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Abstract

The dynamics of cavitation bubbles and their interaction with solids has been
studied for long, mostly on the macro-scale of sheet and vortex cavitation. Ero-
sion takes place on small, concentrated areas of solid walls exposed to cavitation.
One-way fluid structure interaction (FSI), in which the feedback of material de-
formation on the fluid is not considered, provides an adequate understanding of
the underlying mechanism. However, in practical applications the solid material
motion and deformation can significantly affect the bubble dynamics. This will,
in principle, alter the structural loading, stresses and erosion in the solid. In this
paper, we will report comparisons of one-way and two-way coupled FSI modelling
using our finite volume based fluid solver YALES2 1 and finite element based solid
solver Cast3M 2. In two-way FSI coupling, the feedback of the solid wall defor-
mation is considered in the fluid domain. To do so, we develop a compressible
fluid solver with Arbitrary Lagrangian-Eulerian formulation to equip it with mo-
ving mesh capabilities in order to maintain a continuous fluid-solid domain. We
present results using a step-wise coupling approach for two-way FSI and analyse
the effects due to structural response on bubble dynamics and damping of impact
pressures by different materials. Finally, we discuss our understanding on the need
for one-way and two-way FSI modelling based on structural characteristics which
can significantly affect the material erosion by nearby cavitation bubbles.

Keywords: cavitation ; cavitation erosion ; fluid-structure interaction ; one-way
coupling ; two-way coupling

1. Introduction

Violent collapse of bubbles near surfaces has generated interest in many scienti-
fic fields including cavitation, shock wave and laser-lithotripsy. In cavitation, solid
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surface erosion or damage is caused when bubbles collapse in the vicinity of the
solid surface. In hydrodynamics, cavitation regimes comprising many bubbles are
often encountered on the low pressure sides of the blades of hydraulic machines.
Consequences are numerous : modification of the flow that can lead to dramatic
drop in performance, surface erosion and structural damages in addition to vibra-
tions. The cavitation bubbles usually collapse near the point of inception or travel
downstream with the flow before they collapse. When close enough to a solid
wall these collapses are usually associated with high-speed liquid micro-jet forma-
tion (Blake and Gibson (1987)) and emission of shock waves. In key applications,
unexpected damages and early replacement of the machines can result in huge
economic cost. On the brighter side, cavitation erosion is increasingly considered
as a tool for beneficial use as well, such as in shock wave lithotripsy, drug-delivery,
microchip cleaning and microfluidics (Lauterborn and Vogel (2013)).

Silverrad (1912) was one of the first to report erosion on the propeller of large
cruise boats. Such erosive damages on the low pressure zones generated by the
high rotation speed on the propeller blades raised experimental interest in the
study of cavitation. Since then many studies dealing with problems from bubble
dynamics to material testing have been pursued like Plesset and Chapman (1971),
Lauterborn and Ohl (1997), Tong et al. (1999)), Franc (2009), all aiming towards
a better understanding of cavitation erosion. Although the early work focused
mostly on theoretical and experimental findings, numerical techniques and im-
proved computational resources have added to the understanding of bubble-wall
interactions (Best and Kucera (1992), Wang and Blake (2010), Popinet and Za-
leski (2002),Tinguely (2013)). Overall, the problem is a difficult one as it involves
complicated flow phenomena combined with material characteristics of the solid
wall.

Many cavitation erosion models have been proposed based on energy conser-
vation and focusing of the potential energy of vapor cavities in space and time
transferred on the material surface. Some models like Fortes-Patella et al. (2004)
based on the physical scenario of collapsing vapor structures propose that the final
material damage results from the interaction of pressure waves and neighbouring
solid surface. Dular (2006) suggested an erosion model from collapse of cavitation
cloud and emission of shock wave that attenuates as it travels towards the solid
surface. The shock wave excites the individual bubbles near the solid surface and
the final damage pits are formed from the high velocity liquid jet impacting the
solid surface. Material deformation and pitting from cavitation bubble collapse
has also gained a lot of interest in the recent years (Roy et al. (2015a), Pöhl et al.
(2015), Fivel et al. (2015)). A Fluid-structure Interaction (FSI) study provides
insight into different dynamical features of fluid and solid mechanics, connecting
the links between cavitation loads and surface deformation (Tijsseling and Vardy
(2005), Chahine and Hsiao (2015), Kumar and Wurm (2015), Gong et al. (2016),
Paquette (2017), Joshi et al. (2019)).
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Despite more than a century of research, a thorough description of the physi-
cal processes of cavitation erosion is still not available. Emphasis has been laid on
preventing the initiation of cavitation and where not possible to prevent, minimise
the erosive damages. However, an effective prevention strategy and further benefi-
cial exploitation necessitates a deeper understanding of the fundamental physical
phenomena in both fluids and solids. This understanding has been pursued in this
research with the simplest form of cavitation, the single bubble.

In this paper we will present comparisons of one-way and two-way coupled
FSI model of bubble collapse near solid walls. A one-way FSI coupling between
fluid and solid domains is unidirectional, with surface pressures passed from fluid
to solid in order to determine material deformation. A two-way coupling, on the
other hand, is bidirectional in terms of information exchange between the two
physical domains. The surface pressure and deformation are passed to solid and
fluid domains respectively. To do so, we will introduce a step-wise coupling for
FSI between Computational Fluid Dynamics (CFD) and Computational Solid
Mechanics (CSM). The focus in this paper is to demonstrate a strong fluid-solid
step-wise FSI coupling between CFD solver YALES2 and CSM solver Cast3M,
along with the implementation of Arbitrary Lagrangian-Eulerian formulation in a
predictor-corrector scheme of compressible Navier-Stokes equations. Such formu-
lation and coupling methodology for cavitation bubble collapse, in our opinion, is
unique and has never been done before.

The paper is structured as follows : Section 2 introduces the development of
the cavitation solver with Arbitrary Lagrangian-Eulerian formulation ; Section 3
discusses the methodology for step-wise coupling FSI ; Section 4 discusses the
comparisons of one-way vs two-way FSI for bubble collapse and Section 5 will
discuss major conclusions.

2. Numerical solvers

The numerical simulation of accurate two-way coupled FSI problem requires
to account for the distortion of both fluid and solid computational domains. While
CSM is usually dealt with by using a Lagrangian framework, in CFD the standard
is to use Eulerian framework. Therefore to match the Lagrangian solid domain in
our CSM solver, a compressible cavitation solver in CFD needs to be developed
in a numerical framework that not only allows to delineate fluid phase interfaces
accurately, but can also provide continuous fluid-structure domain with moving
boundaries. Neither the Eulerian nor the Lagrangian formulations are optimal for
the entire domain due to their respective limitations. The Eulerian formulation
widely used in fluid mechanics has a computational mesh fixed in space, with
the continuum (materials modeled as a continuous mass) moving with respect to
the mesh. Although the continuum motion relative to the mesh can be handled
easily with some complexity in resolving the transport of the material, it cannot
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resolve a deforming domain since the mesh is fixed in space. The Lagrangian
formulation mainly used in solid mechanics is the one where the mesh moves
with the material, allowing ease in resolving material interfaces accurately but
the nodal positions need to be updated at every time step in order to conform
with the solid body dynamics. For such cases, the Arbitrary Lagrangian Eulerian
(ALE) formulation is quite attractive and has been implemented in our solver
algorithm in YALES2. ALE combines the best features of both the approaches and
allows for the movement of nodes of the computational mesh with the continuum
in normal Lagrangian manner or to be held fixed in Eulerian manner or, more
importantly, in any intermediate way. An ALE-equipped fluid mesh can conform
to the Lagrangian mesh deformation of the solid at the fluid-structure interface
which is a convenient framework for the FSI problem of bubble collapse. Since the
ALE mesh moves relative to the material in the fluid domain, similar transport
terms to the existing Eulerian formulation of the compressible cavitation solver
exist. Therefore, implementation of ALE formulation will benefit from many of the
existing algorithms. Such ALE equipped solver can be used to model compressible
simulations of realistic complex geometries like rotor-stator stages in aeronautics
or hydraulic turbines, deformable walls in bio-mechanical flows.

2.1. Arbritrary Lagrangian-Eulerian framework

The motion of individual nodes of a computational mesh with its associated
material particle motion is shown in fig. 1 for Eulerian, Lagrangian and ALE
frameworks. The original development of ALE is credited to, among others, Hirt

Figure 1: 2D Eulerian, Lagrangian and ALE mesh node motion with associated material particle
motion.

et al. (1974) and an in-depth introduction to the mathematical framework is
given in Donea et al. (2004). In the ALE formulation, the individual nodes can be
moved in some specified way with respect to the material particle, thus offering
more freedom in moving the computational mesh. The fundamental relationship
between the material, referential time derivative and spatial gradients obtained
by domain mapping between the material coordinates X, spatial coordinates x
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and ALE referential coordinates χ can be expressed as :

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+
∂f

∂t

∣∣∣∣
x
· w =

∂f

∂t

∣∣∣∣
χ

+ w · ∇f (1)

Here w is the convective velocity, defined as the relative velocity between the
material velocity u and the mesh velocity ẋ such that w = u− ẋ and t is the time.
Equation (1) represents the material derivative of f which is expressed as its local
derivative in a fixed reference coordinate χ plus a convective term w between the
material and the reference spatial coordinates.

2.2. Compressible ALE solver

The ALE form of the compressible Navier-Stokes equations resolved in our
CFD simulations is obtained by replacing the material velocity u by the convective
velocity w = u− ẋ shown in eq. (2) & (3).

∂ρ

∂t
+∇ · (ρw) = 0 (2)

∂ρu

∂t
+∇ · (ρu⊗ w) = −∇p+∇ · τ (3)

Here ρ is the fluid density, p is the pressure, τ is the viscous stress tensor, t is the
time, (∇·) is the divergence operator. The right-hand side of the equations has
a form similar to the classical Eulerian form of Navier-Stokes equations whereas
the mesh movement is reflected on the left-hand side of the governing equations.
Setting w = 0 (i.e. ẋ = u) gives the classical Lagrangian description whereas
w = u (i.e. ẋ = 0) recovers the Eulerian description. The temporal scheme has
to be recast in an ALE formulation with prescribed mesh movement at each sub-
step of the time integration scheme to satisfy the geometry conservation law as
well as numerical stability conditions. Geometry conservation law states that,
independently of the mesh motion, the numerical scheme has to preserve the state
of a uniform flow. The CFL and CFLacou are then expressed in terms of the
convective velocity w, where ∆t is the given time step and ∆x is the mesh size.

CFL = |w| ∆t

∆x
(4)

CFLacou = |w + c| ∆t

∆x
(5)

A characteristic splitting of the Navier-Stokes equations in ALE form in eq. (2) &
(3) is outlined to achieve the fractional step method of time advancement (Mou-
reau et al. (2007)). Equations (6) & (7) are solved for φ ∈ (ρ,m) in the prediction
step with the convective velocity w̃ = ũ− ẋ and m = ρu is the momentum in the
set of conservative variables. In our numerical simulations, the energy equation
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is not solved as the fluid is assumed to be barotropic, meaning the pressure is
a function of density only. The mesh velocity ẋ can be determined explicitly or
implicitly by solving an equation for the node displacement for specific boundary
conditions.

ρ? − ρn

∆t
+∇ · (ρ̃w̃)− (ρ̃− ρn)∇ · w̃ = 0 (6)

m? −mn

∆t
+∇ · (m̃⊗ w̃)− (m̃−mn)∇ · w̃ = −∇pn +∇ · τn (7)

For φ ∈ (ρ,m) in the prediction step, φn is the value of φ before time advancement,
φ? is the value computed at the end of the prediction step and φ̃ is the value
computed at different steps of the temporal scheme with the pressure and diffusion
being explicit contributions. The computational mesh reaches the final position
of the time step at the end of the prediction step and a fixed mesh exists at
this stage. The time integration is carried out with TFV4A (Kraushaar (2011))
scheme with the mesh being displaced only during the prediction step. The TFV4A
scheme is developed by blending the low storage, explicit, fourth-order Runge-
Kutta with a Lax-Wendroff-type scheme, allowing the in-built numerical diffusion
in the temporal scheme to be adjusted. The spatial discretization is carried out by
the fourth-order centered scheme (Malandain (2013)) and a non-linear artificial
viscosity µartif in eq. (8) (Cook and Cabot (2004)) is used to stabilize non-physical,
spurious oscillations. Here Cµ is the artificial viscosity constant, r is the artificial

viscosity order, ∆x is the mesh spacing and | | is the Gaussian filter applied.
Furthermore in order to stabilize numerical simulations, a high order filtering
based on volume-weighted averaging with a Gaussian-type smoothing has been
applied on the pressure and density field after every specified number of iterations.

µartif = Cµρ (∆x)r
∣∣∣∣∂ru∂xr

∣∣∣∣ (8)

The equation of state is used at the end of the prediction step to determine the
intermediate pressure p∗. The algorithm solves for an intermediate speed of sound
c∗ computed from the advected ρ∗ and p∗. The Helmholtz eq. (9) is solved over this
fixed mesh with BiCGSTAB2 (Vantieghem (2011)) linear solver for the pressure
variation δp = pn+1−p?. The pressure variation δp is used to correct the conserved
variables φ ∈ (ρ,m) in the correction step with eq. (10) & (11).

∇ · ∇
(
pn+1 − p?

)
−∇ · w∗

(c∗)2∆t

(
pn+1 − p?

)
− pn+1 − p?

(c∗)2∆t2

= ∇ · ∇ (pn − p?) +
ρ? − ρn

∆t2
+

1

∆t
∇ · (ρ?w?)

(9)

ρn+1 − ρ?

∆t
− 1

(c∗)2

δp

∆t
= 0 (10)
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mn+1 −m?

∆t
− w∗

(c∗)2

δp

∆t
= −∇ (δp) (11)

The equation of state is solved again at the end of the correction step to obtain
a consistent p(n+1)c and ρn+1 at the end of the time step in the algorithm. A
schematic of the compressible ALE solver algorithm is shown in fig. 2.

Figure 2: Compressible ALE solver’s prediction-correction algorithm

The time integration in TFV4A is coupled with movement of mesh nodes
and advancement of control volume in the prediction step. The convective flux
w̃ = ũ − ẋ has to be determined with the displaced control volume at each step
of time integration. A classical time integration between tn and tn+1 with a time
step ∆t for the transport term is in eq. (12) where RHS contains the viscous fluxes
and pressure gradients.∫ tn+1

tn

∂

∂t

∫
Ω(t)

φ∂Ω dt+

∫ tn+1

tn

∫
Ω(t)

∇ · (φ(u− ẋ))dΩ dt = RHS (12)

The sub-step of the time integration at ti = tn + Υi∆t, for a classical fourth order
Runge-Kutta scheme with coefficient Υi = [1/4, 1/3, 1/2, 1] is shown in eq. (13).

φn = φ0,

φi = φn
Ωn

Ωi
−Υi

∆t

Ωi

∫
Ω(t)

∇ · (φi−1(ui−1 − ẋn+1))dΩ, for i = 1, 2, 3, 4

φ∗ = φ4

(13)

Here, φ∗ is the predicted variable field, Ωn is the nodal volume Vnode at time tn

and Ωi is Vnode at time ti. The mesh movement coefficient (Chnafa et al. (2014))
at each sub-step of the time integration has been derived in such a way that the
numerical scheme satisfies a discrete geometry conservation law as in eq. (14) :

Ωi − Ωn = −Υi∆t

∫
Ω(t)

∇ · ẋn+1dΩ, for i = 1, 2, 3, 4 (14)
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As per our knowledge, the characteristics-based fractional step method for com-
pressible Navier-Stokes equation in ALE form has never been presented before.
Such novel semi-implicit time integration for compressible flows with ALE alle-
viates the limitations encountered by explicit solvers at small acoustic CFL and at
low-Mach numbers for moving boundary and fluid-structure interaction problems.

The two-phase cavitating flow is modelled with the homogenous mixture mo-
del, which assumes a homogenous mixture of liquid and vapor in the two phase
region. The cavitating flow is treated as a single fluid, consisting of mixture of
two fluids of varying density. The vapor volume fraction in each control volume is
defined as α = Ωv/Ω, where Ωv is the vapor volume in a control volume Ω. The vo-
lume average density in each control volume is calculated as a linear combination
of vapor density ρv and liquid density ρl.

ρ = αρv + (1− α) ρl (15)

The fluid in our simulation is assumed to exist in two different phases defined by
the respective equations of state which are barotropic, meaning that the pressure
is a function of the fluid density only. One phase is the pure liquid water with
vapor volume fraction α = 0, modelled by the Tait’s equation of state given in eq.
16. Another is the two-phase liquid-vapor homogenous mixture with 0 < α < 1
modelled by following an isentropic path in the phase diagram proposed by Egerer
et al. (2013) in eq. 16. The two-phase liquid-vapor mixture is separated from the
pure liquid phase by the saturation liquid density ρsat,l. The model constants used
in the equations of state is given in table 1.

p =

(psat +B)
(

ρ
ρsat,l

)N
−B , if α = 0

psat + C
(

1
ρsat,l
− 1

ρ

)
, if 0 < α < 1

(16)

For the pure liquid phase with α = 0, a consistent speed of sound c given in eq.

Property Value Unit
ρsat,l 998.1618 kg/m3

ρsat,v 0.01731 kg/m3

psat 2340 Pa
B 3.078× 108 Pa
C 1468.54 Pa · kg/m3

N 7.132 −
µsat,l 1.002× 10−3 Pa · s
µsat,v 9.727× 10−6 Pa · s

Table 1: Saturation properties of water at Tref = 293.15K.

17 is derived based on the isentropic relation c =
√

∂p
∂ρ

from the equation of state.
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In the liquid-vapor mixture, a constant speed of sound of 1483.3 m/s is used,
which is the speed of sound at saturation liquid density ρsat,l = 998.1618 kg/m3

at Tref = 293.15K.

c =

{√
(psat +B) N (ρ)N−1

(ρsat,l)N
, if α = 0

1483.3m/s , if 0 < α < 1
(17)

The fluid density decreases sharply below the saturation pressure psat = 2340 Pa
(which corresponds to ρsat,l = 998.1618 kg/m3) as seen in fig. 3 In this two-phase
liquid vapor region, the speed of sound decreases significantly from 1483.3m/s to
below 10−1 m/s, plotted as ”Barotropic two phase” in fig. 3, resulting in a dis-
continuity in the speed of sound c at the interface. As soon as cavitation appears,

Figure 3: (a) Density vs pressure, (b) speed of sound vs density in the cavitation model.

such drastic decrease in c would make the flow supersonic locally resulting in spu-
rious numerical oscillations. In the course of this work, we are interested in the
generation and propagation of shock waves in the liquid phase and its interaction
with solid wall. Therefore the speed of sound c is kept constant in the liquid-vapor
mixture with the assumption that shock propagation in the cavitating region in-
side the bubbles is not of primary importance, whereas the shock propagation
in the pure liquid phase is resolved accurately. To account for fluid viscosity µ,
the liquid water phase is modelled with a constant viscosity µsat,l. The dynamic
viscosity in the liquid-vapor mixture is modelled with a quadratic law, following
the model proposed in Beattie and Whalley (1982) in eq. 18 where the dynamic
viscosity varies with the vapor volume fraction α.

µ = (1− α)

(
1 +

5

2
α

)
µsat,l + α µsat,v, if 0 < α < 1 (18)
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The solver algorithm, temporal discretization and solution filtering has been va-
lidated on shock tube test case with an ideal gas as well as Rayleigh solution for
2D and 3D vapor bubble collapse detailed elaborately in Sarkar (2019).

2.3. Solid mechanics solver

The response of the solid is modelled with Cast3M which is a partial differential
equations solver with the finite element method. In cavitation erosion, on one
hand, the pressure loading varies over time and on the other hand, the importance
of the forces of inertia has to be considered. The deterministic implicit solver is
used to solve the non-linear solid mechanics equations to predict the response
of solids to cavitation loads. It is worth mentioning that non linearities in solid
can arise from different phenomenon such as non linearity of the material, like
plasticity in metallic materials, shocks and impacts at structural interfaces or
fluid-elastic forces from FSI. The deformation of solid within the elastic limit can
be defined by Hooke’s law in eq. 19 where σ and ε are the second order stress
and strain tensor, C is the 4th order stiffness tensor. The total strain ε can be
decomposed into elastic and plastic strain components εe and εp respectively as
in eq. 20.

σ = C : εe = C : (ε− εp) (19)

ε = εe + εp (20)

For a solid domain Ω, the equilibrium equation can be written as eq. 21, where F
is the equivalent nodal force vector. The weak form of equilibrium equation after
domain integration can be written as eq. 22 where B is the discretized gradient
operator.

∇ · σ = F (21)∫
BTσdV = F (22)

Assuming small deformations, the second order strain tensor can be further writ-
ten as eq. 23, where ud is the displacement vector :

ε =
1

2
(∇ud +∇(ud)

T ) (23)

The finite element system transforms into eq. 24 after introducing the inertial and
viscous effects where U̇ and Ü are the nodal velocity and acceleration vectors, M
is the mass matrix and D is the damping matrix.

M · Ü +D · U̇ +

∫
BTσ = F (24)

The implicit time algorithm used for mechanical calculations is based on minimi-
zation of residuals at each mechanical step. At the beginning of each time step,
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a residual imbalance is computed between the external applied forces F ext and
internal forces F int = BTσ, representing the current state of the solid. The dif-
ference between these two forces at each node is the residual Ri = F ext − F int

i .
The estimation of displacement at the next time step begins from this residual
∆Ui+1 = Ke

−1Ri, where Ke is the elastic stiffness matrix at the beginning of the
step. The new stresses σi+1 and strains εi+1 are calculated, giving the updated in-

ternal state of the solid F int
i+1. The new residual is estimated as Ri+1 = F ext−F int

i+1.
The procedure then uses a convergence loop to determine the increment of solu-
tion that minimizes the residual to the convergence criterion i.e. if ‖Ri+1‖ ≤ 10−4.
The iteration ends if convergence is reached, else the step is repeated with incre-

mental displacement until convergence is reached. Here we have introduced the
basic steps for solid mechanics calculations for the understanding of our modelling
approach. Additional details on the general formulation and solver methodology
can be found in Di Paola et al. (2017a).

In our 2D computation, we assume a state of plane strain for the solid. The
plane strain assumption imposes a strain state at a material particle such that
non-zero strain components act only in one plane. The x-y plane is the one in
which the strains are non-zero and the dimension of the solid in the z-direction
is much larger than in the x and y directions. The fully three dimensional strain
matrix reduces to a two dimensional one as a result since εxz = εyz = εzz = 0.εxx εxy εxz

εyx εyy εyz
εzx εzy εzz

⇒ (
εxx εxy
εyx εyy

)
(25)

In this paper, three metal alloys aluminum alloy (Al-7075), duplex stainless
steel (St A-2205) and nickel-aluminum-bronze (NAB) are considered. The mate-
rials are assumed to be homogenous, isotropic and thermal effects are neglected.
The material constitutive law expressed in eq. (26) is used where an isotropic
elastic-plastic solid deforms according to linear elastic equation when loaded be-
low the yield strength σy, but deforms plastically if yield is exceeded. The plastic
deformation is governed by the von Mises yield criterion with an isotropic harde-
ning law known as Ludwik equation. The equation expresses the strain hardening
as a function of plastic strain εp only. The constants K is the strength coefficient,
n is the strain hardening exponent, E is the Young’s modulus and the total strain
can be decomposed into elastic strain εe and accumulated equivalent plastic strain
εp.

σVM =

{
Eεe , if σVM < σy

σy +Kεnp , if σVM > σy
(26)

The yield strength and material properties obtained with compression tests at
a strain rate of 1.0 s−1 are taken from Roy et al. (2015) and presented in table 2.
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Figure 4: Stress-strain compression curves for Al-7075, St A-2205 and NAB at strain rate
1.0 s−1.

The material behavior for Al-7075, St A-2205 and NAB depicting a typical elastic
plastic response under compression tests is shown in fig. 4.

Material σy [MPa] ρ [kg/m3] E [GPa] ν K [MPa] n
Al-7075 500 2810 71.9 0.33 312 0.29

St A-2205 560 7805 186 0.30 917 0.51
NAB 300 7580 122 0.32 1205 0.56

Table 2: Yield strength, material density, Young’s modulus, Poisson’s ratio and compressive
properties at strain rate 1.0 s−1 (Roy et al. (2015)).

An important parameter that will be used in our discussion is the von Mises
stress σVM written in eq. (27) :

σVM =

√
1

2
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σxy2 + σxz2 + σyz2)]

(27)
It is used to determine whether an isotropic and ductile metal will yield when
subjected to a complex loading conditions. The von Mises stress σVM is a scalar
computed from the stress tensor and can be compared with the yield strength
σy of the material which is another scalar. A material is said to starting to yield
when σVM ≥ σy.

Another important parameter is the accumulated plastic strain Pεp which cha-
racterizes the changes in the mechanical characteristics of material during the
deformation hardening. It can be defined as the measure of the length of the flow
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trajectory in the plastic strain space written as eq. (28).

Pεp(t) =

∫ t

0

Ṗ (τ)dτ

Ṗ =

√
2

3
˙̄̄εp : ˙̄̄εp =

√
2

3
ε̇ijp ε̇

ij
p

(28)

3. Fluid-structure interaction

3.1. One-way coupling

In one-way fluid-structure coupling, we focus on the material response to hy-
drodynamic loads during cavitation bubble collapse. Such an approach is satis-
factory if the solid wall displacement is sufficiently small. The behaviour of the
solid wall can then be assumed to be almost rigid and no significant attenuation of
hydrodynamic loads are expected. The staggered approach for one-way coupling
treats the fluid and solid domains separately with independent numerical solvers
- YALES2 for CFD and Cast3M for CSM. The fluid simulation of the bubble col-
lapse is performed first, denoted as CFD step 1, where the boundary between the
fluid and solid domain is treated as a rigid wall. Therefore ẋ = 0 is used in eq. 2
& 3 to recover the Eulerian form of Navier-Stokes equations. In this purely CFD
solution from initial time tin to final simulation time tfin, the pressure distribution
p(x, t) on the solid boundary is extracted at every coupling time ∆tFSI (constant
in our case). After concluding the CFD step 1, the extracted space- and time-
dependent pressure distribution p(x, t) is applied to the solid as a time-dependent
boundary condition (with a sampling time equal to ∆tFSI), in order to perform a
purely solid mechanics simulation, denoted as CSM step 1. At the end of tfin, the
final state of solid response to the applied cavitation load is obtained in terms of
resulting stress, interface displacement and accumulated plastic strain.

However, it is obvious that this procedure introduces some approximations as
the feedback of the solid displacement on the fluid pressure, that is expected to
relax partially, is totally neglected. The fluid domain does not deform to match
the deformed solid boundaries at the fluid-structure interaction (FSI) interface, as
seen in fig. 5. Therefore, with these assumptions, no coupling effects are introduced
into the fluid domain.

3.2. Two-way coupling

To introduce the fluid-structure coupling effects in the fluid domain, a two-
way coupled analysis is required where the solid wall displacement affects the
subsequent fluid dynamics. In our analysis, we implement a step-wise coupled
approach between the CFD and CSM domains which is an intermediate approach
between uncoupled and strongly coupled FSI approach. Our step-wise coupled
approach is based on an iterative procedure consisting in running several times
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Figure 5: Non-matching fluid-solid domain boundaries after one-way FSI.

the full temporal evolution for both the fluid and the solid solvers. CFD step 1
provides the initial estimates of pressure loads from tin to tfin at every ∆tFSI by
assuming a rigid solid boundary, which is then used to compute the solid wall
deformation in CSM step 1. Next, the time-dependent solid wall displacement at
every ∆tFSI is introduced into a new fluid simulation from tin to tfin, denoted by
CFD step 2. This step introduces a two-way coupling, but computed with a solid
displacement that is overestimated since determined through the pressure load of
CFD step 1, that is exerted on a non-compliant boundary. So, the pressure loads
determined after introducing the FSI coupling effects are introduced into the CSM
step 2. This step-wise iterative loop is repeated until convergence of pressure p and
solid wall displacement ud is established between successive CFD and CSM step
shown in fig. 6. This means new CFD and CSM computations are carried out with
newly predicted time-dependent boundary conditions up to a certain number of
steps, and checked for convergence on (p, ud) between the latest and the previous
time steps. The advantage of this method is its simplicity since it does not require
any communication between the fluid and the solid code during runtime. The
obvious drawback is the need of performing multiple runs of simulation.

A coupling has to be implemented between the fluid and solid domain by means
of dynamic and kinematic interface conditions. The pressure and shear load from
the fluid side has to be in equilibrium with the traction at the boundary of the
solid at the fluid-solid interface (dynamic interface condition). Since the order of
magnitude of shear loads (based on estimations from literature) are much smaller
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Figure 6: Step-wise two-way fluid-structure interaction procedure.

in comparison to the normal pressure loads in our simulations, we neglect the
shear loads at the interface boundary.

In addition, the normal velocity of the solid must equal the fluid velocity at
the fluid-solid interface (kinematic interface condition). This is achieved by solving
the ALE form of the Navier-Stokes equations in the fluid solver. In order to define
a fluid mesh movement able to describe the domain deformation, but limiting the
deformation of single mesh elements, the displacement at the fluid-solid interface
is distributed on the position of the nodes of the ALE mesh in the rest of the
fluid computational domain. In order to achieve a uniform ALE mesh element
deformation, the fluid interface velocity is imposed to match the velocity of the
solid interface determined by the solid solver. At the opposite end of the fluid
computational domain, the boundary displacement is kept equal to zero. The
node velocity anywhere else in the domain is evaluated by linear interpolation
based on the node position between both ends of the computational domain.

4. One-way vs two-way coupling

In this paper, we have pursued the case of shock-induced bubble collapse at-
tached to the solid wall. The attached bubble is initially at a stand-off distance
γ = 0.9 with an initial bubble radius R0 = 495µm. Stand-off distance γ = h/Rmax

is the non-dimensional distance of the bubble from the solid wall, where h is the
distance between the solid wall and bubble center at the time of formation, Rmax

is the maximum bubble radius. The two-way FSI for a detached bubble collapse
(γ > 1) has not been pursued in this paper. Indeed based on our study of one-way
FSI for detached bubble collapse at stand-off distance γ > 1 (Sarkar (2019)), we
anticipate the effect of two-way FSI on detached bubble case to be very small.
A detached bubble collapse is predominantly the emission of a shock wave at a
distance from the wall during collapse and the response of material to the shock
wave propagation on the wall. There will be practically no effect of solid wall de-
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formation on the resulting bubble dynamics as the bubble collapses far from the
wall. The interaction of the shock with the solid wall is marked with very small
plastic strain and surface displacement at an offset from the bubble center.

The initial condition for the fluid simulation is a 2D vapor bubble surrounded
by water at atmospheric condition. Both the fluids are at rest at time t = 0 s and
a shock front at a distance of 2 mm from the solid wall is initiated to drive the
shock-induced collapse.

liquid : ρl = 998.2 kg/m3, p = 101, 325 Pa,

vapor : ρv = 10 kg/m3, p = 2194 Pa.
(29)

The vapor bubble is initialized with a hyperbolic tangent function given in eq. 30
assuming a continuous density profile through the phase interface. Here ρv is the
liquid-vapor mixture density corresponding to psatv and ρl is the pure liquid density.
The pressure in the domain is initialized from ρv and ρl using the equations of
state. In eq. 30, ∆x is the computational mesh spacing, xi is the spatial coordinate,
xc is the position of the bubble center and df is the analytical distance function
to the interface, defined in eq. (31).

ρinit = ρv +

(
ρl
2

+
ρl
2
× tanh

(
df
∆x

))
(30)

df =

√√√√ndim∑
i=1

(xi − xc)2 − R0 (31)

The initial bubble radius is R0 = 500µm and the fluid computational domain size
is taken as 10R0 × 5R0 shown in fig. 7, with around 500, 000 computational cells.
A region of 1× 1 mm2 is meshed with uniformly spaced structured quadrilateral
cells (∆x = ∆y = 5µm), in which the bubble is initialized. The rest of the
domain is meshed with unstructured quadrilateral cells with a growth ratio of 1.05
towards the domain boundary. Only one half of 2D bubble collapse is simulated
taking advantage of the symmetry. The outlet fluid boundaries at 10R0 in the
positive x-direction and at 5R0 in the y-direction are treated with Navier-Stokes
Characteristic Boundary Conditions (NSCBC) following Poinsot and Lele (1992).
The NSCBC boundaries are modelled to treat propagation of shock waves only
in the boundary normal direction and to be weakly reflective. The solid wall is at
the bottom of the fluid computational domain, which serves as the FSI interface
between fluid and solid. The solid computational domain is taken as 2R0 × 5R0.
Only 1 mm of the FSI coupling interface is considered as most of the dynamic
forces act on this length, therefore reducing the solid domain considerably in the
positive x-direction. This is made possible due to the use of wave absorbers in
the solid external boundaries and has been extensively tested to validate that the
dynamics in the solid domain is independent of the boundary position. The solid
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computational domain is meshed with multiple layers of quadrilateral elements
and few triangular element layers with 9850 finite elements and 29065 nodes.

Figure 7: FSI coupling domain and interface between the fluid and solid, bubble radius R0 =
500 µm, (bottom) solid domain, size = 1× 2.5mm2, (top) fluid domain, size = 5× 2.5mm2.

The initial bubble radius is resolved with 100 computational cells. A limiting
CFL = 0.01 and CFLacou = 0.5 is used in the simulation to ensure stability of
the time advancement scheme. As discussed, in our cavitation model there is a
sharp decrease of fluid density at the interface and large time steps could give
rise to numerical instability. In our entire fluid simulation of total simulation time
tfin = 6 µs, the computational time step stays lower than 1 ns and the smallest
time step ∆t is recorded to be 0.05 ns occurring during the most dynamical part
of the simulation. We employ a solution filtering of the density field at every
40 iterations, and filtering of the pressure field at every iteration. An artificial
viscosity constant Cµ = 0.1 and artificial viscosity order r = 4 is used, implying a
4th order artificial viscosity model.

The fluid domain boundary at the fluid-solid interface, of 1mm length, is re-
solved with 201 computational nodes with uniform grid spacing where the time-
dependent pressure evolution is extracted at every ∆tFSI . The solid domain boun-
dary is resolved with 801 nodes with a uniform grid spacing at the fluid-solid
interface, where the time-dependent pressure loading is applied. The number of
computational nodes in both fluid and solid interfaces is verified with grid inde-
pendence study. The solid interface needs more computational nodes to accurately
resolve the plasticity generated from the moving shock waves with varying shock
speed across the interface. Consequently, the pressure from the fluid nodes is in-
terpolated using a quadratic function and distributed to the 801 nodes on the
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solid domain boundary at the fluid-solid interface. The time and space-dependent
pressure is applied as a time-dependent boundary condition every ∆tFSI on the
interface in the solid simulation CSM step 1. In one-way FSI, the coupling time
step is ∆tFSI = 5 ns and time-step independence studies up to ∆tFSI = 1 ns
showed no difference in the results.

4.1. One-way FSI

A planar shock front of 50 MPa is initiated at t = 0s at a distance of 2mm from
the solid wall. The shock front hits the bubble upper surface at t = 0.68 µs and
the solid wall at t = 1.3 µs. The shock front is promptly reflected back from the
solid wall, as it can be seen in the temporal evolution of bubble collapse presented
in fig. 8. In each frame of the figure, the left contour is the density field and the
right contour is the pressure field. The events of bubble collapse up to t = 4 µs is
the shrinking of bubble volume and initial stages of liquid jet formation, piercing
through the bubble upper surface moving towards the wall. It is interesting to note
that untill t = 4µs, the only pressure loading on the wall is the initial shock front
impact. The liquid jet impacts the wall at t = 4.294 µs with an impact pressure

Figure 8: Temporal evolution of a shock induced 2D attached bubble collapse : (left) density
and (right) pressure contour , γ = 0.9, R0 = 495 µm, p = 0.1 MPa, pshock = 50 MPa, frame
size = 4× 2.5mm2.
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of 1.97 GPa. This is the water hammer pressure exerted by the liquid jet on the
wall. This dynamical part of bubble collapse is explained with the aid of fig. 9 &
10. There are two curves in fig. 9 representing pressure pF00 and pmax−wall. The
curve pF00 is the pressure on the wall at the bubble axis of symmetry (pt. F00)
and pmax−wall is the instantaneous maximum pressure on wall. The same peak of
curve pF00 and pmax−wall indicates that the pressure peak is at pt. F00 located at
bubble axis of symmetry. The position of pressure pmax−wall can be determined
from the recorded data of maximum pressure and its position. The liquid jet after

Figure 9: Temporal evolution of pressure pF00 at point F00 and maximum pressure on wall
pmax−wall, γ = 0.9, R0 = 495 µm, p = 0.1MPa, pshock = 50MPa.

impacting the wall moves away from the bubble axis of symmetry with a velocity
of over 500 m/s shrinking the remaining bubble volume. The remaining bubble
volume in 2D is the equivalent of 3D torus after the liquid jet pierces the bubble
volume. This flow induced collapse of the remaining bubble volume produces the
second pressure peak of 2.52 GPa at t = 4.423 µs. The second pressure peak is
not at the bubble axis of symmetry, but located at an offset of 0.1 mm from pt.
F00. The remaining bubble collapse emits shock waves which travel along the wall
towards the bubble axis of symmetry. The superimposition of shock waves leads
to the strong compression of liquid near pt. F00 giving rise to the third pressure
peak of 2.69 GPa at t = 4.46 µs.

The evolution of von Mises stress σVM during the collapse is shown in fig. 10
for Al-7075 (E = 71.9 GPa ; σy = 500 MPa). The scale for maximum σVM has
been fixed at 500 MPa to show the regions exceeding the yield stress σy of the
material. These are the regions where the material will yield under loading. At
t = 4.3 µs, the liquid jet impact on the wall is seen at pt. F00 with the impact
load propagating in the solid as elastic waves. The resulting surface displacement
in Al-7075 is 3.8µm at the bubble symmetry axis. Comparatively, the surface dis-
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Figure 10: Evolution of von Mises stress in solid : (top) numerical schlieren of bubble collapse
and (bottom) von Mises stress σVM on each frame, γ = 0.9, R0 = 495µm, p = 0.1MPa, pshock =
50MPa, frame size = 1× 2mm2.

placement in NAB is 2.6 µm and St A-2205 is 1.4 µm. The surface displacement
after the liquid jet impact at pt. F00 is plotted in fig. 11. Next is the collapse
of the remaining bubble at an offset of 0.1 mm from pt. F00 seen at t = 4.420
in fig. 10. The resulting surface displacement from the remaining bubble collapse
is seen on the final wall interface profile presented later. The emitted shock from
the remaining bubble collapse travels along the wall towards the bubble axis of
symmetry seen at t = 4.43 µs. The superimposition of the shock waves near pt.
F00 seen at t = 4.47 µs gives another pressure loading at the bubble axis of
symmetry. This leads to further surface displacement with the shock and elastic
wave subsequently propagating and attenuating in their respective domains. The
maximum plastic deformation at the end of simulation i.e. t = 6µs is observed for
NAB of 5.1µm at the bubble axis of symmetry. The yield strength of NAB is 300
MPa which is the least of all the three materials considered. In comparison, the
maximum plastic deformation in Al-7075 is 4.6 µm and in St A-2205 is 1.6mum.
The temporal evolution of surface displacement at pt. F00 is plotted in fig. 11(a)
which shows the displacement after liquid jet impact and shock superimposition.
The temporal convergence of the final surface displacement is verified by running
the solid simulation for an extended time tfin = 11 µs shown in 11(b). Finally the
results of one way FSI coupling is summarized in table 3 with the values of the
maximum accumulated plastic strain Pmax

εp and the area under plastic deforma-
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Figure 11: Temporal evolution of surface displacement at point F00, (left) until t = 6µs, (right)
until t = 11 µs.

tion Aεp . The plasticity developed in the solid is quantified with Aεp representing
surface area undergoing a minimum of 0.5% plastic strain. The discussion on Pmax

εp

contours and final interface profile from one-way coupling is discussed with the
two-way coupling results.

Material Pmax
εp Aεp (m2)

Al-7075 0.255 5.523× 10−8

NAB 0.0972 9.816× 10−8

St A-2205 0.0856 2.052× 10−8

Table 3: Maximum accumulated plastic strain Pmax
εp and area under plastic deformation Aεp

for shock induced attached bubble, γ = 0.9, R0 = 495 µm, at t = 6 µs.

4.2. Two-way FSI

In two-way coupling, the resulting boundary displacement on the 801 nodes
on solid interface from CSM step 1 is extracted at every ∆tFSI and interpolated
using cubic spline interpolation to the 201 fluid nodes to perform CFD step 2. In
our case setup, we use a uniform grid spacing in both the fluid and solid interface,
resulting in matching between all of the fluid nodes and some of the solid nodes, as
long as the fluid-structure interface is not deformed. In the case of fluid-structure
interface displacement, the solid nodes could possibly move both in x & y direction
under the influence of normal stresses, so that the matching between all of the
fluid nodes and some of the solid nodes cannot be verified at all stages of the
simulation. Therefore cubic spline interpolation is used to transfer the surface
displacement irrespective of grid resolution in the two-way FSI procedure. This
procedure allows an accurate representation of the interface displacement even
in the case of arbitrary (i.e. non uniform and/or non-matching) meshing for the
coupling interface.

21



A second step of an entirely new fluid simulation is performed using the time-
dependent boundary displacement on 201 fluid nodes introduced every ∆tFSI .
The nodal pressures on the fluid interface from this second fluid simulation is
extracted every ∆tFSI and introduced into the solid simulation exactly as the first
step. It is followed by the second solid simulation and the boundary displacement
is extracted to be introduced on the subsequent fluid step.

These step-wise fluid and solid simulations are performed separately until
convergence of pressure and boundary displacement is reached between successive
steps. In our analysis, four steps of fluid and solid simulations are performed with
pressure and displacement exchanged at ∆tFSI = 1 ns. The solution convergence
is defined by the relative difference below 0.5% in both the maximum pressure for
CFD and the maximum displacement for CSM between two successive steps. For
example in the case of St A-2205 out of the total decrease in the water hammer
pressure ∆pwh during liquid jet impact, there is a relative decrease of 81% of ∆pwh
in the second fluid step and about 19% in the third fluid step of the simulations.
The relative difference between the third fluid step and fourth fluid step is 0.3% at
which point a convergence of the numerical prediction is considered as achieved.
The damping of pressure and convergence of wall pressure pmax−wall after four
steps in our FSI analysis for St A-2205 is shown in fig. 12. The time step used in
the solid solver is bigger than the one needed by the fluid solver.

Figure 12: Pressure damping in step-wise coupled FSI showing convergence of pressure on St
A-2205 in four steps - shock induced attached bubble collapse γ = 0.9, R0 = 495 µm.
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Despite the apparent simplicity of the proposed step-wise two-way coupling
approach, care needs to be taken in the choice of the coupling time step w.r.t.
the time steps in the CFD and CSM solvers. Indeed, those two time-steps can be
different, the CFD time step being typically smaller. In this case, a time interpo-
lation of the solid wall displacement needs to be applied when this displacement
is communicated to the CFD solver. This may cause an early response of the fluid
to a solid deformation. In order to avoid this numerical artefact, we have reduced
∆tFSI to the value taken by the fluid solver, i.e. 1 ns.

4.3. Effect of solid deformation on fluid pressure

We start the analysis of the results by first comparing the maximum wall
pressure pmax−wall for shock-induced 2D bubble collapse plotted in fig. 13. The
temporal evolution of pressure on the rigid wall and deformable wall of Al-7075,
NAB are St A-2205 are plotted. To recall the pressure peaks on rigid wall, the first

Figure 13: Maximum pressure pmax−wall evolution on rigid wall and on the deformable mate-
rials with two-way FSI, shock-induced attached bubble collapse γ = 0.9, R0 = 495 µm.

peak of 1.97GPa at 4.294µs is the water hammer pressure pwh from the liquid jet
impact at the bubble symmetry axis. The second peak of 2.52GPa at 4.423 µs is
the remaining bubble collapse at an offset of 0.1 mm from the bubble symmetry
axis. This remaining bubble collapse emits shock waves. The superimposition of
these shock waves with their symmetric images at the symmetry axis give rise to
the third peak of 2.69GPa at 4.46 µs.
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We will now investigate in detail the first pressure peak from the liquid jet
impact shown in fig. 13 with the aid of the zoom plotted in fig. 14. The maximum

Figure 14: Zoomed-in on maximum pressure pmax−wall evolution on rigid wall and on the
deformable materials with two-way FSI, shock-induced attached bubble collapse γ = 0.9, R0 =
495 µm.

pressure recorded on a deformable Al-7075 wall at the bubble symmetry axis is
1.82 GPa at 4.297 µs. Al-7075 is the softest of the three materials and has the
lowest slope in the elastic regime of the σ − ε curve. It is expected to provide
the maximum damping to the pressure load out of the three materials. The first
pressure peak for deformable NAB and St A-2205 wall are 1.91GPa and 1.94GPa
respectively with time shift due to damping of 1.5ns and 1ns. The pressure peak
decreased about 8% in Al-7075 at the time of liquid jet impact in comparison to
the rigid wall. Similarly the decrease in pressure peaks for NAB and St A-2205
are 3% and 1.5% respectively. We can compare the computed impact pressure of
liquid jet for different materials with the theoretical expression of the dampened
pressure for a one-dimensional system in eq. (32) which depends on the ratio of
the liquid and the solid acoustic impedances ρc.

∆p =
(ρlclul)

1 + (ρlcl/ρscs)
(32)

Two shock waves are created on the impact of liquid jet - one shock propagating
in the solid and one shock reflecting back into the liquid. The numerator ρlclul is
the water hammer pressure for the liquid jet of velocity ul on a perfectly rigid wall,
ρlcl is the acoustic impedance of the liquid and ρscs is the acoustic impedance of
the solid, which is related to the Young’s modulus E by ρscs =

√
ρsE. The ratio
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of acoustic impedances (ρscs/ρlcl) is infinite for a perfectly rigid wall, whereas for
a perfectly compliant wall it is zero.

The differences between the numerical results and theoretical estimations from
eq. (32) for Al-7075, NAB and St-A2205 are about 2%, 1.5% & 2% as reported
in table 4. In comparison, for three-dimensional simulations Chahine and Hsiao
(2015) reported a total damping in pressure peaks of approximately 6% and 3%
for Al-7075 and St A-2205 respectively. It is important to highlight that the 3D
results were obtained for different initial conditions, i.e. bubble of Rmax = 2 mm
at γ = 0.75 collapsing at an ambient liquid pressure of 0.1 MPa and therefore,
are not directly comparable. The comparisons for the pressure damping has been
summarized in table 4. For Al-7075 our simulation gives a damping of 8% for the
pressure peak from liquid jet impact. The predicted damping lies in between the
1D and 3D results, indicating a role played by multidimensional flow dynamics
on pressure damping effects. Whereas in the case of St-A2205, we obtain only a
decent agreement with the 1D and 3D results. This in our opinion highlights the
need for a much detailed study on the effects of multi-dimensional dynamics on
pressure damping by surface displacement.

Material Theoretical eq. (32) Present study Chahine and Hsiao (2015)
1D 2D 3D

Al-7075 10% 8% 6%
NAB 4.5% 3% -

St A-2205 3.5% 1.5% 3%

Table 4: Comparison of pressure damping between the present study, theoretical estimation
and existing literature.

We can now proceed to the analysis of the second and third pressure peaks.
From fig. 14, we find the behaviour of NAB and St-A2205 much closer to each
other, and to the rigid wall case, in comparison to Al-7075. The predicted pres-
sure peaks for the three different events generating pressure peaks on the wall,
i.e. liquid jet impact, remaining bubble collapse and shock wave superimposition
during bubble collapse for the rigid wall and the considered materials have been
summarized in table 5. The pressure decrease due to damping in Al-7075 is about
2.7% in the second pressure peak from remaining bubble collapse and 4.5% in the
third pressure peak from shock wave superimposition at the symmetry axis.

The numerical Schlieren and accumulated plastic strain Pεp contour for St A-
2205 presented in fig. 15 show the different salient features of the two-way coupling
simulation in the final FSI iteration step. Data is mirrored in both the fluid and
solid domains along the Y-axis for visualization. At t = 4.320µs after the liquid jet
impact on the wall, the first sign of plasticity near the bubble symmetry axis can
be seen. The water hammer shock formed at the liquid jet impact on the wall can
be seen moving back towards the liquid domain at t = 4.320 µs and t = 4.365 µs.
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Peak 1 Peak 2 Peak 3
Material Liquid jet Remaining bubble collapse Shock superimposition

in GPa
Rigid 1.97 2.52 2.69

Al-7075 1.82 2.45 2.57
NAB 1.91 2.46 2.62

St A-2205 1.94 2.48 2.63

Table 5: Comparison of estimated pressure loads at different dynamical events during bubble
collapse for the rigid wall and the considered materials - attached bubble γ = 0.9, R0 = 495µm.

Figure 15: Numerical schlieren and accumulated plastic strain Pεp in two-way FSI for St A-2205
at different time instants showing the dynamical features of bubble collapse and corresponding
generation of plasticity, shock-induced attached bubble collapse γ = 0.9, R0 = 495 µm, p =
0.1MPa, pshock = 50MPa, frame size=1× 1mm2.
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This shock wave also propagates along the wall with the compressing inner surface
of the remaining bubble and generates plasticity along the wall. The fluid interface
movement matches the solid surface deformation in the simulation, thus giving a
conforming fluid-solid physical domain with matching interface deformation. The
relative error in the displacement of the fluid and solid interface is about 0.0023%.
The next sequence is the collapse of remaining bubble at an offset of about 0.1mm
from the symmetry axis, which is accompanied by the emission of another shock.
This shock wave produced at an offset travels along the solid surface and later
focuses on the symmetry axis. The generation of plasticity from the propagating
shock waves can be seen at t = 4.455µs. Finally, the superimposition of the shocks
at the symmetry axis triggers the final pit formation by generating additional
plastic strain in the already plasticized area.

4.4. Effect on material response

A comparison of the maximum accumulated plastic strain Pmax
εp and surface

area under plastic deformation Aεp can be drawn between the two-way and one-
way computations. Figure 16 shows the contours for accumulated plastic strain
Pεp in the materials obtained with one-way and two-way FSI.

Figure 16: Comparison of accumulated plasticity Pεp contour for one-way and two-way coupled
FSI at t = 6µs, shock-induced attached bubble collapse γ = 0.9, R0 = 495µm, frame size=250×
250 µm2.

Table 6 lists the Pmax
εp and Aεp obtained from two-way coupled simulation for

the materials Al-7075, NAB and St A-2205. It also lists the reduction in Pmax
εp
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and Aεp due to pressure relaxation from surface deformation in our two-way FSI,
compared to one-way FSI. To recall for Al-7075, the decrease in peak pressures
on the wall during the three dynamical events during attached bubble collapse is
8%, 2.7% and 4.5%, and its resulting effect on Pmax

εp and Aεp is summarized in
table 6. The maximum accumulated plastic strain Pmax

εp decreases considerably for

Material Pmax
εp Aεp (m2) reduction in Pmax

εp reduction in Aεp
Al-7075 0.191 5.3291× 10−8 25% 3.5%

NAB 0.101 9.2381× 10−8 -3% 6%
St A-2205 0.0608 2.0062× 10−8 30% 2.3%

Table 6: Maximum accumulated plastic strain Pmax
εp , surface area under plastic deformation

Aεp , reduction in Pmax
εp and Aεp in two-way vs one-way FSI at t = 6 µs for Al-7075, NAB and

St A-2205, shock-induced attached bubble collapse γ = 0.9, R0 = 495 µm..

both Al-7075 and St-A2205 due to pressure relaxation in two-way FSI, whereas
for NAB it does not change considerably between one-way and two-way FSI, in
fact a slight increase is observed. This reveals NAB’s sensitivity in developing
plastic strain due to its low yield strength in comparison to the magnitudes of
impacting pressure loads. Similar to what we have seen before, NAB produces the
maximum plasticized area in comparison to Al-7075 and St-A2205. The decrease
in plasticized surface area is also highest in NAB, again owing to its lower yield
strength.

In our final analysis, we draw comparisons of interface shape for the three
materials at the final simulation time of 6 µs presented in fig. 17. We find similar
pit shapes in one-way and two-way simulation for the three materials in the case
of shock-induced attached bubble collapse. The relative difference in the final
interface position between one-way and two-way coupling is maximum in Al-7075
followed by NAB and St A-2205 respectively. This can be explained with material
properties plotted in fig. 4. Although Al-7075 has higher yield strength σy than
NAB (500MPa in comparison to 300MPa), the strain hardening exponent n for
Al-7075 is lower in comparison to NAB (0.29 in comparison to 0.56). It implies that
NAB would start to plasticize sooner and at lower impact loads due to its lower
σy. On the other hand, comparatively lower impact load beyond the material yield
strength will be needed to produce similar plastic strain in Al-7075 in comparison
to NAB as evidenced from the plasticity curve of the stress-strain plot in fig.
4. This also explains the highest magnitude obtained for maximum accumulated
plastic strain Pmax

εp for Al-7075 in comparison to other materials. The highest
relative difference in the final interface position for Al-7075 highlights the material
behaviour of maximum damping of the impact pressure loads. NAB, although
allowing far less surface deformation and damping, responds with much larger
plasticized surface area. The behaviour of St A-2205 is much similar to rigid
wall, although it damps more the pressure peak generated by the shock waves
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superimposition, about 2.3%, in comparison to 1.5% of pressure from liquid jet
impact.

Figure 17: Comparison of solid interface profile for one-way and two-way coupled FSI, shock-
induced attached bubble collapse γ = 0.9, R0 = 495 µm.

As we have highlighted throughout the course of this work, an attached bubble
collapse is a complex dynamical event dominated by many interconnected physical
features which determine the resultant pressures on the wall. There are multiple
shock waves impacting and propagating on the solid wall, the magnitude of which
are often many orders higher in comparison to detached bubble collapse. The
decrease in maximum accumulated plastic strainPmax

εp is considerable in two-way
coupling for an attached bubble collapse, for example about 30% in St A-2205.
On the other hand, the area under plastic deformation Aεp decreases by about
3.5%, 6%, 2.3% for Al-7075, NAB and St A-2205 respectively.

5. Conclusions

In this paper, we carried out a comparative study of material responses for
aluminum alloy Al-7075, nickel-aluminum bronze alloy (NAB) and duplex stain-
less steel (St A-2205) with one-way and two-way coupling for a shock-induced
collapse of a bubble initially attached to the wall. We investigated the effect of
surface deformation on the resulting pressure peaks induced by a single bubble
collapse with two-way coupled FSI. Two-way coupled fluid-structure interaction
simulations show that the pressure load is damped on the material with surface
deformation. The decrease in pressure loads are higher when the surface deforma-
tion is high due to increased pressure relaxation in the fluid. The pressure from
liquid jet impact on Al-7075 decreases by 8% whereas the decrease of pressure
peaks due to the remaining bubble collapse and to shock wave superimposition is
2.7% and 4.5% respectively. In comparison to one-way coupled prediction of mate-
rial response, decrease in pressure peaks in two-way coupling resulted in decrease
of 25% in the maximum accumulated plastic strain and 3.5% of total plasticized
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area in Al-7075. On the other hand, the behaviour of duplex stainless steel is very
close to that of a rigid surface. This is consistent with the observation of delay in
pressure peaks and lower magnitude of impact pressures on compliant coatings. It
will probably be difficult to compare the results of this study with experiments,
given the small sizes involved. However we believe that our numerical technique
and the results presented in this paper can give useful insights. The developed sol-
vers and methodology can be extended to predict cavitation dynamics in complex
flow applications.

The two-way coupled simulations do provide more reasonable predictions of
pressure loadings on deformable solid walls as well as the plasticity generated due
to loading in the solid. The behaviour of the solid wall is assumed to be rigid
in one-way FSI and no attenuation of hydrodynamic loads is possible. This is a
reliable first approximation and comparatively easier to implement for cases with
high magnitude impact loads in comparison to yield strength, and for harder ma-
terials, for example stainless steel or alloys used in industrial applications. On the
other hand, if the solid wall displacement is large, a two-way coupling approach
is needed to account for the feedback of the solid wall displacement into the fluid
domain. Such an analysis is required when the impact pressure loads are closer
to the material yield strength (where a slight change in pressure loading can ge-
nerate large changes in plastic strain development), or for compliant, visco-elastic
materials. Therefore, based on the material response from one-way coupling, the
need for a two-way coupled fluid-structure interaction can be evaluated for a given
material.
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