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Abstract—This paper presents a different vision of the Non-
Binary LDPC decoding algorithm. So far, state-of-the-art de-
coders are mainly focused on the reduction of the check node
processing complexity, with a potential side effect on the size
of the messages that are exchanged in the iterative decoder.
However, it is possible to take a different approach and consider
the reduction of the message size as the main objective. The paper
presents “the Best, the Requested and the Default” algorithm
that shrinks dramatically the communication load between the
variable nodes and check nodes.

Index Terms—NB-LDPC, Extended Min-Sum, Trellis-EMS,
(Best, Requested, and Default).

I. INTRODUCTION

Non-Binary Low-Density Parity Check (NB-LDPC) codes
[1] are an extension of the Binary LDPC codes that were
proposed by R. Gallager in 1963 [2], defined by a set of parity
check equations on GF(q = 2p) with p > 1. NB-LDPC codes
outperform LDPC codes when short frames are used since they
have higher coding gain and lower error floor [1]. However,
NB-LDPC is significantly more complex in decoding than
LDPC which limits its hardware implementation for high field
order. To reduce the complexity of the NB-LDPC, different
approaches and schemes were proposed and implemented.
The Extended Min-Sum (EMS) introduced in [3] truncates
the message vector between the Variable Nodes (VNs) and the
Check Nodes (CNs) from q down to nm where nm � q to re-
duce the computational load in the CN unit and hence reduces
the hardware complexity. In the Forward-Backward (FWBW)
implementation of EMS [4], the truncation is extended to
all messages, which allows reducing the memory allocations
from q to nm. The FWBW architecture has a low level of
parallelism due to the serial architecture and data dependencies
of the elementary check nodes. Another EMS-based approach
is the Syndrome-Based (SYN) decoder [5], SYN decoder helps
in achieving a high level of parallelism and higher throughput
in the CN unit. In [6], a hybrid approach is proposed that
combines both the FWBW and the SYN architectures. The
hybrid architecture achieved the lowest-reported number of
exchanged messages using the EMS algorithm (6 candidates
as input to CN and 20 candidates as output).
Trellis Extended Min-Sum (T-EMS) decoders [7], [8] are
based on the trellis representation of the input messages which
allows high parallelism between the CN and VN. Recently,
contributions were implemented to reduce the memory require-

ments and the size of the messages exchanged. In [9], TS-TEC-
TEMS is a threshold-based truncation decoding scheme where
two thresholds are used to truncate the incoming messages of
the CN MV 2C and the outgoing messages from the CN to
the VN MC2V . In [10], the implemented decoder truncates
the MV 2C vector to q/2 before proceeding with the TEMS
decoding scheme. In [11], the authors propose to replace dc
point-to-point messages of size q (where dc is number of
connected VNs for a given CN) by a 5 × q broadcasting
message from one source to dc destinations.
In this paper, we postulate that reducing the message size
of the message decoder is not a problem as long as the
correct (transmitted) symbol belongs to the message and thus,
participates in the convergence of the code. From this idea,
a novel decoding algorithm called ”The Best, the Request,
and the Default” (BRD) is proposed. The BRD algorithm
defines the CN to VN MC2V message as the union of three
sets: MC2V = MB

C2V ∪ MR
C2V ∪ MD

C2V . The proposed
scheme allows reducing the size of the exchanged messages
without major performance loss. Decreasing the message size
allows increasing the throughput in serial architectures and
reduces the routing congestion in highly parallel architectures.
The paper is divided into the following sections, Section
II briefly introduces the NB-LDPC structure and decoding
process. Section III introduces the proposed BRD Algorithm,
Section IV presents the statistical analysis, simulation results,
and the complexity analysis. Lastly, the concluded points are
summarized in Section V.

II. BACKGROUND

NB-LDPC code designed on GF(q) has a block length of
N symbols and an information length of K symbols on GF(q)
with a coding rate r = K/N . The connections between the
CNs and the VNs are specified by the parity check matrix H
which consists of N−K rows and N columns representing the
total number of CNs and VNs respectively, where its element
in row i and column j is denoted as hi,j .
In Fig. 1(a), the connection between a VN and a CN is
illustrated. Let x = (x1, x2, ..., xN ) be a codeword veri-
fying Hx = 0 transmitted through a noisy channel. For
each transmitted GF symbol xj , the receiver computes Ij ,
the Log-Likelihood Ratio (LLR) intrinsic vector defined as
Ij(a) = log(P (xj = â)/P (xj = a)), a ∈ GF(q) with
â = arg max{P (xj = a)}. Note that by construction,



Ij(â) = 0 and Ij(a) ≥ 0, a ∈ GF(q) [12]. Let MVj2Ci
be

the message sent from V Nj to CNi, the vector is permuted
by hi,j before being processed by the CN, and denoted as
MP

Vj2Ci
with MP

Vj2Ci
(a) = MVj2Ci

(hi,j · a), a ∈ GF (q),
and hi,j = H(i, j). The CN generates the message MP

Ci2Vj

that is inversely permuted and inputted to the VN as MCi2Vj
.

Lastly, the notations N (i) and M(j) represent the indices of
the VN/CN connected to the ith/jth CN/VN respectively.
The horizontal layered decoding scheduling is described in
Algo. 1. The degree dv of the variable node is assumed to be
equal to 2 (a degree that gives good NB-LDPC codes [1]).
In the sequel, the check node index i of Ci is omitted, since
using dv = 2 suppresses the ambiguity on the check node
index during the decoding process.
The decoding process starts with the initialization stage (line
1-4). Then, each iteration is composed of the serial processing
of the CN of the matrix (line 5). Each CN processing implies
edge permutations and inverse edge permutation (lines 8 and
10). The CN processing (line 9) is presented by the Φ function
that processes the dc incoming MVj2C , j ∈ N (i) messages to
generate dc MC2Vj

, j ∈ N (i) messages. The function Φ could
be any of the different algorithms used for CN processing, such
as the Min-Max [13], Extended Min-Sum [3] or Trellis-EMS
[9]. After the CN processing, all VNs connected to the CN
are updated (line 13-17). The third stage is the decision stage
(line 19) which computes the tentative codeword and checks
if the decoded message is a codeword (all parity constraints
are satisfied).

III. THE BEST, THE REQUESTED AND DEFAULT
ALGORITHM

The BRD algorithm is a generic decoding algorithm used
with any check node processing algorithm such as [3], [8], [9],
[13] and for any variable/check node degree of connectivity
dv and dc respectively (see Fig. 1(b)). The algorithm allows
the variable node to request specific symbols such that they
are sent back by the check node. The obtained LLR of the
requested elements are concatenated with the most reliable
extrinsic elements obtained at the CN and sent all together
to the VN. The MC2V message is then considered as a
union of three subsets, the first set is MB

C2V , similar to
the classical EMS algorithm, which includes the nB best
candidates generated by the CN. The second set MR

C2V is
the set of nR requested candidates by the VN. Lastly, The
third set MD

C2V is the default set containing the remaining
candidates.
This concatenation contributes to increasing the probability
of the correct symbol xj being propagating from/to the CN,
hence, increasing the decoding performance of the decoder.
In the sequel, the index i and j of VN and CN (see Fig. 1(a))
are omitted for simplicity. An exponent A+ indicates the LLR
values, and A⊕ indicates the GF values of the set A. Fig. 1(b)
shows the size of the messages, while Fig. 1(c) gives a toy
example on GF(8) to illustrate the algorithm.

Algorithm 1: Layered dv = 2 NB-LDPC Decoding
Algorithm
Input: H, itermax, {Ij}j=1,2,...,N

1 Initialization: iter = 0
2 for j = 1 to N do
3 x̂j = min(Ij); MVj2C = Ij ; Mold

C2Vj
= 0;

4 end
5 while iter < itermax & H.x̂ 6= 0 do
6 for i = 1 to N −K do
7 Check Node Processing:
8 ∀j ∈ N (i), MP

Vj2C
= hi,j ×MVj2C

9 {MP
C2Vj
}j∈N (i) = Φ({MP

Vj′2C
}
j′∈N (i)\j

)

10 ∀j ∈ N (i) MC2Vj
= h−1i,j ×MP

C2Vj

11 Variable Nodes Processing:
12 forall j ∈ N (i) do
13 APPj = Mold

C2Vj
+MC2Vj + Ij

14 MVj2C = APPj −Mold
C2Vj

15 MVj2C = MVj2C −min(MVj2C)
16 Mold

C2Vj
= MC2Vj

17 end
18 Decision Stage:
19 for j = 1 to N do
20 x̂j = arg min

a∈GF(q)
{APPj [a]}

21 end
22 iter++
23 end
24 end

Output: x̂

A. Compression and Decompression of MV 2C Message

The compression block Ω generates the message Ω(MV 2C)
from MV 2C by selecting the nvc smallest LLRs and their
associated GF value. Since the smallest LLR is always equal
to 0, Ω(MV 2C) is composed of (n+, n⊕) = (nvc − 1, nvc)
LLR and GF values, respectively. The compression block Ω
also sends to the decompression block Γ−1 the message MR,⊕

composed of the nR requested GF symbols, i.e. the GF values
of the first nR couples of Ω(MV 2C). The edge multiplicative
factor h is applied to each GF element of Ω(MV 2C) to
generate Ω(MP

V 2C).
The decompression module Ω−1 decompresses the message
Ω(MP

V 2C) back to a message of size q by setting the nvc
GF values of Ω(MV 2C) with their corresponding LLRs and
by setting infinity to the remaining GF values. Moreover, the
decompression block Ω−1 also sends to the compression block
Γ the message MP,R,⊕ containing the requested symbols. It is
composed of the nR most reliable GF symbols in Ω(MP

V 2C)
(see example of Fig. 1(c) with nvc = 3 and nR = 2). It could
be noted that when the EMS algorithm is used for the check
node processing, the Ω and Ω−1 modules are bypassed, since
EMS, by construction, used truncated messages.



Fig. 1. The Best, the Requested and the Default Decoder

B. Compression and Decompression of MC2V Message

Once all the variable to check messages are received, the CN
processes the MP

V 2C messages using any processing algorithm
such as EMS or T-EMS. The generated MP

C2V message is then
truncated by the Γ compression block in two steps. Firstly, the
nB most reliable candidates are selected to generate the subset
MP,B

C2V of size (n+, n⊕) = (nB − 1, nB). Secondly, the LLR
of the nR requested symbols of MP,R⊕ are extracted from
MP

C2V and concatenated with MP,B
C2V to generate the Γ(MP

C2V )
message of size (n+, n⊕) = (nB + nR − 1, nB). The nB GF
symbols are inversely permuted by h−1 to generate Γ(MC2V )
and sent to Γ−1.
The Γ−1 decompression block reconstructs the full-set q
message Γ−1(Γ(MC2V )). This reconstruction is based on a
3 steps process. First, the LLRs of the best candidates are
placed into their corresponding GF positions. Then, the LLR
of the requested symbols are also set into their corresponding
GF positions among with a saturation process that prevents
high values from entering the variable node. Finally, the
remaining positions are filled with the default LLR value SD.
In summary, for a given GF value a ∈ GF(q),

Γ−1(Γ(MC2V ))[a]+ =


MB+

C2V [a], a ∈MB⊕
C2V

min (MR+
C2V [a], SR), a ∈MR⊕

SD, Otherwise
(1)

The saturation values of SR and SD impact significantly on
the decoder performance. By empirical trial and error, SR and
SD are determined as SR = S+OR and SD = S+OD, with
S given as a linear function of the maximum LLR values of
set MB+

C2V and MR+
C2V , i.e.

S = γB ·max{MB+
C2V }+ γR ·max{MR+

C2V } (2)

where the values of (γB , γR, OR, OD) depend on the code
rate.

C. BRD Example on GF(8)

In the example of Fig. 1(c), the saturation parameters
(γB , γR, OR, OD) are set to (2, 1/8, 1, 2) respectively. More-
over, the size of the messages are defined as nvc = 3,
nB = 2 and nR = 2. The intrinsic message I is given as
I = [7, 1, 12, 4, 18, 9, 0, 9]. The position of each LLR values
gives implicitly the associated GF value, as shown in Fig. 1(c).
Assuming the processing of the first iteration, the first variable
to check message is equal to MV 2C = I . The compression
module Ω extracts the 3 smallest LLR of the message to
generate the 3 couples [(−, α5), (1, α0), (4, α2)]. Since the
LLR of the first couple is always equal to 0, it could be
omitted. The message contains 2 LLR and 3 GF symbols.
The nR = 2 GF symbols of the most reliable candidates
MR⊕ = (α5, α0) are also sent to the Γ−1 module. The GF
value of message Ω(MV 2C) are multiplied by h = α1, gen-
erating Ω(MP

V 2C) = [(−, α6), (1, α1), (4, α3)]. The decom-
pression module Ω−1 generates the input check node message
Ω−1(Ω(MP

V 2C)) by assigning the LLRs 0, 1 and 4 in positions
α6, α1 and α3, respectively, and infinite value otherwise. It
also sends the nR = 2 GF values MP,R⊕ = (α6, α1) to the
compression module Γ.
In the example, the check node generates the message
MP

C2V = [12, 9, 4, 2, 4, 10, 0, 8]. The Γ compression block
selects the most reliable (Best) nB = 2 candidates from
MP

C2V , and it concatenates the LLR of the requested can-
didates of MP,R⊕, thus Γ(MP

C2V ) = MB
C2V ∪ MR

C2V =
[(−, α5), (2, α2)|(8,−), (2,−)]. After the inverse permutation
process, Γ(MC2V ) is received by the Γ−1 and expanded back
to q = 8 as Γ−1(Γ(MC2V )). Since max{MB+

C2V } = 2 and
max{MR+

C2V } = 8, with the chosen saturation parameters (2)
gives S = 5, and thus, SR = 6 and SD = 7. The best
candidates are kept unchanged, the requested LLR on α0

is also kept unchanged, while the requested LLR on α5 is
saturated from 8 down to SR = 6. The remaining candidates
are all assigned the value SD = 7. The next MV 2C message



computed by the VN processing (see Algo. 1, lines (13, 14,
15)) is also indicated in the right output of the VN.

IV. ANALYSIS AND RESULTS

In the EMS algorithm, it is known that the size nm of the
MC2V messages highly affects the performance of the decoder.
The statistical study presented hereafter shows that the main
criterion that affects the performance is not the size of the
message in itself, but the probability P (xj ∈MC2Vj ) that the
transmitted symbol xj belongs effectively to the exchanged
message. It is shown that the requested candidates increase
this probability significantly, thus leading to good decoding
performance even with low message size.

A. Statistical Analysis

In this section, a Monte-Carlo estimation of P (xj ∈
MC2Vj ) is presented as a function of the message size for
several decoding algorithms. The Monte-Carlo simulations are
performed for a rate 5/6 (dv = 2, dc = 12) GF(64) NB-
LDPC code of size N = 864 symbols. The Signal-to-Noise
Ratio (SNR) is set to 3 dB (beginning of the waterfall region)
with a maximum of 30 decoding iterations. The probability
P (xj ∈ MC2Vj ) is estimated in the whole decoding process
as a function of the MC2V message length. For the EMS
algorithm, the message length is given by nm. The algorithm
parameters are nop = nm + 5 and offset value equals to
0.3 (see [3] for more details). For the BRD algorithm, the
message length is characterized by ncv = nB + nR. The
CN process is based on the TEC-TEMS algorithm [9], with
specific parameters given in the following section. The TEC-
TEMS is also simulated where only nm = 20 candidates are
analyzed from the full-set vector q = 64.
It is noticeable in Fig. 2 that the impact of including the
requested symbols greatly enhances the probability that the
transmitted symbol xj belongs to the propagated message
MC2V , and hence becomes a possible candidate to be pro-
cessed at both VN and CN. The probability P (xj ∈ MC2Vj

)
is around 85% in EMS with nm = 20. The probability P (xj ∈
MC2Vj

) in TEC-TEMS has a similar percentage (87%) to
EMS. When truncating the size of considered candidates to
nvc = 4, nB = 7, nR = 0, the probability drops down to
59%. Including one requested symbol (nB = 6, nR = 1)
enhances the overall probability from 59% to 89% with the
same message size (ncv = 7). The proposed decoder with
nB = 4, nR = 3 achieves a probability of 96%.
In Fig. 3, the performance of the aforementioned analyzed
schemes is tested down to a FER of 10−3. It is noticeable
that the worst performance is for the truncated TEC-TEMS
with nvc = 4, ncv = 7. Moreover, it is also remarkable that
increasing the number of requested symbols further does not
enhance the decoding performance of the decoder.

B. Results and Discussion

The number of the exchanged messages reflects the number
of memory resources required for the decoding process to
be performed. Reducing the number of messages exchanged

ncv = nB + nR
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reduces the latency/complexity of different processes of the
decoder such as the sorting processes, the permutation and
inverse permutation processes, the configuration sets builder,
and the memory resources allocation which benefits both
hardware-implemented and software-implemented decoders.
The overhead complexity of the compression and decompres-
sion block depends on the CN processing algorithm used.
Table I shows the size of exchanged messages per edge (a
connection between a VN and a CN) for different schemes
based on GF(64). The message size is characterized by the
number of GF values (coded on log2(64) = 6 bits) and the
number of LLR values (also coded on 6 bits). The last column
sums the number of GF and LLR elements exchanged per edge
and per iteration. For a code on GF(64) with r = 5/6 and a
CN degree of connectivity dc of 12, the lowest number of the
exchanged elements among the studied scheme is 48 (Table.
I) achieved by the hybrid EMS decoder [6], whereas the total
number of exchanged elements per edge in the BRD decoder is
17. Furthermore, the number of the memory resources reserved
for MV 2C is greatly reduced from dc× q down to dc× 7 and
from dc×q down to dc×10 for MC2V . For a code rate r = 0.5
with a degree of connectivity dc = 4, the number of exchanged
messages is set to nvc = 5, nB = 6, and nR = 3. The factors
γR and γB are obtained to be 0.127 and 2.24 respectively
and optimized to 0.125 and 2 such that the multiplication is



Scheme Algorithm Inputs Outputs Total
n⊕
vc n+

vc n⊕
cv n+

cv

EMS FWBW[4] 20 19 20 19 78
Hybrid [6] 5 4 20 19 48

TEMS

TEMS[7], [8] 0 64 0 64 128
TEC-TEMS [9] 0 64 0 64 128

Improved TEMS [10] 32 31 0 64 127

BRD for r ≥ 5/6 4 3 4 6 17
for r = 1/2 5 4 6 8 23

TABLE I
NUMBER OF EXCHANGED MESSAGES PER EDGE ON GF(64)
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simplified to a shifting operation.
The simulation is done for NB-LDPC codes of size (in bits)
(96, 48),(864, 720), and (1260, 1134) on GF(64) [14]. The
simulated decoder is based on the layered scheduling and a
maximum of 10 decoding iterations. As shown in Fig. 4, the
proposed scheme has a performance similar to that of the EMS
(nm = 20, nop = 25) and TEC-TEMS [9]. The performance
is simulated down to a FER of 10−5 and no significant per-
formance degradation is experienced. The parameters used for
simulating the BRD decoder for r ≥ 5/6 are nvc = 4, nB =
4, nR = 3, γB = 2, γR = 0.125, OD = 0.4, OR = 0.2
and a compensation factor (TEC-TEMS) = 0.8. For the code
of size N = 96,K = 48 with dc = 4, the BRD decoder
showed similar performance to EMS (see Fig. 4) with a lower
number of exchanged messages nvc = 5, nB = 6 and nR = 3
instead of nm = 20 and nop = 25. The parameters used for
simulation are γB = 2, γR = 0.125, OD = 0.2, OR = 0.1
and a compensation factor (TEC-TEMS) = 0.8.
A binary LDPC code sends 2 messages per edge per iteration.
For a dv = 3 (since dv = 2 binary LDPC matrix would have
poor performance) LDPC code, each binary VN exchanges 6
messages per iteration. Thus, 6 binary VNs (equivalent to 1
VN in GF(64)) sends 36 messages per iteration. Considering
a rate r ≥ 5/6 and dv = 2 GF(64)-LDPC code, only 17 ×
dv = 34 messages are exchanged. Therefore, the BRD decoder
requires less communication load than a binary decoder.

V. CONCLUSION

The BRD algorithm is a generic decoding, independent of
the CN/VN processing or the connectivity degrees dc and dv .

The algorithm is based on requesting relevant GF symbols
from the CN such that their LLR are concatenated with
the best reliable candidates and sent back to the VN. The
BRD algorithm allows decreasing the size of the exchanged
messages, which reduces the complexity and latency of the
decoder without significant performance degradation.
The BRD compression of exchange messages is fully compat-
ible with the EMS message representation. Thus, augmenting
the EMS algorithm with the capacity to deliver requested
messages is a natural extension of this work. Preliminary
results are very promising.
Finally, additional investigations could be done to allow other
NB decoders such as NB-Polar or NB-Turbo decoders to
benefit also from the BRD algorithm.
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