results on YMB dataset. First row shows a frame from a video 
sequence. Second row shows the associated ground truth frames. Third row shows the esti-
mated motion boundaries with our proposed approach.

4.1 Motion detection performance

In order to test the robustness of our approach. We compare our approach 
against two state-of-the-art motion detection boundaries methods. The first 
one is based on the temporal difference (will be denoted by BD) computed on 
Canny edges, and the second one is based on optical flow (will be denoted by 
BF) using the Lucas-Kanade optical flow method [43].

The BD method [46] used in this work is inspired by Haynes technique [47] 
which consists of performing the simple product between the absolute frame 
difference FD and the gradient image G (Equation 19).
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FD(x, y, t) = |CF (x, y, t) − P F (x, y, t)| (19)

Where CF represents of current frame and PF the previous frame in an 
image sequence.

The gradient image G in Equation 20 is computed on Canny edges tech-
nique. The result of BD method is a motion boundaries detection [46].

BD(x, y, t) = FD(x, y, t) ∗ G[CF (x, y, t)] (20)

For motion boundaries based on optical flow estimation (BF) and in order to 
determine a vector motion field within an image sequence. First, we calculate 
the motion information based on the Lucas-Kanade algorithm between two 
consecutive frames. Then, based on maximum flow present, we proceed to flow 
field color coding to highlight the motion estimation result and finally, a 
segmentation is performed on the obtained motion estimation that will be 
assigned to the motion boundaries computed as the gradient of the optical flow 
estimation (BF) [48].

The advantage of combining motion information with segmentation allows 
it possible to more clearly highlight objects of interest among more complex 
scenes.

To quantify the performance of the proposed SNN for motion detection, 
we performed an analysis in terms of peak signal-to-noise ratio (PSNR), mean 
squared error (MSE), the figure of merit (FOM), and the Hausdorff distance 
measure (HD). They are computed as follows:

Let A = {ai}, i = 1, ..., n (as ground truth motion points) and B = {bj }, 
j = 1, ..., m (as image motion points).

PSNR = 10log10

(
M2

MSE

)
(21)

Where M is the maximum pixel value.

MSE =
1

M ∗N

m−1∑
i=0

n−1∑
j=0

[A(i, j)−B(i, j)]
2

(22)

HD = max[h(A,B), h(B,A)] (23)

h(A,B) = supa∈Ainfb∈B‖a− b‖ (24)

Where ‖.‖ is the distance between two points ai and bj measured by some
norm (generally the Euclidean norm).

FOM =
1

Max(NA, NB)

NB∑
k=1

1

1 + α ∗ d2(i)
(25)

Where NA is the number of edge points on the ground truth image. NB is
the number of detected edge points. d is the distance between the kth detected
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edge pixel and the nearest edge pixel of the ground truth and α is a scaling
factor, most commonly chosen to be 1/9.

Given two consecutive video frames and their corresponding binary ground-
truth motion boundary for each sequence from the YMB dataset, we compute
the binary version of the moving boundary detectors for the proposed ap-
proach, for the flow estimation (BF), and the temporal difference (BD) meth-
ods. The similarity between the motion boundary detectors to the ground-
truth motion boundary is evaluated using MSE, PSNR, HD, and FOM for
each sequence. The quantitative results are finally averaged for all image se-
quences for the whole YMB dataset and are summarized in Table 2.

Table 2 Evaluation of motion detection approaches

Performance measures BD BF Proposed approach
MSE 0.1028 0.0863 0.0224
PSNR 17.1526 17.5775 18.4856
HD 8.4068 6.7665 5.1630
FOM 0.9672 0.9774 0.9802

For the PSNR and FOM measures, the higher is their evaluation score, the 
stronger is a motion boundary. Unlike for MSE and HD measures, the lower 
the evaluation score, the stronger the motion boundary for a given approach.

MSE is used as a measure to evaluate our approach, this measure can 
indicate how close a motion boundary model is to the ground-truth motion 
boundary. From the table 2, all positives values indicating there is some differ-
ence in detectors and ground-truth. Lower the MSE indicates model is closer to 
ground truth. In our proposed approach, MSE is minimum comparing to (BD) 
[46] and (BF) methods [48], demonstrating that the proposed motion boundary 
model and the ground-truth motion boundary are getting closer to each other.

The PSNR represents the ratio for measuring the quality of the motion 
boundaries results produced by a motion boundary detectors and the ground-
truth motion boundary. The higher the PSNR, the better the quality of the 
moving boundary detector to match the ground-truth’s one. This would occur 
because we wish to minimize the MSE between the two compared motion 
maps. The proposed approach resulted in the highest PSNR compared (BD)
[46] and (BF) approaches [48].

FOM is a measure for accuracy assessment of motion boundary detection, it 
represents the deviation from ground-truth to the detected motion boundary, 
and this measure varies in the range of [0, 1], where 1 represents the optimal 
value. In Table 2, it can easily be noticed that the proposed approach offer a 
high FOM value, which explains the great accurately matching with the ground 
truth motion boundary.

The Hausdorff distance is an algorithm used to find a given ground truth 
motion boundary in an arbitrary motion boundary detector. These must be in
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binary images. The algorithm then tries to minimize the Hausdorff distance 
between these two resultants binary images. The minimal Hausdorff distance 
can be considered the best candidate for locating the ground truth motion 
boundary and arbitrary motion boundary detector. Since this measure is used 
to measure the difference between two different representations of the same 
frame in image sequence, it is observed in Table 2, that the proposed approach 
gives a lesser Hausdorff distance. Therefore, the proposed model yields bet-ter 
performance compared to the (BD) [46] and (BF) [48] motion boundary 
detectors.

From Table 2, we can conclude that our approach outperforms (BF) and 
(BD) methods significantly by allowing optimized extraction of moving con-
tours.

Figure 4 provides qualitative results of our approach compared to BF and 
BD methods for four images from the YMB dataset.

Fig. 4 Results on YMB dataset. In each row from top to bottom, frame from a video
sequence, the associated ground truth frame annotation, motion boundaries based on tem-
poral difference (BD), motion boundaries based on optical flow estimation (BF), motion
boundaries computed as the gradient of the optical flow estimation (BF), and our boundary
detection approach.
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Motion boundaries based on the temporal difference (BD) are not robust to 
noise; this is proved especially with the second image. In contrast, the proposed 
approach successfully deals with noise by means of temporal integration and 
inhibiting texture edges while preserving object contours and region bound-
aries. The fourth image indicates that some object motions are missed in the 
flow estimation (BF). As can be seen, the resulting motion representation is 
considerately accurate; since it produces sharp motion boundaries even on 
small objects such as the balloon in the first frame.

In order to test the performance of our model against new approaches for 
motion boundary detection based on deep learning, we compare our model to 
two dedicated deep approach for automatic motion boundary detection. The 
first is a learning-based approach using structured random forests for motion 
boundary detection (LDMB) [35]. During training, they use images and 
ground-truth optical flows from the MPI-Sintel benchmark [49]. The output of 
the different trees are then averaged to produce the final boundary detection. 
The second termed Motion Boundary Network (MoBoNet) [33]. MoBoNet 
takes as input source images, flow estimations and warping errors, and directly 
produces the corresponding motion boundaries.

The motion boundary detection evaluation is carried on motion boundary 
datasets generated from the optical flow datasets: Sintel [49], KITTI [50], 
Middleburry [51] and YMB dataset [35].

The MPI-Sintel dataset [49] is composed of animated sequences generated 
using computer graphics. It provides dense ground truth for optical flow for 
each frame. This makes the dataset a very reliable test set for comparison of 
methods. This dataset is available in two versions: clean and final.

The KITTI dataset produced in 2012 [50] was used to test our model. This 
dataset contains 194 real-world image pairs of cameras mounted on a car. 
Ground truth for optical flow is obtained from a 3D laser scanner combined 
with the egomotion data of the car.

The Middlebury dataset [51] is composed of 8 training sequences of 2 to 8 
frames with ground-truth optical flow for a central frame.

The performance indicators called recall R and precision P are used to 
measure the similarity between binary motion map obtained by a given model 
and those from ground truth. Recall R is defined as the fraction of true contour 
pixels (according to the ground truth) that are successfully detected by a given 
model. Precision P is defined as the fraction of true contour pixels from all the 
detected ones. The evaluation code is provided by edge detection benchmark 
BSDS [52]. In order to come to a single performance measure that would allow 
for results comparison, as suggested in [52], we compute the mean Average-
Precision of recall and precision, commonly referred to as the (mAP), for this, 
Precision-recall are finally averaged for all images and all binary versions of the 
ground-truth. The higher is the evaluation score, the stronger is a motion 
boundary detection.

The (mAP) values of both (LDMB) [35] and (MoBoNet) [33] approaches 
depend on the algorithm used to estimate the optical flow. In Table 3, there are 
three different algorithms : DeepFlow [53], FlowNet [54] and DC-Flow [55].
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For evaluation, binary motion boundaries must be computed from ground-
truth optical flow. For YMB dataset [35], the binary motion boundary ground-
truth is given. For Sintel, KITTI and Meddleburry datasets, the Binary motion 
boundary ground truth is computed from corresponding optical flow datasets. 
For the proposed SNN, we compare the binary motion boundaries directly 
computed from the proposed SNN approach. The comparison of the perfor-
mance (mAP) of our approach to LDMB [35] and MoBoNet [33] approaches for 
different input flows for all datasets is given in Table 3.

Table 3 Comparison of the performance (mAP) of SNN approach to LDMB and MoBoNet 
approaches for different input flows

MPI-sintel
clean

MPI-sintel
final

KITTI Middleburry YMB

LDMB based DeepFlow 75.8 67.7 65.2 89.0 68.6
LDMB based FlowNet 68.4 59.7 62.6 82.5 64.3
LDMB based DC-Flow 83.2 75.6 74.3 94.2 77.5
MoBoNet based DeepFlow 75.8 67.7 65.2 89.0 68.6
MoBoNet based FlowNet 75.7 67.9 68.7 87.2 70.6
MoBoNet based DC-Flow 85.4 78.1 75.7 95.6 79.1
Proposed approach 65.3 68.5 62.0 96.2 79.7

Compared to LDMB [35] and MoBoNet [33] methods for different input 
flows, the proposed SNN achieves superior performance on the Middleburry and 
YMB motion boundary datasets. The values obtained on YMB dataset are 
slightly lower compared to Middleburry dataset. This can be explained as Mid-
dlebury dataset mainly contains small motions that can be easily estimated, 
while YMB dataset contains scenes with a moving and complex background 
with large motions. LDMB and MoBoNet methods achieves slightly supe-rior 
performance compared to the proposed SNN on MPI-Sintel and KITTI 
datasets. The reason is that these approaches instead a learning-based ap-
proaches for the motion boundary prediction problem. This requires a high 
volume of training data. However, the learning mechanism was not considered 
in the proposed SNN model.

Based on results of Table 3, the proposed SNN model achieves motion 
boundary detection accuracies higher than LDMB and MoBoNet methods. 
Generally, indicating more accurately matching with the ground-truth. Our 
SNN model can generate a quality motion boundaries despite the learning 
mechanism was not considered in the SNN model. Therefore, the proposed 
SNN can be improved to perform a set of learning mechanisms to process 
complex information and therefore having motion boundaries predicted with 
higher accuracy.

Finally, the directionally-selective of the proposed model allows optimized 
extraction of moving contours. Also, it takes advantage of the luminance cor-
rection provided by the edges of firing neuron groups [25] used in the input 
layer, which allows extraction of mobile contours even in case of noise.
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5 Conclusion

We have developed a hierarchical feedforward model based on spiking neurons
for the MT area. The spike generation process uses the conductance-based
of the Hodgkin-Huxley neuron model that can well reproduce the MT neu-
rons’ response properties. Our model implements two different MT receptive
fields with center-surround interactions. The neuron’s center-surround prop-
erties in the MT area has been proved in [11] to contribute to the behavioral
segregation of objects from the background. Synapses play the role of filters
as well as motion differentiator. Our experiments on the YMB dataset for
motion boundary detection demonstrate that the proposed model performs
better than flow-based motion boundaries (BF) and temporal difference based
motion boundaries (BD). As it can distinguish between the object’s motion
from that of the background and it succeeds in detecting boundaries motion
corresponding to various motion patterns in real image sequences. The ob-
tained results showed a high similarity with the known properties of neurons
in motion processing. In future work, we will include object tracking or action
recognition based on this model’s generated motion maps.
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