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Abstract In this paper it is solved the 4th Clay Millennium 

problem about the Navier-Stokes equations, in the direction of 

regularity (no blow-up). This is proved for the Navier-Stokes 

equations for the non-periodic formulation and without 

external forcing (homogeneous case). The proof is based on 

discovering a new invariant as a 2D surface density of (rotatory) 

momentum, derived from the well-known 

Helmholtz-Kelvin-Stokes velocity circulation invariant. This 

invariant is indispensable, besides to the ordinary momentum 

conservation, to prove that there cannot be a blow-up in finite 

time, of the point vorticities, thus regularity. .It is proved that 

not only there is no Blow-up in finite time but not even at  the  

time T=+∞. 

Index Terms— Incompressible flows, regularity, 

Navier-Stokes equations, 4th Clay millennium problem.  

Mathematical Subject Classification: 76A02 

 

I. INTRODUCTION 

The famous 4th Millennium problem of the Clay 

Mathematical Institute as formulated in [19] FEFFERMAN 

C. L. 2006  CL 2006 is considered a significant challenge to 

the science of mathematical physics of fluids, not only 

because it has resisted  the efforts of the scientific community 

for decades to prove it (or converses to it) but also because it 

is supposed to hide a significant missing perception about the 

nature of our mathematical formulations of physical flows 

through the Euler and Navier-Stokes equations. 

When the 4th Clay Millennium Problem was formulated in 

the standard way, the majority was hoping that the regularity 

was also valid in 3 dimensions as it had been proven to hold 

in 2 dimensions. 

The main objective of this paper is to prove the regularity 

of the Navier-Stokes equations with initial data as in the 

standard formulation of the 4th Clay Millennium Problem 

for the homogeneous (no external forcing) non-periodic 

case.  (see paragraph IV ) It is proved that not only there is 

no Blow-up in finite time but not even at the time T=+∞. 

My first attempt to solve the millennium problem about the 

regularity of the Navier-Stokes equations problem was 

during the spring 2013 (uploaded at that time see [25] 

Kyritsis K. October 2013  
The author has also solved the 3rd Millennium problem P vs 

NP in computational complexity with 3 different successive 

solutions each one simpler that the previous. (see references 

[29])  

The main core of the solution is the paragraphs 3. In this 

paragraph 3 is discussed what is that probably we do not 

understand with the Navier-Stokes equations, and the 
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well-known Helmholtz-Kelvin-Stokes theorem of velocity 

circulation is extended to new momentum density invariants 

of the flow. Based on these new invariants we are able to 

prove in theorem 3.4 that the vorticity cannot blow up (thus 

regularity) The paragraph 2 is devoted to reviewing the 

standard formulation of the 4th Clay Millennium problem, 

while the 4th paragraph simply applies trivially the results of 

the paragraph 3 to solve the 4th Clay Millennium problem in 

the non-periodic homogeneous case (no external forcing). 

 

According to  [8] CONSTANTIN P.  2007 “..The blow-up 

problem for the Euler equations is a major open problem of 

PDE, theory of far greater physical importance that the 

blow-up problem of the Navier-Stokes equation, which is of 

course known to non-specialists because of the Clay 

Millennium problem…” For this reason, many of the 

propositions of this paper are stated for the Euler equations of 

inviscid flows as well.  

 

II. THE STANDARD FORMULATION OF THE  4TH MILLENNIUM 

CONJECTURE ABOUT THE NAVIER-STOKES EQUATIONS AND 

SOME  CRITERIA OF REGULARITY. 

 

In this paragraph we highlight the basic parts of the standard 

formulation of the 4th Clay millennium problem as in [19] 

Fefferman C.L.  2006. 

The Navier-Stokes equations are given by  (by R we denote 

the field of  the  real numbers, ν>0 is the density normalized 

viscosity coefficient ) 
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a)  with initial conditions  u(x,0)=u0(x)     

 x∈R3                    

b) and u0 (x) ∈ C∞ divergence-free vector field on 

R3                                              (eq.2.3)   

If ν=0 then we are taking about the Euler equations 

and inviscid case.  
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 is the Laplacian operator .The 

Euler equations are (eq2.1), (eq2.2), (eq2.3) 

when  ν=0.  

It is reminded to the reader, that in the equations of 

Navier-Stokes, as in (eq. 2.1)  the density ρ, is constant, it is 

custom to normalized to 1 and omit it. 

d)  For physically meaningful solutions we want 

to make sure that u0(x) does not grow large as 

|x|. This is set by defining u0(x) , and f(x,t)  

and called in this paper  Schwartz initial 

conditions  , to satify  

K
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0
 on R3   for any α and K                                                                                                                                                                                                                                                                                                         

.                                                                                  (eq.2.4 ) 

(Schwartz used such functions to define the space of 

Schwartz distributions)  

Remark 2.1. It is important to realize that smooth Schwartz 

initial velocities after 

 (eq 2.4) will give that the initial vorticity ω0 =curl(u0) ,  in its 

supremum norm, is  bounded over all 3-space.  

|𝜕𝑥
𝑎𝜕𝑡

𝑚𝑓 (𝑥, 𝑡)| ≤ 𝐶𝑎,𝑚,𝐾(1 + |𝑥| + 𝑡)−𝐾 on R3 ×
[𝟎, +∞) for any α,m,K                                             (eq.2.5 ) 

We accept as physical meaningful solutions only if it satisfies  

p, u C(R3 [0,))                             (eq.2.6 ) 

and  

∫ |𝑢(𝑥, 𝑡)|
ℜ3

2

𝑑𝑥 < 𝐶   for all t>=0 (Bounded or finite 

energy)                                                                      (eq.2.7 ) 

Remark 2.2 It is important to realize that smooth external 

force (densities) with the Schwartz property as in (eq.2.5) , 

have not only a rule for upper bounded spatial partial 

derivatives but also the same rule for time upper bounded 

partial derivatives. 

 Remark 2.3 We must stress here that imposing smoothness 

of the coordinate functions of velocities and external forces 

of the initial t=0 data and later time t data in the Cartesian 

coordinates plus and Schwartz condition as in  (eq 2.5) is not 

equivalent with imposing similar such smoothness of the 

coordinate functions and conditions in the cylindrical or 

spherical coordinates. We will give in the paragraph 4, 

remark 4.5 an example of a strange blowup, where at any 

time t>0 the coordinates of the velocities are smooth and 

bounded in all space as functions in the polar coordinates and 

still the vorticity has infinite singularity at zero. 

Alternatively, to rule out problems at infinity, we may look 

for spatially periodic solutions of (2.1), (2.2), (2.3). Thus we 

assume that u0(x) , and f(x,t)  satisfy  

u0(x+ej)= u0(x), f(x+ej,t)= f(x,t),  p(x+ej,0)=p(x,0), for 

1<=j<=3                                                                     (eq.2.8 ) 

(ej is the jth unit vector in R3)    

In place of (2.4) and (2.5), we assume that u0(x), is smooth 

and that 

|𝜕𝑥
𝑎𝜕𝑡

𝑚𝑓 (𝑥, 𝑡)| ≤ 𝐶𝑎,𝑚,𝐾(1 + 𝑡)−𝐾 on R3× [𝟎, +∞) for any 

α,m,K                                                                    (eq.2.9 ) 

We then accept a solution of (2.1), (2.2) , (2.3) as physically 

reasonable if it satisfies  

u(x+ej ,t)= u(x, t), p(x+ej , t)=p(x,t), on R3 × [𝟎, +∞)  for 

1<=j<=3                                                                     (eq.2.10 ) 

and p, u C(R3 [0,))                                         (eq.2.11 )                                                         

In the next paragraphs we may also write u0 instead of u0 for 

the initial data velocity. 

We denote Euclidean balls by  𝐵(𝑎, 𝑟): = {𝑥 ∈

𝑅3: ||𝑥 − 𝑎|| ≤ 𝑟}, where ||x|| is the Euclidean norm.  

The 4 sub-problems or conjectures of the  millennium 

problem are the next: 

(Conjecture A) Existence and smoothness of 

Navier-Stokes solution on R3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free 

vector field satisfying (4). Take f(x,t) to be identically zero. 

Then there exist smooth functions p(x,t) , u(x,t) on R3x[0,+∞) 

that satisfy (2.1), (2.2), (2.3) , (2.6) , (2.7).  

 (Conjecture B) Existence and smoothness of 

Navier-Stokes solution on R3/Z3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free 

vector field satisfying (8); we take f(x,t) to be identically zero. 

Then there exist smooth functions p(x,t) , u(x,t) on R3x[0,+∞) 

that satisfy (2.1), (2.2), (2.3) , (2.10) , (2.11).  

(Conjecture C) Breakdown of Navier-Stokes solution on 

R3 

Take ν>0 and n=3. Then there exist a smooth, divergent-free 

vector field u0(x) on R3 and a smooth f(x,t) on R3x[0,+∞) 

satisfying (4), (5)  for which there exist no smooth solution 

(p(x,t) ,u(x,t)) of (2.1), (2.2), (2.3) , (2.6) , (2.7)  on 

R3x[0,+∞).   

(Conjecture D)  Breakdown of Navier-Stokes solution on 

R3/Z3 

Take ν>0 and n=3. Then there exist a smooth, divergent-free 

vector field u0(x) on R3 and a smooth f(x,t) on R3x[0,+∞) 

satisfying (2.8), (2.9)  for which there exist no smooth 

solution (p(x,t) ,u(x,t)) of (2.1), (2.2), (2.3) , (2.10) , (2.11) on 

R3x[0,+∞).   

Remark 2.4. It is stated in the same formal formulation of the 

Clay millennium problem by C. L. Fefferman see [19] 

Fefferman C.L.  2006 (see page 2nd line 5 from below) that 

the conjecture (A) has been proved to holds locally. “..if the 

time internal  [0,), is replaced by a small time interval [0,T), 

with T depending on the initial data....”. In other words there 

is >T>0, such that there exists a unique and smooth  

solution  u(x,t)C(R3 [0,T)). See also [34] A.J. Majda-A.L. 

Bertozzi  ,Theorem 3.4 pp 104. In this paper, as it is standard 

almost everywhere, the term smooth refers to the space C 

In the next  the || ||m  is the corresponding Sobolev spaces 

norm and . We denote by  Vm ={u in  Hm(Rn) and divu=0} 

where Hm(Rn) are the Sobolev spaces with the L2 norm.  

 We must mention that in A.J. Majda-A.L. Bertozzi [34] 

,Theorem 3.4 pp 104, Local in Time existence of Solutions to 

the Euler and Navier-Stokes equations it is proved that indeed 

if the initial velocities belong to  Vm  m>=[3/2]+2 there exist 

unique smooth solutions locally in time [0,t]. Here, in the 

formulation of the millennium problem the hypotheses of 

smooth with Schwartz condition initial velocities   satisfies 

this condition therefore we have the existence and uniqueness 

of smooth solution locally in time, both in the non-periodic 

and the periodic setting without external forcing 

(homogeneous case). 

The existence and uniqueness of a smooth solutions locally in 

time is stated in the formulation by C.L. Fefferman [19] for 

the homogeneous cases and conjectures (A), (B). When a 

smooth Schwartz condition external force is added 

(inhomogeneous case) , it is natural to expect that also there 

should exist a  local in time unique sooth solution. But this I 
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did not find to be stated in the A.J. Majda-A.L. Bertozzi [34], 

so I will avoid assuming it.  

We state here also two, very well-known criteria of no 

blow-up and regularity.  

In this theorem the || ||m  is the corresponding Sobolev spaces 

norm and . We denote by  Vm ={u in  Hm(Rn) and divu=0} 

where Hm(Rn) are the Sobolev spaces with the L2 norm.  

Theorem 2.1 Velocities Sobolev norm sufficient condition 

of regularity.  Given an initial condition u0  ∈  Vm  

m>=[3/2]+2=3.5 e.g. m=4 , then for any viscosity ν>=0 . 

there exists a maximal time T* (possibly infinite) of existence 

of a unique smooth solution u  ∈  C([0,T*];Vm ) ᴖ 

C1([0,T*];Vm-2) to the Euler or Navier-Stokes equation. 

Moreover, if T*<+∞  then necessarily limt->T* ||u(. , t)||m 

=+∞. 

 Proof: See A.J. Majda-A.L. Bertozzi [34], Corollary 3.2 pp 

112). QED 

Remark 2.5 Obviously this proposition covers the periodic 

case too. 

Theorem 2.2 Supremum of vorticity sufficient condition 

of regularity 

Let the initial velocity u0 ∈ Vm  m>=[3/2]+2 , e.g. m=4, so 

that there exists a classical solution  u∈ C1([0,T] ; C2ᴖVm) to 

the 3D Euler or Navier-Stokes equations. Then : 

(i) If for any T>0 there is M1 >0 such that the vorticity 

ω=curl(u) satisfies 

∫ |𝜔(. , 𝜏)|𝐿∞ 
𝑇

0
 dτ ≤ 𝛭1 

Then the solution u exists globally in time, u∈ C1([0,+∞] ; 

C2ᴖVm) 

(ii) If the maximal time T* of the existence of the solution u∈ 

C1([0,T] ; C2ᴖVm) is finite, 

 then necessarily the vorticity accumulates so rapidly that  

𝑙𝑖𝑚𝑡→𝑇∗ ∫ |𝜔(. , 𝜏)|𝐿∞ 𝑑𝜏 = +∞                               
𝑇

0
(eq.2.12)                                                                                                            

Proof: See A.J. Majda-A.L. Bertozzi [34], Theorem 3.6 pp 

115, L∞ vorticity control of regularity.         

 QED. 

Remark 2.6 Obviously this proposition covers the periodic 

case too.  

 

III. SOME NEW MOMENTUM DENSITY INVARIANTS OF THE 

NAVIER-STOKES EQUATIONS AFTER THE 

HELMHOLTZ-KELVIN-STOKES THEOREM.  

 It has been written in the initial formulation of the problem, 

that our difficulty of solving this millennium problem shows 

that there several things that we do not understand very well 

in the Navier-Stokes equations. In this paragraph we will 

investigate this issue. We will explain also why the rather 

elementary geometric calculus approach is better so as to 

solve the millennium problem, compared to more advanced 

functional analysis.  

 One primary point, known but often forgotten is the next. 

The Euler and the Navier-Stokes equations are the equations 

that are considered to govern the flow of fluids, and had been 

formulated long ago in mathematical physics before it was 

known that matter consists from atoms. So actually they 

formulated the old infinite divisible material fluids. After L. 

Boltzmann and the discovery of material atoms, the truer 

model is that of statistical mechanics. We may consider that 

the two different types of matter, a) infinite divisible b) made 

from finite atoms, behave the same as far as flows in fluid 

dynamics, and certainly there are many common properties 

but ultimately are mathematically and logically different. 

One example of the difference is that in the atomic structured 

material fluid model, the angular velocity of the spin e.g. of 

electrons, protons, neutrons which is about 1 terahertz 

(infrared range) can vary increase or decrease, independently 

from the vorticity, which is only the part of the angular 

velocity which is “geared to the environmental” rotation of 

the fluid. In the classical Weierstrass calculus of infinite 

divisible material fluids (Euler and Navier-Stokes equations) 

this distinction does not exist and all the angular velocity of a 

point is due to the vorticity. In [35] Muriel, A.  2000 a 

corresponding to the millennium problem in statistical 

mechanics has been solved in the direction of regularity. 

Similarly, in [27] Kyritsis, K. November 2017 a solution of 

the current millennium problem has been proved in the 

direction of regularity, but only if adding an additional 

hypothesis to the initial formulation, that of existence of 

finite atomic particles that are conserved during the flow. 

Strictly speaking a mathematical model of the material fluids 

and their flow which will have a high degree of exactness 

should take in to account that matter consists of atoms, (the 

electron range of magnitudes is of the order 10-15 meters) and 

this suggests that we should avoid utilizing concepts of 

continuity and smoothness that use ε>0 δ>0 in their definition 

smaller than 10-15 meters.   To address this difficulty of our 

current (Weierstrass) calculus the author developed the 

Democritus digital and finite decimal differential calculus 

(see [30] Kyritsis K. 2019 , [31] Kyritsis K. 2017  , [32] 

Kyritsis K. 2022) In this finite calculus, we define concepts, 

of seemingly infinitesimal numbers (they are finite), 

seemingly infinite numbers (they are finite) and feasible 

finite numbers, so as to develop a differential and integral 

calculus up to decimal numbers with only a fixed finite 

number of decimals (decimal density of level of precision). 

Different levels of precision give different definitions of 

continuity and smoothness.   These multi-precision levels 

Democritus calculi is what an applied mathematician is doing 

when applying the Newton-Leibniz and Weierstrass calculus 

with the infinite (and infinitesimals). The Democritus 

calculus strictly speaking is not logically equivalent to the 

Newton-Leibniz calculus or to the Weierstrass calculus. E.g. 

classical Weisstrass calculus continuity corresponds in the 

Democritus calculus of being continuous not only to a single 

precision level but to all possible personal levels.  Because in 

the Democritus calculus continuity and smoothness is only 

up to a precision level, the turbulence can be defined in a way 

that in Weierstrass calculus cannot be defined. In a turbulent 

flow, the flow in the Democritus calculus may be smooth 

relative to a precision level but non-smooth relative to a 

coarser precision level (or the opposite) in the Weierstrass 

calculus this is impossible.  Furthermore, now when a 

computer scientist is experimenting with computers to 

discover if in a flow there will be a blow up or not in finite 

time, within the Democritus calculus and its Navier-Stokes 

equations he will have an absolute proof and criterion. If the 

vorticity will become seemingly infinite (still finite) in a 

feasible finite time interval there is a blow up. If it becomes 

only feasible finite in any feasible finite time interval, there is 

no blow up.  Of course blow-up in the Democritus calculus is 

not equivalent with a blow up in the Weisstrass calculus. 

Finally, with the Democritus calculus the applied 
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mathematician acquires the subjective quality of congruence. 

In other words, what he thinks, sais and writes is what he acts 

and applies. With the infinite in the ontology of calculus this 

is not possible and it is unavoidable the incongruence, 

because infinite cannot be acted in the applications in a 

material reality where all are finite.  

 It is known that when the calculus (which is used in 

modelling the fluids) was discovered by Newton and Leibniz, 

the original mathematical ontology was utilizing 

infinitesimals, smaller than any positive real numbers but not 

zero. Then later with Weierstrass calculus this ontology was 

abandoned, we restricted ourselves to the real numbers only, 

and we utilized limits and convergence. So when we take the 

law of force (momentum conservation) of Newton F=m*γ on 

a solid finite particle and then take the limit by shrinking it to 

a point to derive the Euler and Navier-Stokes equations, we 

must not forget, that originally the limit was not to a point but 

to an infinitesimal solid body particle. This is not the same! 

In [32] Kyritsis K. 2022, I have restored with strict 

mathematics the original ontology of infinitesimals of 

Newton-Leibniz , utilizing algebra of intervals (or inverses of 

ordinal numbers as J. H Conway has also done with the 

surreal numbers see [9] J H. Conway and [33]  K Kyritsis 

ordinal real numbers 1,2,3). Then we have a two-density 

calculus with two different linearly ordered fields, a) the real 

numbers b) a larger such field of Newton-Leibniz fluxions, 

with infinitesimal, finite and infinite numbers. The topologies 

of convergence of a solid finite particle by shrinking it to a 

point or to an infinitesimal solid particle are different! And 

this affects the issue of vorticity and angular velocity of 

infinitesimal particle. When I was a University student, and I 

was learning about the equations of Navier-Stokes, I was 

satisfied to see that the simple law of force (momentum 

conservation) of Newton F=m*γ was converted to the 

Navier-Stokes equations, but I was shocked to realize, that 

the rest of the independent information about the motion of 

the solid finite particle, namely its rotational momentum, was 

not shrunk to an angular velocity ω of the infinitesimal solid 

particle. So we see now that this is not reasonable in the 

Weisstrass calculus, which shrinks to a point, while it is 

possible in the older Newton-Leibniz calculus which shrinks 

to an infinitesimal solid body, and would lead to a different 

model of flows of fluids, with independent initial data of 

angular velocities, besides linear velocities and besides the 

derived from them vorticity.  

In the current solution of the millennium problem, we may 

observe a 20%-80% Pareto rule. In other words, more than 80% 

of the equations utilized as governing equations of the flow, 

are those derived from fundamental theorem of the calculus, 

(in the form of Stokes theorem, divergence theorem, green 

theorem, Helmholtz-kelvin theorem, fundamental theorem of 

calculus etc.) and less that 30% the PDE of the Navier-Stokes 

equations. So I might say that the main equations governing 

the phenomenon of flow is the machinery of exterior 

differential algebra (wedge product) differentiation 

(differential forms) etc. rather than simply PDE equations. 

For reasons of simplicity and because we are restricted here 

to only 3 spatial dimensions, we do not utilize the symbolism 

of the wedge products and differential forms, but only the 

Stokes theorem, divergence theorem etc.   

 These versions of the fundamental theorem of the calculus 

(Stokes theorem etc.) lead to an extension of the law of 

momentum conservation of 3D fluid parts to a law of 1D line 

density (rotatory) momentum conservation (Theorem 3.1) 

and law of 2D surface density (rotatory) momentum 

conservation (Theorem 3.2). These laws are very valuable for 

infinite divisible fluids so valuable as the existence of finite 

atoms in the atomics structured fluids. Without these extra 

laws of momentum density conservation, we would have no 

hope to solve the millennium problem.  As T. Tao had 

remarked, only an integral of 3D energy conservation and an 

integral of 3D momentum conservation is not adequate to 

derive that momentum point densities ρ•u, or energy point 

densities (1/2)ρ•u2  will not blow up.  

Besides the forgotten conservation law of finite particles, 

which unfortunately we cannot utilize in the case of infinite 

divisible fluids to solve the millennium problem, there are 

two more forgotten laws of conservation or invariants. 

The first of them is the obvious that during the flow, the 

physical measuring units dimensions (dimensional analysis) 

of the involved physical quantities (mass density, velocity, 

vorticity, momentum, energy, force point density, pressure, 

etc.) are conserved. It is not very wise to eliminate the 

physical magnitudes interpretation and their dimensional 

analysis when trying to solve the millennium problem, 

because the dimensional analysis is a very simple and 

powerful interlink of the involved quantities and leads with 

the physical interpretation, to a transcendental shortcut to 

symbolic calculations. By eliminating the dimensional 

analysis, we lose part of the map to reach our goal. 

 The 2nd forgotten conservation law or invariant, is related to 

the viscosity (friction). Because we do know that at each 

point (pointwise), the viscosity is only subtracting kinetic 

energy, with an irreversible way, and converting it to thermal 

energy, (negative energy point density), and this is preserved 

in the flow, (it can never convert thermal energy to 

macroscopic kinetic energy), we know that its sign does not 

change too, it is a flow invariant, so the integrated 1D or 2D 

work density is always of the same sign (negative) and as 

sign, an invariant of the flow.  The conservation or 

invariance of the sign of work density by the viscosity 

(friction) is summarized in the lemma 3.1 below.   

 Finally we must not understate the elementary fact that the 

force densities Fp due to the pressures p,       

 𝐹𝑝 = −∇𝑝    are conservative, irrotational vector field, and 

they do not contribute to the increase or decrease of the 

rotatory momentum and vorticity of the fluid during the flow.  

Because of this we get that the conserved 1D and 2D densities 

of momentum in Theorems 3.1 and 3.2 are only of the 

rotatory type.         

Anyone who has spent time to try to prove existence of Blow 

up or regularity in the various physical quantities of the fluid 

like velocity, vorticity, acceleration, force density, 

momentum, angular momentum, energy etc. he will observe 

that in the arguments the regularity and uniform in time 

boundedness propagates easily from derivatives to lower 

order of differentiation, while the blowup arguments 

propagate easily from the magnitudes to their derivatives. 

The converses are hard in proving. This is due to the usual 

properties of the calculus derivatives and integrals. The hard 

part of the proofs, must utilize forms of the fundamental 

theorem of the calculus like Stokes theorem, divergence 

theorem etc.  
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 Based on the above remarks about what is not very well 

understood with Navier-Stokes equations I decided that 

elementary geometric calculus should be the appropriate 

context  to solve the millennium problem, and this I did 

indeed.  

Here in the next we apply the idea that the most valuable 

equations that govern he flow of the fluid are not literally the 

Navier-Stokes equations but the invariants or semi-invariant 

properties of the flow, derived from the abstract 

multi-dimensional fundamental theorems of calculus, in the 

forms of divergence theorems, Stokes theorems, Greens 

theorems etc. Actually this is the mechanism of 

wedge-products and abstract algebra of differential forms 

which is beyond classical partial differential equations. We 

do not utilize though definitions and symbolism of 

wedge-products and differential forms in his paper so as to 

keep it elementary and easy to read. The main discovery of 

this paragraph is the Helmholtz-Kelvin-Stokes theorem  3.3 

in the case of viscous flows and the resulting general 

no-blow-up theorem 3.4 for the viscous flows without 

external forcing.  A blow-up when it occurs, it will occur at 

least as blow-up of the vorticity, or of ρ•ω. If we discover 

average value invariants of the flow with physical units 

dimensions ρ•ω, that in the limit can give also the point value 

of the ρ•ω, and that are invariants independent from the 

size of averaging, it is reasonable that we can deduce 

conclusions, if the point densities can blow-up or not.  

 Theorem 3.1 The Helmholtz-Kelvin-Stokes theorem in the 

case of inviscid Euler equations flows without external 

force or homogeneous case. (Α 1D line density of rotatory 

momentum, conservation law). 

Let initial data in R3 so that they guarantee the existence of a 

unique smooth solution to the Euler equation in a local time 

interval [0,T]. Then at any time t ∈ [0,T]  the circulation Γ(c) 

of the velocities on a closed smooth loop is equal to the flux of 

the vorticity on smooth surface S with boundary the loop c, 

and is constant and preserved as both loop and surface flow 

with the fluid. In symbols (ρ=1 is the density of the 

incompressible fluid) 

𝛤𝑐(𝑡) = 𝜌 ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

𝜌 ∬ 𝜔 • 𝑑𝑠
𝑆

                      (eq. 3.1) 

Proof:  See [34] Majda, A.J-Bertozzi, A. L. 2002, 

Proposition 1.11 and Corollary 1.3 , in page 23.  The proof is 

carried actually by integrating the Euler equations on a loop c 

and utilizing that the integral of the pressure forces (densities) 

defined as –∇p are zero as it is a conservative (irrotational) 

field of force (densities). Then by applying also the Stokes 

theorem that makes the circulation of the velocity on a loop 

equal to the flux of the vorticity on a smooth surface with 

boundary the loop (see e.g. Wikipedia Stokes theorem 

https://en.wikipedia.org/wiki/Stokes%27_theorem) the claim 

is obtained.      QED. 

We may notice that this circulation and surface vorticity flux 

has physical measuring units 

[ρ]*[ω]*[s]^2=[m]*[s]^(-3)*[t]^(-1)[s]^2=[m]*[s]^(-1)*[t]^(

-1) =[moment_of_inertia]*[ω]*[s]^(-3) thus angular 

momentum point density. While the ρ*ω has physical 

measuring units dimensions [ρ]*[ω]=[m]*[s]^(-3]*[t]^(-1) 

=[moment_of_inertia]*[ω]*[s]^(-2) thus 2nd spatial 

derivative of rotational momentum of point density  .  

A blow-up when it occurs, it will occur at least as blow-up of 

the vorticity, or of ρ•ω. If we discover bounded average value 

invariants of the flow with physical units dimensions ρ•ω, 

that in the limit can give also the point value of the ρ•ω, and 

that are invariants and bounded independent from the size of 

averaging, it is reasonable that we can deduce conclusions, if 

the point densities can blow-up or not.  

Here we convert the surface vorticity flux invariant of 

Helmholtz-Κelvin-Stokes to one with 3D integration which 

will be more convenient in the arguments as the volumes are 

preserved by incompressible flows and most important, the 

integration is 3-dimensional which can be utilized to define 

average values of the vorticity (flux) on 3D finite particles..  

We will prove at first a lemma about the 3D volume integral 

of Theorem 3.2, and convergence of average values of 

vorticity, based on this 3D integral,  to point values to 

vorticity. 

We define an average value for the volume 3D integral of 

vorticity flux.  

Definition 3.1  We define as average value on ball in   of the 

vorticity ω , denoted by �̅�𝐵 ,the unique constant value of the 

vorticity on the interior of the ball that would give the same 

3D  flux of vorticity on  the ball,  ρ ∫ ∬ �̅� • 𝑑𝑠
𝑆

𝜋

0
 = 

ρ∫ ∬ 𝜔 • 𝑑𝑠
𝑆

𝜋

0
.   This average value �̅� of the vorticity is of 

course the   

||�̅�𝐵|| = |
𝜌 ∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
|                                      (eq.3.2) 

 and its direction is that of the vertical axis of the ball Β                           

Where |Β|=(4/3)*π*r3  is the volume of the ball B, of radius r,  

and | |𝜔̅̅ ̅
𝐵||  is the Euclidean norm of the vector.  A more 

detailed symbolism of the average vorticity is the 

�̅�(𝑥𝑡 , 𝑡)𝐵(𝑟,𝑡) 

The numerator of this average value of vorticity has also the 

interpretation of rotational momentum average axial 

density on the ball B and relative to the axis a. A reason for 

this is that the physical dimensions of measuring units of this 

magnitude is that of rotational momentum line density. This 

is because the rotational momentum point density has 

physical dimensions 

[moment_of_inertia]*[ω]*[s]^(-3)=[m][s]^(-1)[t]^(-1), 

where [m] for mass, [s] for distance, [t] for time, and this 

magnitude has physical units dimensions, ([ρ][ω][s]^3 

)=([m][s]^(-1)[t]^(-1))[s]^(1),  thus rotational momentum 

point density integrated on  1-d line axial density. And the full 
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quotient therefore has physical units dimensions 

[m][s]^(-3)[t]^(-1) )=[ρ][ω].  

Lemma 3.1 Let a ball B of radius r and center x, and the 

average vorticity �̅�𝐵 in it as in the Definition 4.1 so that its  

axis a that defines the average vorticity is also the axis of the 

point vorticity ωx at the center x of the ball.   By taking the 

limit of shrinking the ball to its center x , (r->0), the average 

vorticity �̅�𝐵  converges to the point vorticity ωx  . In symbols 

𝑙𝑖𝑚
𝑟→0

 �̅�𝐵 = ωx . If the axis a of the ball to estimate the average 

vorticity is not the axis of the point vorticity, then the limit of 

the average vorticity will be equal to the projection 

component ωa(x,t) of the point vorticity ω(x,t) on the axis a.  

Proof: We simply apply an appropriate 3-dimensional 

version, with iterated integrals of the 1-dimensional 

fundamental theorem of the calculus.          QED. 

Remark 3.1. Such a limit of 3D body to a point is the same as 

the limit that from the Newton equation of force F=mγ, we 

derive the Navier-Stokes equations.  

Since the flow of a fluid under the Euler or Navier-Stokes 

equations, with or without smooth Schwartz external force is 

a smooth and continuous mapping F , then such a limit will be 

conserved to still be a valid limit during the flow. In other 

words  F(𝑙𝑖𝑚
𝐵→0

 �̅�𝐵)= 𝑙𝑖𝑚𝐹(
𝐹(𝐵)→0

 �̅�𝐵)                            

and B->0 , implies Ft(B)->0. We define of course in an 

obvious appropriate way the average vorticity Ft(�̅�𝐵) as in 

definition 3.1, for the flow-image of a ball B after time t. 

Simply the disc surfaces will no longer be flat, and the loop 

no longer perfect circle. But the integrals in the definition will 

be the same. Constancy of the average vorticity on such 

surfaces will only be, up to its Euclidean norm and vertical 

angle to the surface. We must notice though that although a 

relation F(𝑙𝑖𝑚
𝐵→0

 �̅�𝐵)= 𝑙𝑖𝑚𝐹(
𝐵→0

 �̅�𝐵)   would hold ,  the value of 

this limit will not be the vorticity  ωF(x)   at the flowed point! 

Unfortunately, the Lemma 3.2 holds not on arbitrary 3D 

shapes and arbitrary integration parametrization on it, but 

only when we start with standard 3D shapes like a sphere, a 

cylinder a cube etc. and the normal parametrization on them. 

The reason is that we need to take in to account in a normal 

way the average vorticity around a point in an unbiased way, 

that an arbitrary shape will not give.                        

Another important conservation point is that the relation of 

the vorticity ωx  being tangent to an axis a (or general curve) is 

conserved during inviscid Euler flows. It is the conservation 

of vorticity lines (See [34]  Majda, A. J. –Bertozzi, A. L.  

2002, Proposition 1.9 in page 21). Therefore for inviscid (and 

incompressible) flows the axis of the initial point vorticity 

ω(0) , which is also the axis to estimate the average vorticity 

on the ball B, will still be after the flow and at time t, tangent 

to the point vorticity ω(t).  But for general viscous flows this 

will not be so. Notice that such limits of average values 

would not work for the circulation of the velocity on a loop, 

as in the application of the iterated 1-dimensional 

fundamental theorem of the calculus would require 

boundaries of the integration.  

Lemma 3.2 Let the Euler or Navier-Stokes equations of 

incompressible fluids in the non-periodic or periodic setting, 

with smooth initial data and we assume that the initial data in 

the periodic or non-periodic case, are so that the supremum 

of the vorticity is finite denoted by Fω  on all 3-space at time 

t=0. Let the average vorticity, or average rotational 

momentum density, defined as in Definition 4.1 but with 

integration parametrization one any smooth 3D shape B of 

any size, that of course  both as a diffeomorphic image of a 

spherical ball with its spherical coordinates integration 

parametrization. Then the average vorticity or average 

rotational momentum density is also upper bounded by the 

Fω.  In symbols  

 ||�̅�𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
| ≤         Fω                 (eq. 3.3)  

Proof: Since ||ω|| <= Fω = ||(ω/||ω||)||Fω   in the 

flux-integration we have for the inner product of  ω and the 

unit area vector n, (ω, n)<= ((ω/||ω||)Fω ,n)<= Fω . Thus in the 

integration we may factor out the Fω 

|
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |  ≤ |

∫ ∬ 𝐹𝜔𝑑𝑠𝑑𝜃𝑆
𝜋

0

|𝛣|
 |  =   Fω|

∫ ∬ ds𝑑𝜃S
π

0

|Β|
|=  Fω 

|
|𝛣|

|Β|
| = Fω  .         QED.   

Lemma 3.3 The viscosity sign forgotten invariant. 

If we integrate the force point density of the viscosity, over a 

line (1D work density) or surface (2D work density) or a 

volume (work) its sign will remain the same during the flow. 

 

Proof: Because we do know that pointwise, the viscosity is 

only subtracting kinetic energy, with an irreversible way, and 

converting it to thermal energy,  (negative energy point 

density), and this is preserved in the flow, (it can never 

convert thermal energy to macroscopic kinetic energy), we 

deduce that its sign does not change too it is a flow invariant , 

so the integrated 1D or 2D work density is always of the same 

sign (negative) and as sign an invariant of the flow.                                                   

QED.   

 Theorem 3.2 A 3-dimensionl integral version of the 

Helmholtz-Kelvin-Stokes theorem. (Α 2D surface density 

of rotatory momentum, conservation law). 

Let initial data in R3 so that they guarantee the existence of a 

unique smooth solution to the Euler equation in a local time 

interval [0,T]. Then at any time t ∈ [0,T] let a sphere B of 

radius r (as in figure 4.) considered as a finite particle, then 

the azimuthal θ-angle, θ-integral on a meridian in spherical 

coordinates of the circulations Γ(c) of the velocities on all 

closed longitude smooth loops parallel to the equatorial loop 

is equal to the same θ-integral of the surface flux of the 

vorticity on smooth flat disc surfaces S with boundary the 

loops c (as in figures 4.2) , and both integrals are constant 

and preserved as both surface and volume integrals during 
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the  flow with the fluid. In symbols (ρ=1 is the density of the 

incompressible fluid) 

𝜌 ∫ ∮ 𝑢𝑑𝑙𝑑𝜃 =
𝑐=𝜕𝑆

𝜋

0
𝜌 ∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃

𝑆

𝜋

0
                 (eq. 3.4) 

 

After (eq. 3.2)  || �̅�𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |           it holds also 

for t ∈ [0,T]  

|| 𝜔̅̅ ̅̅ ̅
𝐵(0)|| = || �̅̅̅�𝐵(𝑡)||                                          (eq. 3.5) 

Proof: We simply take the θ-azimuthal angle θ-integral of 

both sides of the equation 3.1 in the theorem 3.1. Both sides 

are preserved during the flow and so is their θ-integrals too. 

 We notice that the measuring physical units dimensions 

 of the conserved quantity 𝜌 ∫ ∮ 𝑢𝑑𝑙𝑑𝜃 
𝑐=𝜕𝑆

𝜋

0
is 

[mass]*[length]^(-3)*[velocity]*[length]^(2)= 

[mass]*[length]^(-2)*[velocity] thus integration in  

2-dimension surface of momentum 3D-point-density, or 

equivalently  momentum 1D density    QED 

Theorem 3.3. The Helmholtz-Kelvin-Stokes theorem in the 

case of viscous Navier-Stokes equations flows without 

external force (homogeneous case). 

Let initial data in R3 so that they guarantee the existence of a 

unique smooth solution to the Navier-Stokes equation with 

viscosity coefficient ν>0 , in a local time interval [0,T]. Then 

at any time t ∈ [0,T]  the circulation Γ(c) of the velocities on 

a closed smooth loop is equal to the flux of the vorticity on 

smooth surface S with boundary the loop c, and is decreasing 

as both loop and surface flow with the fluid. In symbols (ρ=1 

is the density of the incompressible fluid) 

𝜌 ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

𝜌 ∬ 𝜔 • 𝑑𝑠
𝑆

                                           (eq. 3.1) 

And for t∈[0,T]     

  ∮ 𝑢(0)𝑑𝑙 > ∮ 𝑢(𝑡)𝑑𝑙 
𝑐=𝜕𝑆𝑐=𝜕𝑆

                                         (eq. 3.6) 

and similarly for the 3D volume integration as in Theorem 

3.2 

 for t ∈ [0,T]  

 𝜌 ∫ ∬ 𝜔(0) • 𝑑𝑠𝑑𝜃
𝑆

𝜋

0
> 𝜌 ∫ ∬ 𝜔(𝑡) • 𝑑𝑠𝑑𝜃

𝑆

𝜋

0
      (eq. 3.7) 

After (eq. 3.2) || �̅�𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |   it holds also for 

initial finite spherical      particles    for t ∈ [0,T] 

  || �̅̅̅�𝐵(0)|| > || �̅̅̅�𝐵(𝑡)||                                                  (eq. 3.8) 

Proof: Again The (eq. 3.1) is nothing else of course but the 

Stokes theorem. 

We shall utilize here the next equation (See [34] Majda, 

A.J-Bertozzi, A. L. 2002, (eq 1.61) , in page 23.) in the case 

of viscous incompressible  flows under the Navier-Stokes 

equations  

𝑑

𝑑𝑡
𝛤𝑐(𝑡) =

𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 = 𝜈 ∮ ∆𝑢𝑑𝑙 =

𝑐(𝑡)𝑐(𝑡)
− 𝜈 ∮ 𝑐𝑢𝑟𝑙 𝜔𝑑𝑙

𝑐(𝑡)
                                                                                                                                                           

,                                                                           (eq. 3.9) 

This equation is derived after applying as in Theorem 3.1 the 

loop integral of the circulation at the Navier-Stokes equations 

instead at the Euler equations taking the material-flow 

derivative outside the integral, and eliminating the 

conservative, irrotational part of the pressure forces as 

gradient of the pressure. Here the viscosity is not zero thus 

the left hand of the equations is not zero as in the case of 

Euler equations, where it is conserved. The right hand side 

is nothing else than the loop work density of the point 

density of the force of viscosity at any time t.  And as the 

viscosity always subtracts energy, this right hand side 

work density is always negative during the flow. We 

notice after the Lemma 3.3   that the viscosity force point 

density  keeps constant sign on the trajectory path as orbital 

component during the flow and relative to the velocity on the 

trajectory. It is always as orbital component opposite to the 

motion and represents the always irreversible energy 

absorption and linear momentum and angular momentum 

decrease. Similarly, for any rotation of the fluid e.g. with axis 

the trajectory path. The viscosity force point density as 

component on the loop is always opposite to the rotation, it 

never converts thermal energy to add to linear or angular 

momentum. This opposite to motion monotonicity of the 

viscosity force density applies to the Navier-Stokes equations 

but also as opposite to rotation monotonicity in the vorticity 

equation 
𝐷𝜔

𝐷𝑡
= 𝜔 ∗ ∇u+ν∆𝜔  (see [34] Majda, A.J-Bertozzi, 

A. L. 2002, (eq 1.33 ) and (eq 1.50 )  in pages 13 and 20 ) .  So 

if we choose a direction of the loop so that the circulation 

integral on the right hand side is positive then this will have 

the same sign during the flow (although different absolute 

value), and will make the left hand side of the (eq. 4.9) 

always negative during the flow. But this means from the 

left-hand side of the equation that the circulation of the 

velocity on the loop is always decreasing during the flow.  
𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 < 0

𝑐(𝑡)
   for any t in [0,T]                                                                   

(eq. 3.10) 

Thus (eq. 3.6) is proved, and (eq. 3.7) is direct consequence.    

To prove the equation 3.8 we notice that due to 

incompressibility, the flow is volume preserving, thus 

|B(x(t))|=|B(x(0)| , and by dividing both sides of the equation 

4.7 , and after the definition   

 || �̅�𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |                              it holds also 

    for t ∈ [0,T]  
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|| ω̅̅̅B(0)|| > || ω̅̅̅B(t)||                                           (eq. 3.8)      QED. 

Theorem 3.4   The no blow-up theorem in finite or infinite 

time in the Euler, Navier-Stokes, periodic or non-periodic 

and homogeneous cases.  

Let the Euler or Navier-Stokes equations of incompressible 

fluids in the non-periodic or periodic setting (homogeneous 

case with no external forces), with  

a) smooth initial data and whatever else hypothesis is 

necessary so as, also to guarantee the existence and 

uniqueness of smooth solutions to the equations locally in 

time [0, T). 

 b) Furthermore we assume that the initial data in the 

periodic or non-periodic case, are such that the supremum of 

the vorticity, denoted by Fω , is finite at t=0. (In the periodic 

case, smoothness of the initial velocities is adequate to derive 

it, while in the non-periodic setting smooth Schwartz initial 

velocities is adequate to derive it) 

Then it holds that there cannot exist any finite or infinite time 

blow-up at the point vorticities during the flow.  

Proof: The proof will by contradiction. The main idea of the 

proof is to utilize that in the case of a  blow-up the vorticity 

will converge to infinite, so it will become larger than an 

arbitrary  lower bound M+Fω , Μ>0 , Fω  >0 and by 

approximating it with average flux vorticity of a 3D spherical 

particle, and tracing it back at the initial conditions where all 

is bounded by Fω ,utilizing the semi-invariance of the average 

vorticity that we have proved, we will get that Fω  > M+Fω  . 

So let us assume that there is a blow up, in a finite time or 

infinite time T* , with the hypotheses of the theorem 4.2. Then 

from the Theorem 2.2 and (eq. 2.12 ) which is the 

well-known result of the control of regularity or blow up by 

the vorticity we get that , 

limt→T∗ ∫ |ω(. , τ)|L∞    dτ = +∞
T

0
                                  (eq. 2.12) 

We conclude that there  will exist an infinite  sequence of 

points {xtn  , n natural number, 0<tn<T*, limn→∞𝑡𝑛 = 𝑇∗ } so 

that the point vorticity 𝜔(𝑥𝑡𝑛)   blows-up, or equivalently  

limn→∞𝜔(𝑥𝑡𝑛) = +∞ . We do not need to assume them on 

the same trajectory. Therefore, for every positive arbitrary 

large real number M0  , there is a n0  such that for all natural 

numbers n> n0 , it holds that ω(xtn)>M0 .  We choose M0=M00 

+Fω  , for an arbitrary large positive number M00 . So  

 ω(xtn)>M00+Fω                                                              (eq. 3.11)  

Now we approximate this point vorticity with an average flux 

vorticity on a 3D particle after Definition 3.1 , theorem 3.2 

and Lemma 3.1.  

Let a spherical ball particle B(r, xtn,)  as in theorem  3.2. with 

center xtn  and radius r>0. After Definition 3.1 ,theorem 3.2 

and Lemma 3.1. we have that  

lim
r→0

 ω̅B = ωx(tn) ,         With 

||ω̅̅ ̅̅
B|| = |

∫ ∬ ω•ds𝑑𝜃S
2π

0

|B(r,x(tn))|
 |                                                 (eq. 3.2) 

Therefore for arbitrary small positive number ε>0 , there is 

radius R, with  

  �̅�𝐵(𝑅) > 𝜔𝑥(𝑡𝑛) − ε        

or |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

2𝜋
0

|B(r,x(tn))|
| > 𝜔𝑥(𝑡𝑛) − ε                                     (eq. 3.12) 

Thus after (eq. 3.11)   

   |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

2𝜋
0

|B(R,x(tn))|
| > 𝑀00 + 𝐹𝜔 − ε                                 (eq. 3.13) 

Now we trace back on the trajectory of the xtn   the parts of the  

(eq. 3.13) 

At initial time t=0. We use the advantage that as the 

incompressible flow is volume preserving, the |B(R, x0,)|=  

|B(R, x(tn))|. We also utilize theorems 3.2, 3.3, and (eq. 

3.5), (eq. 3.8) , which prove that at the initial conditions t=0 , 

this average vorticity is the same or higher  than that at tn  . 

|
∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃

𝑆

2𝜋

0

|B(R, x(0))|
| ≥      |

∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃
𝑆

2𝜋

0

|B(R, x(tn))|
| 

We conclude that  

|
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

2𝜋
0

|B(R,x(0))|
| > 𝑀00 + 𝐹𝜔 − ε                                (eq. 3.14) 

From the  (eq. 3.14) and (eq. 3.3) of Lemma 3.2 we conclude  

that  

Fω>𝑀00 + 𝐹𝜔 − ε                                                     (eq. 3.15)  

But M00   was chosen in an independent way from ε>0 to be 

arbitrary large, while ε>0 can be chosen to be arbitrary small. 

Therefore, a contradiction. Thus there cannot be any blow-up 

either in finite or infinite time T*.          QED.  

Remark 3.2. Infinite initial energy. We must remark that 

we did not utilize anywhere that the initial energy was finite, 

only that the vorticity initially has finite supremum. Thus this 

result of no-blow-up can be with infinite initial energy too. 
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But when applying it to the millennium problem we do have 

there also that the initial energy is finite.  

Remark 3.3. A strange blow up for any time t>0 of 

initially smooth data. We might be curious to ask the 

question if it is possible, starting with zero initial velocities 

and pressures, to create an artificial blow-up only with 

external forcing. A good candidate is the perfect circular 

vortex, where all the trajectory paths are perfect circles, 

which is known that it is an instance of the solution of the 

Euler and Navier-Stokes equations. We can formulate the 

circular vortex in 3D with cylindrical or spherical 

coordinates. But for simplicity we will formulate it in 2 

dimensions, in spite the fact that we do know that in 2D 

dimensions there cannot be a blow up under the hypotheses 

of the millennium problem. So with an external forcing also 

as perfect circular vortex that in polar coordinates are as 

follows 

Fr=0, Fθ=2ρ/(1+exp(r))                                                   (eq 3.16)  

we raise the absolute initial rest within finite time t the flow to 

a circular vortex which has velocities in polar coordinates  

ur=0, uθ=2t/(1+exp(r))                                                   (eq 3.17)  

Now it is elementary to show that 

1) this flow follows the Euler and Navier-Stokes equations 

2) Because curlω=0 , the viscosity has no effect it is as if an 

inviscid flow.  

If ω is the vorticity then it is calculated in polar coordinates at 

the verical z-axis by the formula   

   𝜔𝑧 =
𝑢𝜃

𝑟
+

𝜕𝑢𝜃

𝜕𝑟
−

𝜕𝑢𝑟

𝑟𝜕𝑟
                                          (eq. 3.18) 

4) Although the velocity has smooth polar coordinates, the 

vorticity is in steady blow-up (singularity) at r=0 for any t>0. 

That is although at t=0 the initial data are smooth, for any t>0, 

there is a blow-up. 

5) The 4) is so because the external forcing although it has 

smooth polar coordinates, in the Cartesian coordinates, it has 

curl(F)=+∞, at r=0, thus it does not satisfy the smooth 

Schwartz condition external forcing of the millennium 

problem.  

 

IV.  THE SOLUTION OF THE 4TH CLAY MILLENNIUM PROBLEM 

ABOUT THE NAVIER-STOKES EQUATIONS IN THE 

NON-PERIODIC HOMOGENEOUS CASE. 

We are now in a position to prove the Conjectures (A) and 

(B) , non-periodic and periodic setting , homogeneous case of 

the Millennium problem. 

(Millennium Homogeneous Case A) Existence and 

smoothness of Navier-Stokes solution on R3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free 

vector field satisfying (2.4). Take f(x,t) to be identically zero. 

Then there exist smooth functions p(x,t) , u(x,t) on R3x[0,+∞) 

that satisfy (2.1), (2.2), (2.3) , (2.6) , (2.7).  

Proof: All the hypotheses of the no-blow-up theorem 4.4 are 

satisfied. After remark 2.4, with the current case of the 

millennium problem there exist indeed a unique smooth 

solution locally in time [0,t] (after A.J. Majda-A.L. Bertozzi 

[34],Theorem 3.4 pp 104, Local in Time existence of 

Solutions to the Euler and Navier-Stokes equations) . And 

also the Schwartz condition of the initial data, guarantees that 

the supremum of the vorticity, is finite at t=0. (see Remark 

2.1) Therefore we conclude by Theorem 4.4  that there cannot 

be any finite or infinite time blow-up. Thus from Theorem 

2.2 Supremum of vorticity sufficient condition of 

regularity we conclude that this local in time [0,t] solution , 

can be extended in [0,+∞).        QED 

V.  EPILOGUE. 

In this paper it is has been proved the regularity (no 

blow-up) of the Navier-Stokes equations in the 

non-periodic setting without external forcing, and therefore 

it has been solved the Millennium Homogeneous Case A 

of the  4th Clay Millennium problem.  
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