Rough layer scattering filled by elliptical cylinders from the method of moments combined with the characteristic basis function method and the Kirchoff approximation

In this paper, the electromagnetic field scattered by several 2D scatterers of any shape is calculated rigorously from the boundary integral equations discretized by the method of moments with the point matching method and pulse basis functions. In addition, the resulting linear system is efficiently solved from the domain decomposition method named the characteristic basis function method. To accelerate the computation of the primary basis functions, which requires solving sublinear systems, the Kirchoff approximation is applied for metallic and dielectric objects. The efficiency of the method is tested on several applications met in practice: stack of rough interfaces separating homogeneous media, collection of metallic and dielectric elliptical cylinders, collection of coated elliptical cylinders, and a combination of the previous scenarios.

INTRODUCTION

The study of the wave scattering from several scatterers of any shape is a subject of great interest. The applications of such research concern many areas such as remote sensing, radar surveillance, optics, and ocean acoustics.

For a collection of objects of canonical shape, like circular cylinders (of infinite length) and spheres, the scattered field can be computed analytically by introducing special functions, e.g., Bessel's and spherical Bessel's [START_REF] Frezza | Introduction to electromag-698 netic scattering: tutorial[END_REF]2]. For elliptical cylinders [3-5], Mathieu's functions [START_REF] Abramowitz | Handbook of Mathematical 713 Functions[END_REF] are introduced, but they are difficult to program, unlike well-known Bessel's functions. Adding a boundary, like a smooth plate of infinite area (space divided into two media), the previous formulations can be extended [START_REF] Sommerfeld | Lectures on Theoretical Physics[END_REF][START_REF] Youssif | Scattering by two penetrable cylinders 717 at oblique incidence. I. The analytical solution[END_REF][START_REF] Valle | Electromagnetic wave scat-720 tering from conducting cylindrical structures on flat substrates: study tion[END_REF][10][11][12][13][14][15][16][17], and the difficulty of programming increases. For a stack of rough interfaces separating homogeneous media, asymptotic approaches, in which simplifying assumptions are introduced, have been developed. For small roughness, we can cite the small perturbation method [18][START_REF] Ohlidal | Scattering of light from multilayer systems 750 with rough boundaries[END_REF][START_REF] Fuks | Wave diffraction by rough interfaces in an arbitrary plane-layered medium[END_REF][START_REF] Soubret | Backscattering enhancement of an electromagnetic wave scattered by two dimensional[END_REF][START_REF] Tabatabaeenejad | Bistatic scattering from dielectric structures with two rough boundaries using the small perturbation method[END_REF][START_REF] Sanamzadeh | Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: energy conservation, reflectivity, and emissivity[END_REF][START_REF] Dusséaux | Level crossing rate and average fade distance of signal scattering from rough layered interfaces[END_REF] and, for high roughness, the geometric optics approximation [START_REF] Pinel | Bistatic scattering from one-dimensional random rough homogeneous layers in the highfrequency limit with shadowing effect[END_REF][START_REF] Pinel | Scattering from very rough layers under the geometric optics approximation: further investigation[END_REF][START_REF] Pinel | A geometrical optics model of three dimensional scattering from a rough surface over a planar surface[END_REF]. For a complex scenario, like inhomogeneous (dielectric objects are present in the layer) layered rough interfaces, it is difficult to derive a closed-form expression of the scattered field.

The well-known method of moments (MoM) [START_REF] Harrington | Field Computation by Moment Method[END_REF][START_REF] Tsang | Scattering of Electromagnetic Waves, Numerical Simulations[END_REF][START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF][START_REF] Sun | Field-only surface integral equations: scattering from a perfect electric conductor[END_REF] is a way of rigorously solving this type of scattering problem by converting the boundary integral equations into a linear system, in which the impedance matrix must be inverted to determine the surface currents. However, the direct solution of the linear calculating the primary basis functions (PBFs). Next, the coupling between them is accounted for via the computation of the characteristic matrix, which involves the coupling matrices between the subproblems. To accelerate the calculation of PBFs, which requires one to solve sublinear systems, the Kirchoff approximation (KA) is applied for metallic and dielectric objects. The efficiency of the method is tested on several applications met in practice: stack of rough interfaces separating homogeneous media, collection of metallic and dielectric elliptical cylinders, collection of coated elliptical cylinders, and a combination of the previous scenarios.

The paper is organized as follows. Section 2 extends the MoM to P scatterers of any shape. Section 3 briefly summarizes the CBFM. Section 4 addresses the KA approximation for the derivation of the PBFs. Section 5 presents numerical results on four scenarios. The last section gives concluding remarks.

METHOD OF MOMENTS FOR SEVERAL SCATTERERS

This section presents the MoM for solving the electromagnetic wave scattering from several scatterers. For one and two scatterers, this approach is thoroughly explained in the textbook [START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF].

To sum, the boundary integral equations are applied on each scatterer and are discretized from the MoM by using the pointmatching method and the pulse basis function. This leads to the linear system ZX = b, in which Z is the impedance matrix of the two scatterers, b is a vector related to the incident field on the scatterers, and X the surface currents on the scatterers, i.e., the unknowns of the problem. In this section, this approach is generalized to several scatterers.

A. Case of a Single Illuminated Scatterer

For a single scatterer as shown in Fig. 1, the impedance matrix is expressed from four submatrices as

Z11 = Ā11 B11 C11 D11 . (1) 
The matrix Ā11 is the matrix obtained from the Neumann boundary condition, i.e., when the scatterer is assumed to be perfectly conducting (metallic), and the transverse electric medium 1 . The elements of these four submatrices are given in

b 1 = b 1 0 =    ψ inc (r 1 ) ... ψ inc (r N 1 ) 0 ... 0 N 1 times b T 1 ,r∈S 1    T , (2) 
where ψ inc is the incident wave illuminating the scatterer. The 118 symbol T stands for the transpose operator, and N 1 is the num-119 ber of discretization points on the surface S 1 of the object. This 120 means that the size of the matrix is 2N 1 × 2N 1 .

121

The unknown vector X 1 of length 2N 1 is expressed as 122 

X 1 = ψ 1 (r 1 ) ... ψ 1 (r N1 ) ∂ψ1(r1) ∂n ... ∂ψ1(r N 1 ) ∂n T r p∈[1;N1] ∈ S 1 , (3) 
where 128

P(r, r 1 ) = Āij Bij r j =r 1 ,r i =r , (5) 
and r 1 ∈ S 1 (r = r 1 ). If r ∈ 1 (r = r 1 ); then, Eq. ( 4) is In the far field (kr 1, where k is the wavenumber of the 136 medium), the propagation matrix can be simplified as [START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF] 137

P∞ (r, r 1 ) = j 4 2 πkr e -j (π/4+kr ) j v 1 k sca • n1 e -j k sca •r 1 1 + γ 2 1 1 e -j k sca •r 1 1 + γ 2 1 1 , ( 6 
)
where k sca = k( x sin θ sca + ẑ cos θ sca ) (see Fig. 1) stands for the The radar cross section (RCS) is written as [START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF] 142

RCS = lim r →∞ 2πr ψsca (r) 2 = 1 4k j v 1 k sca • n1 e -j k sca •r 1 1 + γ 2 1 1 e -j k sca •r 1 1 + γ 2 1 1 X 1 2 , ( 7 
)
where RCS is a vector of the same length as ψsca (r).

The normalized radar cross section (NRCS, dimensionless) is 144 written as [START_REF] Tsang | Scattering of Electromagnetic Waves, Numerical Simulations[END_REF][START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF] 145

NRCS = lim r →∞ r 2η 0 | ψsca (r)| 2 p inc , (8) 
where η 0 is the wave impedance of medium 0 and p inc the inci-146 dent power. For an incident plane wave of unitary amplitude, 147 p inc = L cos θ inc /(2η 0 ), so that NRCS = RCS cos θ inc /(2π L). For the case of two illuminated scatterers (Fig. 2, with P = 2), 150 the impedance matrix Z is expressed as [START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF] 151

Z = Z11 Z(1) 12 Z(1) 21 Z22 , (9) 
where Z11 [Eq. ( 1)] and Z22 are the self-impedance matrices of The size of Z is reduced to

= Ā12 B12 0N 1 ×N 2 0N 1 ×N 2 , Z (1) 21 
= Ā21 B21 0N 2 ×N 1 0N 2 ×N 1 , ( 
(N 1 + N 2 ) × (N 1 + N 2 ).
171

The excitation vector b of length 2(N 1 + N 2 ) is written as

172 b = b 1 b 2 T , (11) 
Fig. 2. Scattering from P illuminated scatterers.

where the vector b i is defined from Eq. (2).

The unknown vector X of length 2(N 1 + N 2 ) is expressed as

X = X 1 X 2 T , (12) 
where X i is expressed from Eq. (3). The unknown

X on S 1 ∪ S 2 is computed from X = Z-1 b.
The scattered field ψsca (r) in the medium r ∈ 0 (r / ∈ S i ) is then obtained from the Huygens principle expressed as ψsca (r) = -P(r, r 1 ) P(r, r 2 ) X .

(13)

If r ∈ 1 (r / ∈ S 1 ), then the above equation is applied by taking the plus sign on the matrix P(r, r 1 ) (instead of minus).

If r ∈ 2 (r / ∈ S 2 ), then the above equation is applied by taking the plus sign on the matrix P(r, r 2 ).

In this paper, the formulation is generalized to P scatterers.

The impedance matrix is then expressed as 

Z =       Z11 Z ( 
P 1 Z(1) P 2 ... ZPP       , ( 14 
)
where Zii is the self-impedance matrix of the scatterer i, whereas Z(1) ij is the coupling matrix between the objects i and j (propagation of the scattered field from j to i) expressed from Eq. (10).

The size of the matrix Z is N × N where N = 2 i=P i=1 N i .

The excitation vector b of length N is written as

b = b 1 b 2 ... b P T , ( 15 
)
where the vector b i is defined by Eq. (2). The unknown vector X

of length N is X = X 1 X 2 ... X P T , ( 16 
)
where X i is expressed from Eq. (3) and computed by solving the linear system ZX = b.

The scattered field ψsca (r) in the medium r ∈ 0 (r / ∈ S i ) is then obtained from the Huygens principle expressed as

ψsca (r) = -      P(r, r 1 ) P(r, r 2 ) . . . P(r, r P )      X . ( 17 
)
For r ∈ i (i = 0 and r / ∈ S i ), the above equation is applied by taking the plus sign on the matrix P(r, r i ) (instead of minus).

C. Case of P Illuminated Scatterers Where Only One Is Illuminated

For the case of two illuminated scatterers where only one is illuminated (Fig. 3 with P = 2), the impedance matrix Z is expressed as [START_REF] Bourlier | Method of Moments for 2D Scattering Problems[END_REF] Fig. 3. P illuminated scatterers where only one is illuminated (the scatterer 1).

Z = Z11 Z(2) 12 Z(2) 21 Z22 , ( 18 
)
where the coupling matrices Z(2) 12 and Z(2) 21 are written as 204

Z(2) 12 = 0N 1 ×N 2 0N 1 ×N 2 Ā12 B12 , Z(2) 21 = Ā21 D21 0N 2 ×N 1 0N 2 ×N 1 , ( 19 
)
where 0 is a null matrix. The size of the matrix Z is 

2(N 1 + N 2 ) × 2(N 1 + N 2 ).
(2N 1 + N 2 ) × (2N 1 + N 2 ).

213

The excitation vector b of length 2(N 1 + N 2 ) is written as

214 b = b 1 0 1×2N 2 T , (20) 
where the vector b 1 is defined by Eq. (2). In comparison with scatterer 2 is not illuminated.

217

The unknown vector X of length 2(

N 1 + N 2 ) is expressed as 218 X = X 1 X 2 T , (21) 
where X i is expressed from Eq. (3). The unknown

X on S 1 ∪ S 2 219 is computed from X = Z-1 b. 220
The scattered field ψsca (r) in the medium r ∈ 0 (r / ∈ S 1 ) is 221 then obtained from the Huygens principle expressed as

222 ψsca (r) = -P(r, r 1 )X 1 . ( 22 
) If r ∈ 1 (r / ∈ S 1 ), then the scattered field ψsca (r) is 223 ψsca (r) = + P(r, r 1 ) -P(r, r 2 ) X . ( 23 
) If r ∈ 2 (r / ∈ S 2 ), then the scattered field ψsca (r) is 224 ψsca (r) = P(r, r 2 )X 2 . ( 24 
)
In this paper, the formulation is generalized to P scatterers.

The impedance matrix is then expressed as 

Z =            Z11 Z(2) 12 0 0 ... 0 Z(2) 21 Z22 Z(2) 23 0 ... 0 0 Z(2) 32 Z33 Z(2)
P ,P -1 ZPP            , (25) 
where Zii (or Zi,i ) is the self-impedance matrix of the scatterer i,

whereas Z(2) ij (or Z(2) i, j
) is the coupling matrix between the objects i and j (propagation of the scattered field from j to i) expressed from Eq. ( 19). Unlike the matrix expressed in Eq. ( 18), Eq. ( 25)

shows that only two adjacent scatterers i and min(|i + 1|, P ) interact, which explains why null matrices appear.

The excitation vector b is given by

b = b 1 0 1×2 i=P i=2 N i T . ( 26 
)
It differs from Eq. ( 15) because b i = 0 for i ∈ [2; P ] (these scatterers are not illuminated).

The unknown vector X of length N = 2 i=P i=1 N i is expressed from Eq. ( 16) and computed by solving the linear system ZX = b.

The scattered field ψsca (r) in the medium r ∈ 0 (r / ∈ S 1 ) is obtained from the Huygens principle given by Eq. [START_REF] Dusséaux | Level crossing rate and average fade distance of signal scattering from rough layered interfaces[END_REF]. For r ∈

i (i ∈ [1; P -1], r / ∈ (S i ∪ S i+1
)), the scattered field is

ψsca (r) = + P(r, r i ) -P(r, r i+1 ) X i X i+1 . ( 27 
)
For r ∈ P (r / ∈ S P ), the scattered field is ψsca (r) = P(r, r P )X P .

D. Combination of Cases

As an example, in this paragraph, the impedance matrix of the scenario presented in Fig. 4 is determined. It is expressed as

Z =         Z11 Z(1) 12 Z(1) 13 0 0 Z(1) 21 Z22 Z(1) 23 0 0 Z(1) 31 Z(1) 32 Z33 Z(2) 34 Z(2) 35 0 0 Z(2) 43 Z44 Z(1) 45 0 0 Z(2) 53 Z(1) 54 Z55         . ( 28 
)
The impedance matrix of scatterers 1, 2, and 3 is expressed from Eq. ( 14), with P = 3. This explains the first three rows and columns of Z with the superscript (1) (Case 1). The impedance matrix of scatterers 4 and 5 is expressed from Eq. ( 9), in which the subscripts {1, 2} are replaced by {4, 5}, and the incident medium is 3 . This explains the last two rows and columns of Z with the superscript (1) (Case 1). The impedance matrix of scatterers 3 and 4 union 5 is expressed from Eq. ( 18). This explains the rows (4,5) and columns (4,5) of Z with the superscript (2) (Case 2). The eight null matrices appear because scatterers 1 and 257 2 do not directly interact with objects 4 and 5.

258

The excitation vector b is given by

259 b = b 1 b 2 b 3 0 1×2(N 4 +N 5 ) T , ( 29 
)
for which the scatterers 4 and 5 are not illuminated. It is impor- 

    X 1 X 2 X 3   . (30) 
For r ∈ 3 (r / ∈ (S 3 ∪ S 4 ∪ S 5 )), the scattered field is 267 ψsca (r) =   + P(r, r 1 ) -P(r, r 4 ) -P(r, r 5 )

    X 1 X 4 X 5   . ( 31 
)
For r ∈ 4 (r / ∈ S 4 ), ψsca (r) = P(r, r 4 )X 4 . For r ∈ 5 (r / ∈ 268 S 5 ), ψsca (r) = P(r, r 5 )X 5 .

269

In conclusion, the two cases presented in the previous sections 

M =      1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1      . ( 32 
)
If M ij = 0, then the corresponding matrix Zij = 0. The 278 matrix M is symmetric, owing to the reciprocity principle, and 279 becomes

M ii = 1 ∀ i ∈ [1; P ].
M =      1 1 1 0 0 1 1 1 0 0 1 1 1 2 2 0 0 2 1 1 0 0 2 1 1      . ( 33 
)
In conclusion, if This is computationally expensive for an electrically large multiscale object or a collection of dielectric objects (i.e., N huge).

M ij = 0 then Zij = 0, Zij = Z(m ij ) ij (i = j )
To tackle this issue, the domain decomposition method, named the characteristic basis function method (CBFM), is applied. A summary of this method can be found in [START_REF] Prakash | Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations[END_REF][START_REF] Bourlier | Two domain decomposition methods, SDIM and CBFM, for the scattering from a two-dimensional perfectly-conducting rough surface: comparison and parametric study[END_REF].

It is important to note that, originally, the CBFM was developed for radiation and 3D scattering problems [START_REF] Prakash | Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations[END_REF] and on a single geometry. Next, it was extended to a single and two 3D dielectric scatterers [START_REF] Laviada | Generation of excitationindependent characteristic basis functions for three-dimensional momogeneous dielectric bodies[END_REF][START_REF] Li | Characteristic basis function method for fast analysis of 3-D scattering from objects buried under rough surfaces[END_REF].

For a 2D problem, some minor changes are needed.

A. Case of Metallic Scatterers

First, the scatterers are assumed to be metallic. The CBFM begins by dividing the geometry of the problem to be analyzed into B blocks, where Zi,i is the self-impedance matrix of the block i. Next, a primary basis function (PBF), Y i ,k IPW , is computed for each block by solving the linear system

Zi ,i Y i ,k IPW = B i ,k IPW , (34) 
where the subscript prime indicates that the block i is enlarged and k IPW stands for the k IPW th plane wave (ranging from 1 to The choice of N IPW,i must be relevant to avoid the size of the matrix being too big. The redundant information due to the overestimation of N IPW,i is eliminated via the use of a truncated singular value decomposition (SVD). This means that, from a given threshold CBFM,SVD , the values for which the modulii of the normalized eigenvalues are smaller than CBFM,SVD are removed. The size of J i becomes N i × N IPW,SVD,i , with

N IPW,i
N IPW,SVD,i < N IPW,i .
The last stage of CBFM consists in solving a reduced linear

system ZR a R = b R defined as       ZR 1,1 ZR 1,2 ... ZR 1,B ZR 2,1 ZR 2,2 ... ZR 2,B . . . . . . . . . . . . ZR B,1 ZR B,2 ... ZR B,B            a R 1 a R 2 . . . a R B      =      b R 1 b R 2 . . . b R B      , ( 35 
)
where the submatrix ZR i, j and the subvector b R i are defined as

ZR i, j = J H i Zi, j J j N IPW,SVD,i × N IPW,SVD, j b R j = J H j b j N IPW,SVD,i × 1 . (36) 
Moreover, the symbol H stands for the conjugate transpose operator, and the indexes i and j range from 1 to B. The unknown vector X i of the block i equals

X i = J i a R i .
The problem is then represented by the characteris- to repeat the procedure, and the surface currents are calculated rapidly. The complexity of CBFM is detailed in [START_REF] Bourlier | Two domain decomposition methods, SDIM and CBFM, for the scattering from a two-dimensional perfectly-conducting rough surface: comparison and parametric study[END_REF].

Originally, the CBFM splits up the single geometry into B blocks, since for a 3D problem the number of unknowns can be huge. In this paper, since the number of unknowns N i of a single scatterer is moderate, it is not required to decompose it into blocks, but it is not a limitation. This means that the number of blocks equals the number of scatterers, B = P , and that the overlapping between the scatterers is not necessary.

B. Case of Dielectric Scatterers

As shown by Eq. ( 1), for a dielectric scatterer, the self-impedance matrix of size 2N i × 2N i is expressed from four submatrices of size N i × N i . Thus, the PFBs are calculated by repeating the procedure four times used for a metallic object and illustrated by Eq. [START_REF] Ye | Fast iterative approach to difference electromagnetic scattering from the target above a rough surface[END_REF]. This leads to the matrix

J i = J i,11 J i,12 J i,21 J i,22 , (37) 
where the submatrices { J i, pq } ( p = {1, 2}, q = {1, 2}) are obtained from the four submatices of Zi ,i , i.e., { Āi ,i , Bi ,i , Ci ,i , Di ,i }. This representation implies 

ψ(r) = [1 + R(θ )] ψ inc (r)I(r) ∂ψ(r) ∂n = [1 -R(θ )] ∂ψ inc (r) ∂n I(r) , ( 38 
)
where R is the Fresnel reflection coefficient defined as 394 R = n 2 cos θ-n 1 cos θ t n 2 cos θ+n 1 cos θ t TM polarization

n 1 cos θ-n 2 cos θ t n 1 cos θ+n 2 cos θ t TE polarization . ( 39 
)
In addition, For a metallic surface, R = {+1, -1} for the TM and TE polarizations, respectively. This leads to {ψ = 2Iψ inc , ∂ψ/∂n = 0} for TM and to {ψ = 0, ∂ψ/∂n = 2I∂ψ inc /∂n} for TE.

cos θ = -kinc • n, cos θ t = 1 -n 2 1 (1 -cos 2 θ )/n 2 2 ,
Assuming a plane incident wave ψ inc = e j k inc •r , Eq. [START_REF] Déchamps | Electromagnetic scattering from a rough layer: propagation-inside-layer expansion method combined to the forward-backward novel spectral acceleration[END_REF] becomes

ψ(r) = [1 + R(θ )] e j k inc •r I(r) ∂ψ(r) ∂n = [1 -R(θ )] e j k inc •r I(r) j k inc • n . ( 40 
)
In Eq. ( 37), the PBFs { J i,11 , J i,12 } are obtained from Eq. ( 40) by taking R = {+1, -1} (metallic case), respectively, whereas { J i,21 , J i,22 } are obtained from Eq. ( 40).

In other words, it is equivalent to write that Zi,i is a diagonal To calculate the PBFs with KA, the resulting complexity is O(N i ) instead of O(N 3 i ) from a conventional LU decomposition. For the numerical results, keep in mind that there is no overlapping between the P = B scatterers, meaning that First, the scattering from a stack of P = 6 random rough interfaces separating homogeneous media is considered. Table 3 lists the simulation parameters; Fig. 5 shows the scenario.

N i = N i .

NUMERICAL RESULTS

In

To attenuate the edge diffraction by the upper surface, Thorsos's [51] Gaussian-tapered incident wave is applied with g = L 1 /6 = 10λ 0 , and the incident angle is θ inc = 0. The parameter g controls the extend of the incident wave.

To calculate the PBFs, the incident waves [vectors {B i ,k IPW } in Eq. ( 34)] are assumed to be plane, and their incidence angles range from 0 to 2π . In addition, they are spaced equally and their number, N IPW , is assumed to be The rough surface number i obeys a Gaussian height distribution with a height autocorrelation function (ACF) assumed to be Gaussian, with a standard deviation σ z,i and a correlation length L c ,i . Its height mean value (or depth) is h i , the surface lengths are equal to 60λ 0 , where λ 0 is the wavelength in vacuum (medium 0 ), and the sampling step per wavelength λ 0 is equal to 20. 

N IPW = k 0 D + 1 n IPW , (41) 
Scatterer i σ z,i [λ 0 ] L c,i [λ 0 ] h i [λ 0 ] 0 1 1 2 + 0.
RRE = norm (X LU -X CBFM ) norm (X LU ) . ( 42 
)
The norm is the norm 2, which is calculated over the surface 2 shows that the size of the reduced matrix is 4.9 461 times smaller than that of the entire problem and the gain in Fig. 6. Modulus of the surface current currents {ψ 1 , ψ 6 } (upper and lower interfaces) in dB scale versus the surface abscissa (scenario depicted in Fig. 5). The polarization is TM. Fig. 7. NRCS in dB scale versus the scattering angle θ sca (scenario depicted in Fig. 5). The polarization is TM.

saving time is of the order of 5. in Fig. 5. Numerical results, not depicted in the paper, demonstrate that, when R c < λ 0 , the precision of CBFM-KA is lower.

In addition, it is important to underline that the multiple reflections are neglected with KA, which implies that the surface RMS slope must be moderate (typically, smaller than 0.3-0.35).

Figure 9 plots the same variations as in Fig. 7, but the polarization is TE. For LU, CBFM,SVD = 10 -4 , whereas for KA, CBFM,SVD = 10 -6 . As we can see, a good agreement is obtained with LU, which implies that the input parameters are well chosen.

This first study showed that, for a stack of rough interfaces, the CBFM combined with either LU or KA gives very good results. To calculate the PBFs, Eq. ( 41) with n IPW = 3 slightly overestimates the number of incident plane waves. The use of a SVD truncation allows us to reduce this number by a factor ranging from 1.5 to 1.6 (see Table 2 or legends of Figs. 789), which implies that the size of the reduced matrix also decreases.

It is also important to underline that the threshold CBFM,SVD must be divided by 100 for KA in comparison with LU (with CBFM,SVD = 10 -4 ) to obtain a similar value of NIPW,SVD .

B. Scenario 2: Collection of Elliptical Cylinders

In this subsection, the scattering from a collection of 21 elliptical dielectric cylinders is considered. Figure 10 degrees, and the center coordinates are equal to {(-6, -2), (-4, -2), (-2, -2), ... , (2, 2), (4, 2), (6, 2)}λ 0 .

The sampling step per wavelength λ 0 is 20, and the incident wave is assumed to be plane ψ inc (r) = e j k inc •r = e j k 0 (x sin θ inc -z cos θ inc ) , with an incidence angle θ inc = 0.

Figure 11 plots the RCS in dBm scale versus the scattering angle θ sca (scenario depicted in Fig. 10). The polarization is TM. In the legend, the labels mean "CBFM( CBFM,SVD -n IPW )-Method: NIPW -NIPW,SVD , RRE" (Table 1), where the relative residual error (RRE) is defined by Eq. ( 42), in which X is the scattered field in far field versus θ sca . "Method" is the method 

C. Scenario 3: Collection of Elliptical Coated Cylinders

In this subsection, the scattering from six elliptical coated dielectric cylinders is considered. Figure 13 shows the scenario. A coated cylinder is composed of three nested cylinders separating four homogeneous media. The scatterers numbered 1, 2, and 3 have semimajor axis a = {4, 3, 2}λ 0 , semiminor axis b = {3, 2, 1}λ 0 , rotation angles {0, 30, 60} degrees, and equal centers of coordinates (-4.5, 7)λ 0 .

The permittivities of the four media { i } (i ∈ (1; 4)) are r = {1, 2 + 0.05 j , 2.5 + 0.06 j , 3 + 0.07 j }. The scatterers {7, 8, 9} and {13, 14, 15} are obtained from scatterers {1, 2, 3} by making a vertical translation of -7λ 0 and -14λ 0 , respectively. The remaining scatterers defined for x > 0 are obtained from those defined for x < 0 by symmetry. The sampling step per wavelength λ 0 is 20, and the incident wave is assumed to be plane ψ inc (r) = e j k inc •r = e j k 0 (x sin θ inc -z cos θ inc ) , with an incidence angle θ inc = 0.

Figure 14 plots the RCS in dBm scale versus the scattering angle θ sca (scenario depicted in Fig. 13). The polarization is TM. As we can see, a good agreement is obtained between LU and CBFM-LU and CBFM-KA. Like previously, for KA, the threshold CBFM,SVD = 10 -6 is divided by 100 in comparison with that of LU to select enough PBFs. In Fig. 14, the legend (see also Figure 17 plots the NRCS in dB scale versus the scattering angle θ sca (scenario depicted in Fig. 16). The polarization is TM. Figure 18 plots the same variation as in Fig. 17, but the polarization is TE. From Eq. ( 41), to calculate N IPW,i , n IPW = 1 surprising and allows us to simplify the calculation of PBFs.

A pq ,mn =      - j k 0 v q ,n | q ,n | 4 H (1) 1 (k0 r q ,n -r p,m ) r q ,n -r p,m γ q ,n (x q ,n -x p,m ) -(z q ,n -z p,m ) for m = n + 1 2 - v q ,n | q ,n | 4π γ q ,n 1+γ 2 q ,n for m = n , ( A1 
Table 2 shows that the time difference between CBFM-LU and CBFM-KA is small and increases as the number of unknowns grows. As expected, the time is smaller for CBFM-KA. For CBFM-LU, the PBFs are calculated from a LU inversion of complexity O(N 3 i ), whereas for CBFM-KA, the complexity is O(N i ). Thus, for large N i (3D problem), CBFM-KA should be competitive. In addition, with CBFM, the allocation time to calculate the reduced characteristic matrix (second stage common to CBFM-LU and CBFM-KA) is about 80%-90% of the total time. In Table 2, this explains the small differences between t CBFM,LU and t CBFM,KA .

The advantage of the domain decomposition method is that it is highly parallelizable, which further reduces the computing time. The proposed method is then a powerful electromagnetic computation tool to solve any 2D problem, especially when some scatterers are identical. where r q ,n = (x q ,n , z q ,n ) ∈ S q (coordinates of the point on the surface S q ), r p,m = (x p,m , z p,m ) ∈ S p , γ = d z/d x , γ = d γ /d x , q ,n the sampling step on S q , v q ,n = sgn( nq,n • ẑ)

( nq,n is the unitary vector normal to the surface S q at the point r q ,n ), H (1) 0 the zeroth order Hankel function of the first kind and H (1) 1 its derivative.

For the TE polarization, the variable ρ 01 = 1, whereas for the TM polarization, ρ 01 = r ,0 / r ,1 , where r ,i is the relative permittivity of medium i .

It is important to underline that, for a self (interaction of the same surface) impedance submatrix, p = q and a singularity occurs for m = n, whereas for a coupling matrix p = q , there is no singularity because r p = r q . In addition, any matrix Zpq propagates the field from the source points {r q ,n } toward the observation points {r p,m }.

(Fig. 1 .

 1 Fig. 1. Scattering from a single scatterer.

where ∂ψ 1

 1 /∂n = ∇ψ 1 • n1 is the normal derivative, in which 123 n1 is the unitary vector normal to S 1 . The unknown X 1 on S 1 is 124 computed from X 1 = Z-1 11 b 1 . The scattered field ψsca (r) in the 125 medium r ∈ 0 is then obtained from the Huygens principle 126 expressed as 127 ψsca (r) = -P(r, r 1 )X 1 ,

{

  129 applied by taking the plus sign (instead of minus). The matrices 130 Āij , Bij } are expressed in Appendix A. 131 The matrix P(r, r 1 ) propagates the surface currents 132 {ψ 1 , ∂ψ 1 /∂n} from r 1 to r. Its size is N sca × (2N 1 ), where 133 N sca is the number of observation points and ψsca is a vector of 134 length N sca . 135

  138 direction of observation, γ 1 the slope of S 1 at the point r 1 , 1 139 its sampling step, and v 1 = sgn( n1 • ẑ) (sgn stands for the sign 140 function).

  141

148B.

  Case of P Illuminated Scatterers 149

  10) where 0 is a null matrix. The size of the matrix Z is 161 2(N 1 + N 2 ) × 2(N 1 + N 2 ), where N i (i = {1, 2}) is the 162 number of discretization points on the surface S i of the object. 163 The elements of the submatrices { Ā12 , B12 } can be found in 164 Appendix A. 165 If scatterer 2 is perfectly conducting (metallic), then 166 Z22 = P22 , Z(1) 12 = [ P12 0] T and Z(1) 21 = [ Ā21 B21 ], where 167 Pij = { Āij , Bij } for the TM (∂ψ 2 /∂n = 0) and TE (ψ 2 = 0) 168 polarizations, respectively. In addition, if the scatterer 1 is per-169 fectly conducting, then Z(1) 12,21 = P12,21 and Z11,22 = P11,22 .

  170

  205

Fig. 4 .

 4 Fig. 4. Combination of cases.

  260 tant to note that, if a source exists in the medium 3 , then b 4 261 and b 5 differ from 0. By inverting the matrix Z, the surface 262 currents on the surfaces {S i∈[1;P ] } are computed. 263 The scattered field ψsca (r) in the medium r ∈ 0 264 (r / ∈ (S 1 ∪ S 2 ∪ S 3 )) is then obtained from the Huygens 265 principle expressed as 266 ψsca (r) = -  P(r, r 1 ) P(r, r 2 ) P(r, r 3 )

  270 allow us to generalize to any configuration made up of P scatter-271 ers. To construct the impedance matrix, the following method is 272 proposed. 273 For a given scenario, first a boolean interaction matrix M of 274 size P × P is built. If the scatterer j shares a medium j with 275 the scatterer i, then M ij = 1, 0 otherwise. For the case presented 276 in Fig. 4, M is written as 277

  Fig.2, coupling matrix with the superscript (1)]. Equation[START_REF] Johnson | A numerical study of scattering from an object above a rough surface[END_REF] 

  otherwise. For the excitation vector b, if the source belongs to the medium i∈[0;P ] , then the scatterer set J = { j } that shares this medium is illuminated. This means that b J = ψ inc (r ∈ S J ), b J = 01× N J otherwise, where J = J / ∈ [1; P ]. The scattered field in medium i∈[0;P ] is computed by using the same methods as those previously addressed. 3. CHARACTERISTIC BASIS FUNCTION METHOD For P dielectric scatterers, the size of the matrix to be inverted is N × N, where N = 2 i=P i=1 N i . The direct solution of the linear system ZX = b through a direct lower upper (LU) decomposition is usually limited by O(N 3 ) and O(N 2 ) complexities in CPU time and memory requirement, respectively.

  tic square matrix of size (B NIPW,SVD ) 2 instead of a square matrix of size N 2 = (B N) 2 , where N = (1/B) B p=1 N i and NIPW,SVD = (1/B) B p=1 N IPW,SVD, p (mean values over the number of blocks B). Then, the reduction factor is ( N/ NIPW,SVD ) 2 . If multiple excitations {b} (for instance, monostatic case) are considered, then the storing of ZR avoids

  and n i = √ r ,i (i = {1, 2}) the 396 refraction index of the medium i . The unitary vector kinc 397 stands for the incident direction, and n is the unitary vector 398 normal to the surface at the point r. In Eq. (38), I(r) denotes a 399 boolean illumination function. If a point on the surface r ∈ S is 400 viewed (that is, cos θ ≥ 0) by the transmitter, then I(r) = 1; 0 401 otherwise.

  matrix (because only local interactions are accounted for, that is, the multiple reflections are neglected) by blocks. The two upper blocks have N i elements equal to 2I(r m ) and 2I(r m )k inc • nm , respectively, whereas the two lower blocks have N i elements equal to I(r m )[1 + R(θ m )] (θ m depends on r m discretized on S) and I(r m )[1 -R(θ m )] j k inc • nm , respectively.

  this section, numerical examples are exhibited to demonstrate the efficiency of CBFM combined with either LU or KA for the calculation of the PBFs.

Fig. 5 .Figure 6

 56 Fig. 5. Scenario 1: A stack of P = 6 rough interfaces separating homogeneous media. The simulation parameters are listed in Table3.

  452 abscissa x i . CBFM-LU means that the PBFs are computed from 453 a LU decomposition. In addition, the legend "LU" means that 454 the strengths are computed from the brute force MoM (LU 455 decomposition of the entire matrix of the problem, that is, the 456 reference solution). 457 As we can see, for n IPW = 3, the results match well with 458 those obtained from LU, and the comparison is better for 459 CBFM,SVD = 10 -4 , as expected, but the number NIPW,SVD is 460 larger. Table

Figure 6 Figure 7 Figure 8

 678 Figure 7 plots the NRCS in dB scale versus the scattering

Fig. 8 .

 8 Fig.8. NRCS in dB scale versus the scattering angle θ sca (scenario depicted in Fig.5). The PBFs are computed from LU and KA, with n IPW = 3.

  shows the scenario, in which the cylinders are identical but with a different rotation angle. Their permittivities are r ,i = 3 + 0.05 j , semimajor axis a = λ 0 , and semiminor axis b = 2λ 0 . They are numbered from the left to the right going from bottom to top (see Fig. 10). Their rotation angles are spaced equally as {-180, -162, -144, ... , 144, 162, 180}

Fig. 9 .

 9 Fig.9. Same variations as in Fig.7, but the polarization is TE.

Fig. 10 . 542 Figure 12

 1054212 Fig. 10. Scenario 2: Collection of P = 21 elliptical dielectric cylinders.

Fig. 11 .

 11 Fig.11. RCS in dBm scale versus the scattering angle θ sca (scenario depicted in Fig.10). The polarization is TM.

Fig. 12 .

 12 Fig. 12. Same variation as in Fig. 11, but the polarization is TE.

Fig. 13 .

 13 Fig. 13. Scenario 3: Six elliptical dielectric coated cylinders (P = 18 scatterers).

Fig. 14 .

 14 Fig.14. RCS in dBm scale versus the scattering angle θ sca (scenario depicted in Fig.13). The polarization is TM.

Fig. 15 .Fig. 16 .

 1516 Fig. 15. Same variation as in Fig. 14, but the polarization is TE.

Fig. 17 .

 17 Fig.17. NRCS in dB scale versus the scattering angle θ sca (scenario depicted in Fig.16). The polarization is TM.

Fig. 18 .

 18 Fig. 18. Same variation as in Fig. 17, but the polarization is TE.

) 620 addressed for efficiently solving the resulting linear system. 621 Considering four different complex scenarios depicted in 622 Figs. 5 ,

 6216225 Figs. 5, 10, 13 and 16, for both the TM and TE polarizations,

  APPENDIX A: ELEMENTS OF THE MATRICESIn Eq. (1), the elements (m, n) (indexes of the row and column, respectively) of the submatrices { Ā11 , B11 , C11 , D11 } are expressed as ( p = q = 1)B pq ,mn = j | q ,n | 1 + γ 2 0 r q ,nr p,m ) for m = n 1 + 2 j π ln 0.164k 0 1 + γ 2 q ,n | q ,n | for m = n ,(A2)C pq ,mn = A pq ,mn k 0 =k 1 for m = n

Table 1 .

 1 Notations Introduced in This Paper Number of unknowns of scatterer i N IPW, p CBFM plane wavenumber of block i N IPW,SVD, p CBFM plane wavenumber of block i after SVD truncation CBFM,SVD CBFM threshold of the SVD truncation N Mean value of N i over p ∈ [1; B] NIPW Mean value of N IPW,i over i ∈ [1; B] NIPW,SVD Mean value of N IPW,SVD,i over i ∈ [1; B] that the numbers of plane waves {N IPW,i, pq } of { J i, pq } sat-369 isfy N IPW,i,11 = N IPW,i,21 and N IPW,i,12 = N IPW,i,22 . This 370 means that the size ofJ i is 2N i × (N IPW,i,11 + N IPW,i,12). This yields that the new size of J i is 2N i × N i,IPW , with 374 N i,IPW < N IPW,i,11 + N IPW,i,12 . Equations (35) and (36) are IPW , requires solving the linear system Zi ,i Y i ,k IPW =

	Name	Definition
	P	Number of scatterers
	B	Number of blocks (= P )
	N	Total number of unknowns
	N i	
			371
	Like a metallic scatterer, the redundant information is elimi-	372
	nated via the use of a truncated singular value decomposition	373
	(SVD). 375
	unchanged.	376
	The SVD decomposition can be applied on each submatrices	377
	J i, pq , and the resulting compressed matrix J i is obtained from	378
	Eq. (37). Numerical tests revealed that this procedure has a lower
			381
	paper.		382
	4. CBFM COMBINED WITH THE KIRCHOFF	383
	APPROXIMATION	384
	For a given plane wave B i ,k IPW , the calculation of a PBF,

379

precision than when the SVD is applied on the whole matrix J i . 380 For convenience, Table 1 lists the notations introduced in this 385 Y i ,k 386 B i ,k IPW , leading to a complexity of O(N 3 i ), where N i is the 387 number of unknowns with overlapping. To reduce the complex-388 ity of this operation to O(N i ), the Kirchoff approximation (KA) 389 is applied. 390 For a dielectric scatterer of surface S separating two homo-391 geneous media ( 1 , 2 ), the surface current and its normal 392 derivative on r ∈ S are expressed as [49,50] 393

Table 2 .

 2 Parameters of the Four Scenarios

a Scenario

CBFM,SVD N N R N R,SVD t LU t CBFM-LU t CBFM-KA

  

	1	10 -4 14,400 4,392 2,925 98	20	16
	2	10 -5	4,074 1096 1036 15	0.6	0.5
	3	10 -4 11,436 3,336 2,168 48	5	4
	4	10 -5 11,056 3,326 2,690 81	13	11

a

See Table

1

for the notations. In addition, computing times of LU (applied on the entire matrix) t LU , CBFM-LU, t CBFM-LU , and CBFM-KA, t CBFM-KA in seconds. The matrix filling time is included.

Table 3 .

 3 Parameters of the First Scenario: A Stack of P = 6 Random Rough Interfaces Separating Homogeneous Media i of Permittivity r,i

	a

Table 1

 1 

	), where the	450

Table 2 .

 2 

	546	
	547	For a collection of elliptical cylinders, this second study
		showed again that the CBFM is efficient and that the value of

548

N IPW expressed by Eq. (

41

) is well suited. In addition, like for

Table 2

 2 

) indicates that NIPW moderately changes in comparison with NIPW,SVD . This means that the value NIPW

Table 2

 2 IPW,i given by 632 Eq.[START_REF] Bourlier | Propagation-inside-layerexpansion method combined with physical optics for scattering by coated cylinders, a rough layer, and an object below a rough surface[END_REF], is well suited. For a rough surface, n IPW = 3 and for an 633 elliptical cylinder, n IPW = 1. To reduce the size of the reduced 634 matrix, a SVD truncation can be applied; for elliptical cylinders, 635 however, it is not useful because N IPW,i,SVD is of the same order 636 of N IPW,i . For a collection of objects invariant by translation 637 and rotation, another advantage of CBFM is that the PBFs 638 and the self-impedance submatrices of the scatterers are equal.

	639	
	640	Therefore, the first stage of CBFM is applied only on a single
	641	scatterer.
	642	To accelerate the computation of the PBFs, that is, to avoid
		an LU decomposition on the self-impedance submatrices, KA is

627

summarizes the performances of CBFM-LU. For a large num-628 ber of unknowns, N, the efficiency is even better since only 629 the self-impedance submatrices are stored for CBFM and the 630 complexity of LU is O(N 3 ).

631

The calculation of the number of PBFs, N 643 applied. The numerical results showed that CBFM-KA matches 644 well with LU, but in comparison with CBFM-LU, the threshold 645 CBFM,SVD must be divided by 100 to obtain a comparable value 646 of N IPW,i . It is important to point out that CBFM-KA predicts 647 good results, even on geometries for which KA is not valid, like 648 the elliptical cylinders. In addition, in Eq. (

38

), the boolean 649 illumination function I(r) can be omitted. This statement is 650
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Eq. (11), the vector b 2 = 0 because, as shown in Fig.1, the
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Appendix A. 116 The vector b 1 is defined as
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