
HAL Id: hal-03331697
https://hal.science/hal-03331697v1

Submitted on 2 Sep 2021 (v1), last revised 10 Sep 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesizing Geologically Coherent Cave Networks
Axel Paris, Adrien Peytavie, Eric Guérin, Pauline P. Collon, Eric Galin

To cite this version:
Axel Paris, Adrien Peytavie, Eric Guérin, Pauline P. Collon, Eric Galin. Synthesizing Geologically
Coherent Cave Networks. Computer Graphics Forum, In press. �hal-03331697v1�

https://hal.science/hal-03331697v1
https://hal.archives-ouvertes.fr
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Abstract
We present a geologically-based method to generate complex karstic networks. Karsts are a type of landscape formed by
the dissolution of highly soluble rocks (generally limestones). In particular, they are characterized by complex underground
networks made of varieties of tunnels and breakout chambers with stalagmites and stalactites. Our method computes skeletons of
karstic networks by using a gridless anisotropic shortest path algorithm according to field data of the underground system (such
as inlets and outlets), geomorphological features and parameters such as faults, inception horizons, fractures, and permeability
contrasts. From this skeleton, we define the geometry of the conduits as a signed distance function construction tree combining
primitives with blending and warping operators. Our framework provides multiple levels of control, allowing us to author both
the structure of the karstic network and the geometric cross-section shapes and details of the generated conduits.
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1. Introduction

Three-dimensional landforms such as arches, overhangs, and caves
are distinctive visual elements of virtual terrains. Despite the wide
application of artificial terrains in the entertainment industry as well
as in geological studies, modeling complex realistic landforms re-
mains challenging. Most existing techniques focus on elevation ter-
rains and do not allow the creation of volumetric features. Even
though recent techniques address the modeling of volumetric land-
forms [PGMG09, BKRE19, PGP∗19], they do not lend themselves
for the creation of karstic networks consistent with geological in-
formation such as inception features or permeability. Karstic sys-
tems are underground networks composed of conduits and caves
that have grown by the dissolution of the host bedrock, generally
limestone. Although karstic landscapes cover around 12% of the
planet’s continental surface [HGW∗14], modeling cave networks
has not received much attention from the computer graphics com-
munity. Their volumetric nature combined with the winding paths
and complex geometry of the underground conduits makes it a chal-
lenging problem.

The difficulties stem from the fact that karstic networks are
formed by multiple, interconnected geological processes (rock
fracturing, percolation) operating at different time scales (from a
few years to hundreds of thousands of years) and resulting from
various geological settings (fracture distributions, inception fea-
tures) and hydrogeological time-varying conditions.

Karstic networks can be interpreted at multiple spatial scales:
large scale refers to the global topology of the network, whereas
local scale (or mesoscale) refers to the shape of the conduits.

Simulating these processes is therefore immense, largely under-
constrained from a geological point-of-view, and would not allow
for interactive control.

Karstic 
networks

z

TunnelShaft cave

Figure 1: Given an input relief, geological characteristics, and
user-defined key points, our method generates complex karstic net-
works and the corresponding detailed geometric model.

In this paper, we propose a geologically-based framework for
modeling karstic networks. We focus on user-control and the gener-
ation of realistic and detailed conduit shapes. Given an input relief,
we automatically compute a three-dimensional geometric graph
connecting control points corresponding to sinks (inlets), springs
(outlets), and known passages inside the bedrock. The skeleton of
the karstic network is constructed by applying a gridless anisotropic
shortest path taking into account geological parameters such as the
permeability contrasts of the bedrock, fracture orientations, and in-
ception horizons (geological surfaces particularly prone to karsti-
fication [FJT09]). Around this skeleton, a detailed volumetric ge-
ometry of the conduits is defined as a signed distance function con-
struction tree combining volumetric primitives with Boolean, warp-
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ing, and blending operators. Our framework provides multiple lev-
els of control. The user may define inlets, outlets, and waypoints as
passages to constrain the construction of the karstic network, pre-
scribe the different volumetric geological parameters, and adjust
the paths of the tunnels inside the bedrock.

The main contributions are as follows: 1) A geological frame-
work for modeling karstic systems, taking into account known in-
lets, outlets, and underground passages, as well as parameters such
as inception horizons locations, fracture orientations, and bedrock
permeability contrasts, 2) An implicit modeling approach with new
primitives and operators organized in a construction tree for cre-
ating the geometry and details of the caves around the simulated
skeletons and 3) An interactive authoring framework providing
multiple direct controls to the user for tuning the network as well
as the final geometry of the cave. We compared the results with real
data and show that generated karstic systems accord with geologi-
cal observations.

2. Related work

Standard and widespread digital elevation models are limited to
terrains without overhangs, arches, or caves. Here we review data
structures and terrain generation algorithms that can deal with vol-
umetric features. For more complete coverage on terrain modeling,
the reader is referred to [GGP∗19] and to [NLP∗13] for subsurface
geology specifically.

Volumetric terrain modeling Volumetric representations can be
classified into three categories: voxel-based models, function-
based approaches, and hybrid representations. Voxels offer a way
to describe volumetric terrains but are memory demanding be-
cause of the underlying explicit spatial enumeration. They were
employed for modeling landforms such as hoodoos and gob-
lins [BFO∗07, JFBB10] or arches and overhangs [BKRE19]. Hy-
brid models, inspired by layered-material representations, exploit
vertical run-length encoding of the different layer stacks to com-
press layers into intervals of identical material [PGMG09]. The ter-
rain is defined as a continuous implicit surface whose field function
is computed using a convolution on the discrete layer stacks. Func-
tion representations define the terrain as a compact implicit surface
model whose field function can be constructed by combining prim-
itives organized into a construction tree [PGP∗19]. Elevation mod-
els can be augmented with landforms such as arches, overhangs
and caves, which may be either sculpted interactively or procedu-
rally generated using invasion percolation. However, this approach
lacks user control and underground tunnels obtained with noise-
based sphere primitives do not exhibit realistic karstic shapes.

A few methods focus on the creation of caves or their compo-
nents, such as procedurally placed stalagmites and stalactites using
an octree [CCZ11], however, the global karstic network as well as
the shape of the conduits are not produced. Pytel et al. proposed a
two-stage simulation pipeline for the modeling of karstic networks
[PM15]. While they account for geological parameters such as rock
porosity, the resulting networks are modeled by a set of cubes and
no solution is proposed for synthesizing the detailed geometry of
the tunnel. L-systems have been used to create karstic networks

that are later augmented with objects such as stalactites and high-
frequency details with noise [MBMT15]. This approach generates
caves with insufficient precision due to the limited underlying voxel
grid resolution, only provides indirect control, and does not account
for the geological characteristics of the terrain. To the best of our
knowledge, there exists no method for generating and authoring
volumetric karstic networks interactively and efficiently modeling
detailed conduit shapes, which is the focus of this paper.

Geomorphology Karsts are an ongoing subject of research in geo-
morphology and hydrology. Concerning numerical modeling, moti-
vated by a better assessment of the associated underground flow es-
timation uncertainties, stochastic simulation of unexplored karstic
networks has focused on various research for a decade. We can
classify the developed methods in two families: the ones generat-
ing network skeletons (large scale), and the ones focusing on the
conduit shape modeling (local scale).

At a large scale, karstic networks feature a variety of different
patterns. Palmer et al. proposed a classification of common patterns
found in solutional caves [Pal03] such as curvilinear and rectilin-
ear branchworks, anastomotic and angular mazes, spongework, or
ramiform caves (Figure 2). The two last types are more specific to
hypogenic caves (aggressive fluid coming from depth) and are not
skeleton networks descriptors as their main characteristic is large
dissolutional chambers.

Curvilinear Angular SpongeworkAnastomotic
MazesBranchworks

Rectilinear

Figure 2: Top-view classification of archetypes of cave patterns as
proposed by [Pal03].

Recently, [JVA∗17] adapted this classification to updated speleo-
genetical observations including the dimensions and shape of
caves. When only considering skeletons of the karstic networks, we
can keep the following criteria : 1) real systems range between elon-
gated hierarchical branchwork systems and more anarchic anas-
tomotic mazes; 2) depending on the rock fracturing degree, these
systems show rectilinear (more or less aligned with the fracture
orientations) or curvilinear conduits; 3) in the vadose zone (above
the phreatic level), conduits have a vertical-dominant development.
Several approaches have then been proposed to simulate these
different types of cave networks based on geostatistical methods
[PIDC∗12, VJF∗14], anisotropic shortest paths [BRJ12, CHP12] or
more recently percolation clusters [HR16]. Most of them construct
the network skeletons using a pre-defined grid, which considerably
slows down the simulation process when dealing with large systems
and generates stair-step conduits due to aliasing when not aligned
with the grid edges.

At a smaller scale, conduits often feature shape variations such as
abrupt narrowing or enlargements, which are known to play a key
role in fluid flows [FP00]. With the generic Object-Distance Simu-
lation Method, [HCC10] proposed to model conduit envelopes by
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Figure 3: Given an input terrainH, geological parameters such as inception horizons L and control key points P , we synthesize the skeleton
of the karstic system S̃ using an anisotropic shortest path operating on a 3D graph combined with a γ–skeleton geometric graph construction.
We then convert the skeleton in a karstic volumetric terrain modelK defined as a procedural signed distance function obtained by combining
implicit primitives with blending operators.

combining an Euclidean distance field around a skeleton with a
random threshold. The resulting cross-section is irregular at small-
scale but globally cylindrical at the mesoscale. [RCDF14] de-
scribed various shapes of karstic conduits and builds on the pre-
vious method to account for perturbations along weakness planes
such as fractures, inception horizons, or faults, allowing one to gen-
erate a larger diversity of conduits. Few works focus on the tunnel
shapes because their reconstruction is currently limited by the ac-
quisition process: the captured data by speleologists is often sparse,
incomplete, or incorrect, which makes reconstruction difficult.

Collon et al. statistically studied several metrics such as conduit
tortuosity, conduit orientations, or average vertex degree and aver-
age shortest path lengths of the network graph over a variety of real
karstic networks [CBVR17]. They identified several important pa-
rameters for the description and comparison of actual natural sys-
tems. We take inspiration from this work and use geomorphological
parameters as key user-controls in our authoring system, and rely
on these parameters to analyze simulated networks.

3. Overview

Karstic systems are underground networks made of conduits and
caves that have grown by the dissolution of the host rocks, gener-
ally limestone. In epigenic systems, the most common and docu-
mented ones, meteoric water penetrates the ground through diffuse
infiltration or point sources of recharge. During this process, the
water progressively carves different tunnel shapes such as canyon,
keyhole, or tube passages based on different geological and physi-
cal conditions such as permeability, pressure, and water velocity.

The water-tableW position delimits the upper unsaturated zone
(also called vadose), and the lower saturated zone (also called
phreatic). The phreatic zone is generally directly connected to a
spring (or the base-level), which constitutes the output of the karstic
network. Note that some systems have several connected outputs.
In the vadose zone, the conduits develop preferentially vertically
along fractures, with canyon passages linking them along inception
horizons (Figure 4). When approaching the phreatic zone, the de-
velopment becomes progressively more horizontal-dominant. The
conduits develop preferentially at or below the water-table in case
of long-time steady-state base-level [JVA∗17]. If the water-table
fluctuates highly with seasons, the networks develop more in maze

Epikarst
Shaft

Water table W

Canyon
Keyhole

Breakout 
chamber

Phreatic 
zone

Vadose
zone

Tube

Soluble bed

Epikarst
zone

Inception 
horizon L

Figure 4: Idealized cross-section through a complex underground
cave network.

patterns. As the base-level can change over geological times, to-
day networks can show several levels of horizontal-dominant drains
that witness the past water-table positions.

Simulating these complex natural phenomena over time remains
challenging, computationally intensive, and would not allow for ef-
fective user-control. Instead, we use a procedural approach with an
anisotropic shortest path algorithm taking into account a variety of
geological constraints to create complex karstic networks.

The geological constraints and key points P corresponding to
sinks (inlets), springs (outlets), and known passages inside the
bedrock (waypoints) are at the heart of our procedural approach
(Figure 3). We focus on the generation of a geometric graph con-
necting a set of key points P using a non-Euclidean metric.

The user first provides an initial elevation terrainH and specifies
the geological parameters such as the active water-tableW , incep-
tion horizons L, permeability π, and preferred conduit orientations
which are linked to fracturation. All these parameters may be inter-
actively edited or chosen among a variety of template presets. Then,
the user may prescribe key points P and label geometric nodes:
points may be sinks (inlets), springs (outlets), or known passages
inside the bedrock, and influence the karstic structure generation.
The user may also force points to be linked together, thus creating
a path that will guide the karstic structure.

From these inputs, the network generation proceeds in three
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steps (Figure 3). Starting from key points and geological con-
straints, we first generate a 3D geometric graph connecting those
key points using an anisotropic shortest path algorithm (Section 4).
The cost function takes into account multiple geological parame-
ters such as conduit orientations, horizons and bedrock permeabil-
ity. The second step aims at generating the large-scale skeleton S
of the karstic network (Section 5). To do so, the geometric graph is
simplified by using a 3D γ-skeleton approach. Tunnel paths are then
labeled into different categories according to their geometrical and
geomorphological parameters, and the network is further refined
with small tunnels or mesoscale dendritic structures to obtain an
augmented skeleton S̃ representing the final network. The third step
consists of synthesizing the volumetric model K (Section 6). The
mesoscale geometryK of the karstic system is generated from S̃ by
constructing a hierarchical primitive-based signed distance func-
tion f :R3→R representing a signed distance bound to the surface.
Our approach takes inspiration from the construction tree presented
in [PGP∗19], with the difference that we rely on a signed distance
function instead of compactly supported primitives [WGG99]. Im-
plicit surfaces provide a memory efficient framework for modeling
complex volumetric features. We use different types of sweep prim-
itives to synthesize the variety of conduit shapes, and create micro
scale details and irregularities of the surface using noise. The final
carved terrain model is directly obtained as the difference between
the terrainH and the volumetric model of the karstic system K.

4. Tunnel path computation

In this section we address the construction of a path ρ connecting
two key points a and b in the bedrock. The path should minimize
the line integral over the path of a cost weighting function c(p, ṗ)
representing the characteristics of the bedrock at a given position
p and in a given direction ṗ. Let C denote the set of all continuous
paths inside the bedrock H ⊂ R3 from a to b that are piecewise
continuously differentiable, i.e., the set of functions ρ : [0,T ]→H,
for which ρ(0) = a and ρ(T ) = b. Let χ : P → [0,∞( denote the
function characterizing the cost of a path ρ ∈ C:

χ(ρ) =
∫ T

0
c(p(t), ṗ(t))dt

The continuous anisotropic shortest path problem consists in find-
ing a path ρ

∗ that minimizes the functional χ(ρ):

ρ
∗ = argmin

ρ∈C
χ(ρ)

We approximate the solution by adaptively sampling the bedrock
H with a set of points Q. We define the path as a set of seg-
ments connecting points, which converts the continuous shortest-
path problem into a discrete shortest-path problem on a finite ge-
ometric graph G whose edges store the approximation of the line
integral of the cost function c. We proceed in two steps. First, we
adaptively sample the bedrock according to the geological char-
acteristics and connect samples using a relative neighborhood ap-
proach. Then, we evaluate the cost function over the edges of the
graph. The discrete anisotropic shortest path is finally directly com-
puted using an A* algorithm.

4.1. Sampling

Sampling is a crucial step for approximating the continuous
anisotropic shortest path problem. Uniform grid sampling sustains
two important limitations. First, it often produces regular axis-
aligned patterns and yields unrealistic large-scale networks. More-
over, it does not conform to the geological characteristics of the
bedrock unless utilizing a dense sampling, which in turn dramati-
cally increases computations. Improving the neighborhood distance
between samples to introduce more directions and enhance the an-
gle accuracy between path segments [GPMG10] only partially al-
leviates the problem.

Horizon samples

Poisson samplesSink

Spring

Waypoint

Sampling process n-Nearest neighbors

Figure 5: The adaptive sampling of H allows the generated net-
work to precisely follow features such as inception horizons; empty
remaining space is filled with a Poisson sphere distribution.

Instead, we adaptively sample the bedrock H according to its
geological characteristics (Figure 5). The set of points Q is first
initialized with key points P representing sinks (inlets), springs
(outlets) and interior points in the terrain. We then distribute
procedurally-generated samples for every important geological fea-
ture, such as horizons, current water tableW and high permeability
volumes (Section 4.2), using a Poisson sphere distribution process
[LD06] with a small radius to capture the geometry of the geolog-
ical features. At a large scale, horizons and the water table can
be modeled as a function of altitude, which means that geologi-
cal samples are distributed at these elevations. As for permeability
volumes, we adaptively sample space and distribute samples where
π(p) is high. This step ensures that the generated network accords
to the geological features as observed in real karstic systems. We
fill the rest of the domain with samples by utilizing a Poisson sphere
distribution with a larger radius. The graph G is constructed as the
nearest neighbor graph connecting n samples (in our experiments
we used n = 40) to obtain sufficient angle accuracy between the
directions of the edges of the graph.

4.2. Geology-based cost functions

At the heart of the path generation process is the cost function c
defined as a weighted sum of different terms, each representing the
influence of a geological factor. The relative weights defined by the
user allow control over the impact of the geological characteris-
tics which include the inception horizons L, fracturing orientations
F , and permeability of the bedrock π, whose corresponding cost
functions are denoted as cL, cF , and cπ respectively. In addition,
the user may prescribe specific paths to influence the generation by
assigning a small cost to some of the edges of the graph.

Horizons refer to the bedding surfaces that mark a particular
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change in the lithology of rocks. They generally influence the kars-
tification process as karstic systems tend to develop along particular
inception horizons [FJT09]. In monoclinal contexts where the un-
derlying geology is organized into multiple, almost parallel strata,
they can be modeled as a function of altitude. The corresponding
cost function is defined as a function of the vertical distance to the
nearest horizon d(p,L) = |pz−Lz|:

cL(p) = g(d(p,L)/r)

The smooth step function g(x) = 3x2−2x3, for x ∈ [0,1], limits the
influence of the horizon beyond a distance r. Figure 6 shows the
impact of an inception horizon over the generation process.

No inception horizon One inception horizon L

L

Figure 6: Influence of an inception horizon on the karstic network:
conduits tend to follow the inception horizon elevation. The blue
plane indicates the elevation of the horizon.

Fractures play an important part in the development of karstic
systems. A fracture is a break of continuity in the bedrock result-
ing from tectonics. They have different orientations, such as axis-
aligned or diagonal distributions [Pal01]. At the mesoscale, karstic
conduits tend to follow local fracture plane orientations. At large-
scale (a few kilometers), fracture directions remain almost con-
stant, therefore we represent every fracture as a normalized direc-
tion nk representing the orthogonal vector to the fracture plane, and
a weight wk. Let F denote the set of fractures in the bedrock, we
define the corresponding cost function cF as:

cF (p, ṗ) =
n

∑
k=0

wk (1− (nk · ˆ̇p)2)

The term ˆ̇p = ṗ/‖ṗ‖ represents the unit direction of the path at
vertex p. Edges with a direction parallel to a fracture plane have a
smaller cost value than orthogonal ones and are therefore preferred
as illustrated in Figure 7.

No fracture Axis-aligned fractures

Figure 7: Influence of an axis-aligned fracture orientation distri-
bution on the karstic network.

Permeability is an important geological parameter as it expresses

the capacity of a rock to let the fluids circulate through its pores.
Permeable bedrock lets more water flow, and is thus more prone to
chemical dissolution, i.e., karstification. We do not model directly
this parameter, but a qualitative parameter expressing a normalized
relative resistance to flow passage (the inverse of permeability) us-
ing a function π : R3→ [0,1] defined at each point p. The least per-
meable rocks have thus the highest value 1, and the most permeable
rocks, the lowest value 0. The permeability cost is then defined as
cπ(p) = π(p). The function π is defined as a construction tree simi-
lar to the one described in [PGP∗19]. The leaves of the construction
tree are skeletal primitives that define the local permeability; inter-
nal nodes combine primitives to define the permeability function
over the entire domain. Depending on the requirements, different
primitives and operators such as strata or faults can be used. Our
system implements sphere and strata primitives that provide con-
trol to the user. Figure 8 illustrates the influence of permeability: the
karstic network expands in the most permeable region determined
by two user-defined sphere primitives with a high permeability co-
efficient.

No Permeability Permeability

𝜋𝜋 = 1

Permeable 
region 𝜋𝜋 ≈ 0

Figure 8: Influence of permeability on the karstic network: con-
duits are generated in the most permeable (π≈ 0) regions.

5. Network generation

We generate the skeleton of the karstic system in two steps. First,
we build a large-scale skeleton S by computing the 3D γ-skeleton
of the key points P . Then, we amplify the network by applying a
stochastic subdivision step and generating ramifications to obtain a
mesoscale skeleton S̃.

5.1. Large-scale network

We address the generation of a geometric skeleton connecting the
set of key-points P using a non-Euclidean metric. The distance
metric is directly drawn from the computation of the cost between
two points, and defined as d(a,b) = χ(ρ∗(a,b)). Our method takes
its inspiration from [GPGB11], with the difference that we operate
on a volumetric domain and incorporate several different types of
key points to constrain the graph generation.

We first compute the complete graph formed by the set of paths
connecting P by applying multiple anisotropic shortest path algo-
rithms between all pairs of key points as described in Section 4.
We then prune the edges using an empty region criterion to create
a proximity graph based on the metric d. Proximity graphs, also
referred to as neighborhood graphs, are defined on a finite set of
vertices such that there exists an edge between any two vertices
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if they satisfy proximity conditions in the context of other con-
nections in the graph. To account for geological features and thus
obtain a 3D karstic network, we use a gamma skeleton formalism
using this non-Euclidean metric d. Let a and b two points in P ,
and γ ∈]0,+∞(, the parameterized neighborhood region of (a,b)
is defined as:

Ωγ(a,b) =
{

p ∈Ω, d(a,b)γ < d(a,p)γ +d(p,b)γ
}

The neighborhood graph of P is created from this definition of the
region Ωγ(a,b) which is associated to candidate edges: (a,b) forms
an edge in the graph if and only if Ωγ(a,b)∩P = ∅. More pre-
cisely, an arc connecting two key points a and b of distance d(a,b)
is kept if and only if there is no path connecting a to b passing
through another key point k having d(a,k)γ +d(k,b)γ < d(a,b)γ.

𝛾𝛾 = 0.5 𝛾𝛾 = 2

Figure 9: Influence of the parameter γ: lower values produce
denser networks (key-points are represented with a white circle).

When the value of γ decreases, the neighborhood region shrinks
and fewer edges are pruned by the process, which leads to denser
skeletons. The parameter γ creates a variety of skeletons connect-
ing the points in P and provides a simple and global control to the
user over the density of the karstic network (Figure 9). Particularly,
note that as γ→∞, the generated graph is equivalent to the rela-
tive neighbor graph, and using γ = 2 creates the same graph as the
Gabriel graph created with a non-Euclidean metric.

5.2. Network amplification

The amplification step generates a refined mesoscale skeleton fea-
turing dendritic conduits and more tortuous paths (Figure 10).
We improve the large-scale skeleton into a mesoscale skeleton by
adding secondary branches and tributaries. We then refine the tra-
jectories of the paths by adding stochastic displacement.

Large scale skeleton S Mesoscale skeleton S~

Figure 10: Procedural amplification of a large-scale skeleton S
with new tunnels into a refined structure S̃.

The ramification process starts by distributing new key points
randomly distributed in the bounding box of S, inside the bedrock

H, and connecting them to S using the procedure described in Sec-
tion 4. Points may be of two different types: interior or dead-end
nodes. Interior nodes increase the overall complexity of the net-
work possibly leading to mazes, whereas dead-end points produce
branchwork structures (Figure 10). The number of new points is
controlled by the user.

As real karstic systems exhibit tortuous trajectories, we refine
edges using a stochastic midpoint displacement parameterized by
a tortuosity factor θ. In geomorphology, tortuosity (also referred to
as sinuosity) has been proposed to characterize karsts [CBVR17],
even if it is heavily dependent on the data acquisition strategy. Con-
sequently, we model tortuosity as a qualitative parameter express-
ing the maximum displacement factor for the tunnels, ranging from
a few centimeters (θ = 0) to 4 meters (θ = 1).

5.3. Classification strategy and parameter computation

In order to construct the detailed geometry from the mesoscale
skeleton S̃ (section 6), we compute the type of tunnels for all the
graph edges and their corresponding geometric parameters such as
tunnel diameters. Edges are labeled as keyhole, passage, epikarst,
tube, canyon, bed, or chamber, depending on the local geological
characteristics. Current knowledge in geomorphology does not al-
low the identification of precise criteria for the placement of tunnel
types. Therefore, we propose a simple labeling strategy (Figure 11)
correlating the type to the distance to the current water table W
and the verticality of the trajectory. A notable advantage of this
approach is that it can be adapted to account for a more accurate
classification as knowledge in geomorphology evolves.

Tube

CanyonKeyhole
Bed

Distance to water table W

Ve
rti

ca
lit

y

Epikarst

Passage

Phreatic Vadose

Soluble bed

Tube Passage

Canyon
Keyhole

Figure 11: Classification of tunnel types according to their verti-
cality and the distance to the water table.

Vertical tunnels, such as shafts or pits, expose roughly circular
shapes (tubular vertical shafts), whereas horizontal tunnels reveal a
variety of types such as canyon-shaped tunnels, keyhole-shaped (in
vadose zones), or soluble bed conduits (in phreatic zones). Epikarst
tunnels are narrow vertical conduits that start from the surface to
reach the vadose zone before morphing into a different configu-
ration. Breakout chambers are large caves in the karst. They are
created when a tunnel traverses a ghost rock zone – a region where
permeability is particularly high (cπ(p) ≈ 0) and where large col-
lapses are more likely to happen.

Concerning the equivalent radius of the karstic conduits, spele-
ological observations do not allow to identify any specific rule of
size distribution. A recent statistical study performed on real net-
works was unable to show any hierarchy in size distribution, or
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Canyon Tube PhreaticBed

Figure 12: Interior of a vadose cave with canyon, bed and tube tunnels, and a phreatic tunnel partially overflowed with water.

relation with the relative position of the springs [FCRV21]. With
a variographic analysis, [FCRV21] identified a spatial correlation
along the networks, with empirical semi-variogram ranges ranging
between 50 to 200 m. This means that two points along a conduit
separated by a distance superior to that range have no correlation.

In our model, Epikarst tunnels have a fixed radius of 50 cm as
they start from the surface and are usually small. For other types,
the radius is computed randomly in a 0.5−4.0m range. These val-
ues can be adjusted by the user, or computed by heuristics as knowl-
edge in geomorphology evolves.

6. Implicit cave modeling

The generation of the mesoscale geometry addresses two comple-
mentary challenges: creating the walls of conduits, chambers, and
pits that accord to the cross-sections observed in geology, and gen-
erating a sufficiently compact volumetric model allowing to repre-
sent karstic networks of a few kilometers with a high level of detail.

Our method relies on a hierarchical construction tree that proce-
durally defines a signed distance function f : R3→ R, taking pos-
itive values outside of the bedrock and negative values inside. We
model a continuous, 1-Lipschitz [Har96] signed distance function
that defines an upper distance bound to the surface. The Lipschitz
property is crucial for establishing surface exclusion criteria, with
applications in sphere tracing and polygonization. The leaves are
skeletal primitives combined together using Boolean and blending
operators located at the internal nodes of the construction tree (Fig-
ure 13).

Union

Difference

Pits

Terrain H

ChasmChambers

Union

Tunnels

Pit

Tunnel

Figure 13: Synthetic representation of the construction tree of a
chasm carved into an elevation terrain.

The construction tree is created in two steps: we first convert
the input elevation model of the terrain H into a signed distance
function, then we generate the geometry of the karstic conduits and
breakout chambers, and finally add small-scale geometric details
such as fractures and rock irregularities.

6.1. Terrain

We first convert the input elevation model of the terrainH, charac-
terized by an elevation function h : R2→ R, into a signed distance
function fH. Let λ denote the Lipschitz constant of h, i.e., the upper
bound of the gradient ∇h. The signed distance function associated
to the terrain is defined as:

fH(p) =
pz−h(pxy)√

1+λ2

This equation guarantees that f is 1-Lipschitz, i.e., represents
a signed distance bound to the surface of the terrain (see Ap-
pendix A).

6.2. Mesoscale geometry of tunnels

Depending on their tortuosity, tunnels are either modeled as sweep
primitives, or as unions of spheres. This scheme guarantees that the
resulting signed distance function is continuous and 1-Lipschitz.
Sweep primitives are compact in memory but are restricted to
straight paths, whereas unions of spheres are adapted to tortuous
paths but more memory consuming.

Cross-sections identified and referenced in geology may have
irregular and asymmetric silhouettes with folds, thus there is a
need for a general sweep primitive. Accelerated primitives intro-
duced in [CBS96] are limited to star-shaped cross-sections. The
swept volumes method described in [SAJ21] could generate con-
duits, however, in our case, the tunnels may result from the inter-
polation of different cross-sections. Additionally, our approach cre-
ates a procedurally defined signed distance field, whereas [SAJ21]
uses a discrete representation using a sparse voxel grid.

Cross-section C

p
c(u)a

b

Sweep primitive

Curve Γ

Γ(u)

C
Union of spheres

j

Figure 14: Signed distance computation for sweep primitives.
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Rectilinear mazeElongated branchwork Looping cave 
(Anastomotic maze) Superimposed network

Sakany
Cocalière

Foussoubie
Crossroads

Figure 15: A variety of karstic networks generated with our method compared to real networks in inset.

In our model, primitives are defined by sweeping a closed piece-
wise quadratic curve C along a line segment ab. This representa-
tion is compact in memory, but the evaluation of the signed dis-
tance function is computationally intensive. The signed distance in
the cross-section plane is defined as fC(p) = d(p,C)δ(p,C) where
d(p,C) denotes the Euclidean distance to C, and δ(p,C) the sign
function for a point p, equal to 1 if p is inside, and equal to −1
otherwise (Figure 14). The 3D distance is derived from fC(p) ac-
cording to the segment ab (see Appendix B).

Defining a continuous signed distance function for a sweep ob-
ject with cross-sections swept along a curve Γ is not possible in the
general case, in particular when the curve has a high curvature be-
cause of discontinuities in the distance function. Thus, we generate
the volumetric model of conduits with varying cross-sections along
tortuous paths as unions of spheres sampled along the trajectory.
This general approach allows us to define a coherent, 1-Lipschitz,
signed distance function and preserve the distance bound property.

TubeCanyon

Keyhole Bed

Figure 16: Tunnels generated with sweep primitives.

First, we compute a Poisson sphere distributionD= {Di} inside
the bounding box of the curve Γ extended by a radius R. We then
generate n interpolating cross-sections C j along the curve at regular
intervals taking into account the local frame of the curve. Then, we
select the Poisson spheres whose minimum distance to the cross
sections is lower than R/2 (Figure 14):

D̃ =
{
Di |

n
min
j=0

d(Di,C j)< R/2
}

Using a small radius R ≈ 20cm provides a good approximation of
the extruded volume, at the expense of memory. Typically, model-
ing a 10 meters long straight tunnel using a single sweep primitive

takes less than 1kb of memory, whereas the same tunnel modeled
with thousands of spheres is ≈ 100 times more expensive.

7. Results

We implemented the proposed method in C++ and all the karstic
systems were generated on a desktop computer equipped with
Intel R© Core i7, clocked at 4GHz with 16GB of RAM, and an
Nvidia GTX 1080ti graphics card. The implicit surface represent-
ing the final terrain was polygonized [WMW86] and the result-
ing mesh directly streamed and procedurally textured into Vue
Xstream R© to render the final images (Figure 1, 12, 13, 16). The
code for synthesizing the karstic systems is available at https:
//github.com/aparis69/Karst-Synthesis.

Our method is the first capable of generating a variety of karstic
networks as well as the detailed geometry of the tunnels. Figure 15
shows complex networks generated according to different geolog-
ical parameters such as inception horizons, orientations and per-
meability of the bedrock. Figures 12 and 16 show the capabilities
of the implicit modeling approach for synthesizing the detailed ge-
ometry of the tunnels, capturing different shapes such as keyhole,
canyon and bed tunnels.

7.1. Performance

In our implementation, the computation of the anisotropic shortest
path combined with the 3D gamma skeleton geometric graph con-
struction completes in less than a second, which allows for inter-
active authoring even for relatively large networks featuring thou-
sands of nodes and dozens of key-points (Table 1). The synthesis
of the nearest neighbor graph between all sample points Q is the
most computationally intensive step and takes up to 3 seconds in
the most complex geological configurations.

One significant advantage of the signed distance function con-
struction tree is the reduced memory footprint compared to hy-
brid [PGMG09] and voxel-based models [BKRE19]. The tortuos-
ity factor θ directly relates to the construction tree generation time:
trajectories with a high coefficient θ require instantiating a high
number of spheres. Still, the generation of the construction tree is
completed in a few seconds in the worst case scenario (Table 1).

A typical editing session takes up to a few minutes (see accom-
panying video): the user inserts points in the scene, sets the weights
of the cost function, adjusts geological parameters (such as fracture

https://github.com/aparis69/Karst-Synthesis
https://github.com/aparis69/Karst-Synthesis
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Karstic system
Extent Topography Skeleton Geometry

Size Length #Q #P #S Time θ γ #N Sweeps Spheres M Time

Branchwork 0.4×0.6×0.1 2.3 25265 17 154 0.2 0.1 2.0 31256 59 15569 2.9 2.9
Looping cave 0.5×0.7×0.2 22.1 59246 47 668 0.5 0.5 0.8 67236 809 32809 7.4 7.5
Rectilinear 0.9×1.1×0.1 19.6 65887 26 830 0.5 0.4 0.8 29719 1076 13783 3.3 3.0
Superimposed 0.2×0.7×0.2 2.9 92007 17 209 0.9 0.1 2.0 43016 189 21319 4.7 5.2

Table 1: Karstic system extent [km3], skeleton length [km], number of point samples #Q, and number of key points #P placed by the user,
karstic skeleton node count #S, skeleton generation time [s], tortuosity factor θ given by the user, neighborhood parameter γ given by the
user, number of node in the construction tree #N , number of sweep and sphere primitives, memory footprintM of the construction tree [Mb]
and construction tree generation time [s].

orientations and horizon elevations), and triggers and the computa-
tion of the network. During user interaction, visualization uses a
symbolic representation of the caves and tunnels. Those steps are
repeated until the user is satisfied with the generated network. The
detailed geometry of the karstic network is finally computed for
final visualization and rendering.

7.2. Control

Our approach combines the placement of key points, the defini-
tion of geological features (inception horizons, orientation distri-
butions), the tuning of the cost function as well as setting the γ

coefficient. This parameter provides user control and allows the
reproduction of identified patterns found in real karstic systems.
Figure 15 shows synthesized networks compared to real ones dis-
played in insets. Typically, rectilinear and anastomotic mazes
are created by setting γ = 0.8 and tuning orientation distributions
(three axis-aligned directions for rectilinear, and 8 directions on the
sphere for the looping cave). In contrast, an elongated branchwork
results from the placement of a single sink and a spring. A superim-
posed network results from two inception horizons and several am-
plification steps (3 in the presented models) adding dendritic tun-
nels to the network.

Our method allows the interactive authoring of complex karstic
networks spanning over several kilometers (see Figure 15 and ac-
companying video). Labeled key points P not only control the lo-
cation of sinks, springs, or breakout chambers inside the bedrock
but also allow the user to prescribe tunnel sub-paths that are di-
rectly taken into account in the network generation and locally in-
fluence the structure of the skeleton. The cost function may also be
tuned with interactive visual feedback (see accompanying video).
The geological parameters and control waypoints provide user-
control over the density and structure of the resulting network. At
the mesoscale, sweep primitives allow for a detailed and varied re-
construction of the conduits (Figure 16). A high tortuosity param-
eter θ significantly impacts the complexity of the construction tree
by producing tortuous trajectories as observed in real karstic sys-
tems. The looping cave example (Figure 15) was generated with
the highest tortuosity (θ = 0.5) with a memory consuming con-
struction tree featuring 32809 sphere primitives (see Section 6.2).
In contrast, the elongated branchwork or superimposed networks
with θ = 0.1 have a reduced memory footprint.

7.3. Comparison with real karstic networks

Collon et al. [CBVR17] presented and discussed a set of metrics
to describe, compare and quantify karstic networks. Among the
21 tested metrics, they recommend computing 6 of them to iden-
tify the geometry and the topology of a network. The open-source
Karstnet code (https://github.com/PaulineCollon/
karstnet) implements them in Python and was used to compute
the metrics for the karstic networks presented in Figure 15 and to
compare them with a dataset of 34 real caves [CBVR17].

Karstic system l HO k rk SPL CPD

Branchwork 96 0.9 2.0 −0.4 4.1 0.6
Looping cave 79 0.9 3.2 0.04 5.0 0.2
Rectilinear maze 121 0.6 3.0 0.0 5.6 0.1
Superimposed net 101 0.8 2.1 −0.3 4.9 0.4

Observed range
8 0.8 1.8 −0.6 2.3 0.0

331 1.0 2.6 −0.2 55.7 0.6

Table 2: Average branch length l [m], entropy of orientation HO,
average vertex degree k, correlation of vertex degrees rk, average
shortest path length SPL, central point dominance CPD.

Table 2 reports statistics and compares to a range of values com-
puted on a dataset [CBVR17] of 34 real karstic networks. The av-
erage branch length l and the entropy of orientation HO describe
the geometry of the network. The simulated networks show similar
values to the karsts of the database, except for the entropy of orien-
tation HO of the rectilinear maze which is slightly lower than those
of studied networks. This is, however, not surprising as we volun-
tarily restricted the influence of fracture orientation to generate this
stereotyped network. In the available database, there was no 3D
network with such marked orientation. The data of the crossroads
karst, presented in Figure 15, was only available as a 2D map pro-
jection [Pal91]. Computing this metric on crossroads data yields
HO = 0.46, demonstrating that the value HO = 0.62 obtained on
the rectilinear maze is acceptable for this kind of network.

The computed values also remain consistent for the topological
metrics. Average shortest path length SPL and central point domi-
nance CPD fall both into the observed range of values for all four

https://github.com/PaulineCollon/karstnet
https://github.com/PaulineCollon/karstnet
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simulated networks, as well as average vertex degree k and correla-
tion of vertex degrees rk for the elongated branchwork and super-
imposed networks. The maze-like networks looping cave and rec-
tilinear maze have k values slightly superior to what was observed.
It is admittedly rare that real karstic networks have such a high
amount of crossing points where more than 3 conduits meet, and
breakout chambers with more than 4 conduits (and consequently
node degree superior or equal to 4) are scarce. This is again a con-
sequence of our intention to generate stereotyped networks, which
also explains the corresponding rk ' 0 while natural systems tend
to be slightly disassortative.

7.4. Comparison with other techniques

Few methods for modeling complex karstic networks exist. The
Arches model [PGMG09] requires manual editing for authoring
terrains and does not automatically generate tunnels or caves. The
invasion-percolation simulation introduced in [PGP∗19] does not
consider relevant geological parameters such as tunnel orientations
or inception horizons. While voxel-based approaches [PM15] anal-
yse parameters such as pressure and fractures, those simulations are
computationally intensive and do not lend themselves to synthesiz-
ing large karstic networks. Our approach extends the grid-based
method presented in [GPGB11] and proposes a grid-less technique
that can adaptatively sample three-dimensional domains. In partic-
ular, our algorithm solves geometric aliasing issues resulting in un-
realistic tunnel paths, which occur when using grids. To the best of
our knowledge, this is the first controllable procedural method that
captures the complex structure of karstic networks both at large
scale and mesoscale.

Compared to data-oriented or hybrid models, the construction
tree is compact in memory and allows for modeling large karstic
networks. Tunnels modeled with computationally intensive noise-
based primitives [PGP∗19] showed uniform circular cross-sections,
whereas sweep primitives capture the different configurations re-
ported in geology (see Figure 16).

7.5. Limitations

We rely on a simple strategy for the classification of tunnel types
and parameters computation, as knowledge in geomorphology is
sparse on this topic. However, the proposed framework provides
effective user-control and processing parts could be easily replaced
with more accurate computations in the future.

Although implicit surfaces allows modeling of the highly de-
tailed geometry of karstic conduits, visualization remains expen-
sive as the signed distance function f is defined by a hierarchical
combination of thousands of nodes. In our implementation, poly-
gonizing a 1×1×0.4km3 volume at 0.5m precision takes up to two
minutes for a dense complex karstic model featuring 30000 nodes.
The construction tree may be amenable to simplification; primitives
and operators could be further optimized and field function queries
performed in parallel using compute shaders on graphics hardware.

8. Conclusion

We have introduced a geologically-based framework for model-
ing karstic networks. Given an input terrain, our method com-

putes a three-dimensional geometric graph connecting key points
corresponding to sinks (inlets), springs (outlets), and known pas-
sages inside the bedrock. The paths connecting control points are
constructed by using a gridless anisotropic shortest path taking
into account geological parameters such as the permeability of the
bedrock, fracture orientations, and inception features. The geome-
try of the conduits is finally constructed by a signed distance func-
tion defined as a construction tree combining volumetric primitives.
The synthesized karstic networks accord with real data obtained
from geological observations.

Our method allows for modeling large scale karstic networks
as well as their detailed mesoscale geometry. Small scale details
such as stalactites, stalagmites, or wall irregularities could be added
at the expense of a more complex construction tree. Tortuous
trajectories currently require many spherical primitives organized
into memory demanding sub-trees, and computationally intensive
signed distance evaluations. More conforming sampling schemes,
as well as a simplification of the hierarchical construction tree,
would probably speed up computations.
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Appendix A: Distance function of a heightfield

Let h : R2→ R denote the elevation function of the terrain H. Let
λ denote the Lipschitz constant of h, which represents the max-
imum slope of the terrain. Then the squared gradient of f (p) =
pz− h(pxy) is ‖∇ f‖2 = 1+(∂h/∂x)2 +(∂h/∂y)2 = 1+ ‖∇h‖2 .
Therefore, f (p) = (pz−h(pxy))/

√
1+λ2 is 1-Lipschitz.

Appendix B: Distance function for the segment sweeping

Let u = (b−a)/‖b−a‖ the unit vector of the segment ab. Let l =
(p−a) ·u denote the distance of the projection of p on the segment
to a. Recall that d(p,C) denotes the distance to the contour C in
its supporting plane. The signed distance to the sweep primitive is
defined as:

d(p) =
√

s(p)2 +d(p,C)2 s(p) =


−l if l < 0
l−‖b−a‖ if l > ‖b−a‖
0 otherwise.

Appendix C: Signed distance to a contour

Let d(p,C) denote the (positive) Euclidean distance to the contour
C, i.e., the minimum Euclidean distance between p and the points
c ∈ C. The signed distance to C is obtained by determining whether
p is inside or outside of the contour, by computing the number of
intersections between a line ∆ and C, and changing the sign accord-
ingly.

f (p,C) = d(p,C)δ(p,C) δ(p,C) =

{
−1 if #∆∩C odd
+1 otherwise.

p

C

∆

d(p,C)

δ(p,C)=2

Figure 17: Signed distance to a contour d(p,C).


