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 

AbstractIn this paper it is solved the 4th Clay Millennium 

problem about the Navier-Stokes equations, in the direction of 

regularity. It is done so by utilizing the hypothesis of finite 

initial energy The final key result to derive the regularity is that 

the pressures are bounded in finite time intervals, as proved 

after projecting the bounded by the conservation of energy, 

virtual work of the pressures forces on specially chosen bundles 

of instantaneous paths. It is proved that not only there is no 

Blow-up in finite time but not even at  the  time T=+∞. 

Index Terms—Incompressible flows, regularity, 

Navier-Stokes equations, 4th Clay millennium problem.  
Mathematical Subject Classification: 76A02 

 

I. INTRODUCTION 

The famous problem of the 4th Clay Mathematical 

Institute as formulated in [19] FEFFERMAN C. L. 2006  CL 

2006 is considered a significant challenge to the science of 

mathematical physics of fluids, not only because it has lasted 

the efforts of the scientific community for decades to prove it 

(or converses to it) but also because it is supposed to hide a 

significant missing perception about the nature of our 

mathematical formulations of physical flows through the 

Euler and Navier-Stokes equations. 

When the 4th Clay Millennium Problem was formulated in 

the standard way, the majority was hoping that the regularity 

was also valid in 3 dimensions as it had been proven to hold 

in 2 dimensions. 

The main objective of this paper is to prove the regularity 

of the Navier-Stokes equations with initial data as in the 

standard formulation of the 4
th

 Clay Millennium 

Problem. (see PROPOSITION 5.2 (The solution of the 4
th

 

Clay Millennium problem).It is proved that not only 

there is no Blow-up in finite time but not even at the time 

T=+∞. 

The problem was solved in its present form during the 

spring 2017 and was uploaded as a preprint in February 2018 

(see [28] KYRITSIS. K. Feb 2018).  

The main core of the solution is the paragraphs 4, a new 

sufficient conditions of regularity is proved based on the 

pressures and paragraph 5, where it is proven that the 

pressures are bounded in finite time intervals, which leads 

after the previous sufficient conditions to the proof of the 

regularity of the Navier-Stokes equations.  The paragraph 2 is 

devoted to reviewing the standard formulation of the 4th Clay 

Millennium problem, while the paragraph 3 is devoted in to 

collecting some well-known results that are good for the 

reader to have readily available to follow the later arguments.   
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According to[8] CONSTANTIN P.  2007 “..The blow-up 

problem for the Euler equations is a major open problem of 

PDE, theory of far greater physical importance that the 

blow-up problem of the Navier-Stokes equation, which is of 

course known to non-specialists because of the Clay 

Millennium problem…” For this reason, many of the 

propositions of this paper are stated for the Euler equations of 

inviscid flows as well.  

 

II. THE STANDARD FORMULATION OF THE CLAY 

MATHEMATICAL INSTITUTE 4TH
 CLAY MILLENNIUM 

CONJECTURE OF 3D REGULARITY AND SOME DEFINITIONS. 

 

In this paragraph we highlight the basic parts of the 

standard formulation of the 4th Clay millennium problem, 

together with some more modern, since 2006, symbolism, by 

relevant researchers, like T. Tao.  

 

In this paper I consider  the conjecture (A) of C. L. [19] 

FEFFERMAN 2006 standard formulation of the 4
th

 Clay 

millennium problem , which I identify throughout the paper 

as the 4
th

 Clay millennium problem. 

The Navier-Stokes equations are given by  (by R we 

denote the field of  the  real numbers, ν>0 is the density 

normalized viscosity coefficient ) 
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 with initial conditions  u(x,0)=u0(x)      x  R3   and 

u0 (x)  C∞ divergence-free vector field on R3(eq.3)  
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is the Laplacian operator. The Euler 

equations are (eq1), (eq2), (eq3) when  ν=0.  

It is reminded to the reader, that in the equations of 

Navier-Stokes, as in (eq. 1) the as the density, is constant, it is 

custom to either normalised to 1, or it is divided out from the 

left side and it is included in the pressures and viscosity 

coefficient. 

 

 For physically meaningful solutions we want to make 

sure that u0(x) does not grow large as |x|. This is set 
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by defining u0(x)  and called in this paper  Schwartz 

initial conditions  , in other words  
K

Ka

a

x xCxu  )1()( ,

0

on R3for any α and K        ..                                                                          

(eq.4 ) 

(Schwartz used such functions to define the space of 

Schwartz distributions)  

We accept as physical meaningful solutions only if it 

satisfies  

p, u C(R3 [0,))                                                                 

(eq.5 ) 

and  

Cdxtxu 


2

3

),(

  for all t>=0 (Bounded or finite 

energy)                                                                         (eq.6 ) 

The conjecture (A) of he Clay Millennium problem (case 

of no external force, but homogeneous and regular velocities) 

claims that for the Navier-Stokes equations , v>0, n=3 , with 

divergence free , Schwartz initial velocities , there are for all 

times t>0 , smooth velocity field and pressure, that are 

solutions of the Navier-Stokes equations with bounded 

energy, in other words satisfying the equations eq.1 , eq.2 , 

eq. 3, eq.4  , eq.5  eq.6 . It is stated in the same formal 

formulation of the Clay millennium problem by C. L. 

Fefferman see C. L. [19] FEFFERMAN 2006 (see page 2nd 

line 5 from below) that the conjecture (A) has been proved to 

holds locally. “..if the time internal  [0,), is replaced by a 

small time interval [0,T), with T depending on the initial 

data....”. In other words there is >T>0, such that there is 

continuous and smooth  solution  u(x,t)C(R3 [0,T)). In 

this paper, as it is standard almost everywhere, the term 

smooth refers to the space C 

 

Following [45] TAO, T 2013, we define some specific 

terminology, about the hypotheses of the Clay millennium 

problem, that will not be used in the next in the main solution 

of the 4th Clay Millennium problem, but we include it just for 

the sake of the state of the art that TAO, T, in 2013 (see 

references [45]) has created in studying this 4th Clay 

Millennium problem. For more details about the involved 

functional analysis norms, the reader should look in the 

above paper [45] TAO, T, in 2013 in the references.  

We must notice that the definitions below can apply also to 

the case of  inviscid flows, satisfying the Euler equations.  

DEFINITION 2.1 (Smooth solutions to the Navier-Stokes 

system). A smooth set of data for the Navier-Stokes system 

up to time T is a triplet (u0, f, T), where 0 < T < ∞ is a time, 

the initial velocity vector field u0 : R
3  → R3  and the forcing 

term f : [0, T] × R3  → R3  are assumed to be smooth on R3  

and [0, T] × R3  respectively (thus, u0 is infinitely 

differentiable in space, and f is infinitely differentiable in 

space time), and u0 is furthermore required to be 

divergence-free:  

∇ · u0 = 0.  

 If f = 0, we say that the data is homogeneous. 

In the proofs of the main conjecture  we will not consider 

any external force, thus the data will always be 

homogeneous. But we will state intermediate propositions 

with external forcing. Next we are defining simple 

differentiability of the data by  Sobolev spaces.  

DEFINITION 2.2 We define the H1 norm   (or enstrophy 

norm)  H1 (u0, f, T) of the data to be the quantity  

H1 (u0, f, T) := 
  )()(0 3131 RHLRH xtX

fu
 and say 

that (u0, f, T) is H1 if 

 H1 (u0, f, T) < ∞.  

DEFINITION 2.3 We say that a smooth set of data (u0, f, 

T) is Schwartz if, for all integers α, m, k ≥ 0, one has  
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Thus, for instance, the solution or initial data having 

Schwartz property implies having the  H1 property.  

DEFINITION 2.4 A smooth solution to the Navier-Stokes 

system, or a smooth solution for short, is a quintuplet (u, p, u0 

, f, T), where (u0, f, T) is a smooth set of data, and the velocity 

vector field u : [0, T] × R3  → R3  and pressure field p : [0, T]× 

R3  → R are smooth functions on [0, T]× R3  that obey the 

Navier-Stokes equation (eq. 1) but with external forcing term 

f,  
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and also the incompressibility property  (eq.2) on all of [0, 

T] × R3 ,  but also the initial condition u(0, x) = u0(x)   for all x 

∈ R3 

 

DEFINITION 2.5 Similarly, we say that (u, p, u0, f, T) is 

H1 if the associated data (u0, f, T) is H1 , and in addition one 

has  
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We say that the solution is incompletein [0,T), if it is 

defined only in [0,t] for every t<T. 

We use here the notation of mixed norms (as e.g. in TAO, 

T 2013). That is if )(k
xH

u
 is the classical Sobolev norm ,of 

smooth function of a spatial domain Ω, Ru : ,  I is a 

time interval and )(ILp
t

u
is the classical Lp-norm, then the 

mixed norm is defined  by 
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Similar instead of the Sobolev norm for other norms of 

function spaces. 

We also denote by  
)(k

xC
 , for any natural number  
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0k , the space of all k times continuously differentiable 

functions Ru : , with finite the next norm 
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We use also the next notation for hybrid norms. Given two 

normed spaces X, Y on the same domain (in either space or 

time), we endow their intersection YX  with the norm  

YXYX
uuu 


:

. 

In particular in the we will use the next notation for 

intersection functions spaces, and their hybrid norms.  

)()(:)( 12   IHLIHLIX k

xx

k

xt

k

. 

We also use the big O notation, in the standard way, that is 

X=O(Y) means  

CYX  for some constant C. If the constant C depends 

on a parameter s, we denote it by Cs  and we write X=Os(Y). 

We denote the difference of two sets A, B by A\B. And we 

denote  Euclidean balls 

by 
}:{:),( 3 raxRxraB 

, where |x| is the 

Euclidean norm.  

With the above terminology the target  Clay millennium 

conjecture in this paper can be restated as the next 

proposition 

The 4
th

 Clay millennium problem (Conjecture A) 

(Global regularity for homogeneous Schwartz data). 

Let (u0, 0, T) be a homogeneous Schwartz set of data. Then 

there exists a smooth finite energy solution (u, p, u0, 0, T) with 

the indicated data (notice it is  for any T>0, thus global in 

time). 

 

 

III. SOME KNOWN OR DIRECTLY DERIVABLE, USEFUL 

RESULTS THAT WILL BE USED. 

 

In this paragraph I state, some known theorems and results, 

that are to be used in this paper, or is convenient for the reader 

to know , so that the reader is not searching them in the 

literature and can have a direct, at a glance, image of what 

already holds and what is proved.  

A review of this paragraph is as follows: 

Propositions 3.1, 3.2 are mainly about the uniqueness and 

existence locally of smooth solutions of the Navier-Stokes 

and Euler equations with smooth Schwartz initial data. 

Proposition 3.3 are necessary or sufficient or necessary and 

sufficient conditions of regularity (global in time 

smoothness) for the Euler equations without viscosity. 

Equations 8-13 are forms of the energy conservation and 

finiteness of the energy loss in viscosity or energy 

dissipation. Equations 14-16 relate quantities for the 

conditions of regularity. Proposition 3.4  is the equivalence of 

smooth Schwartz  initial data with smooth compact support 

initial data for the formulation of the 4th Clay millennium 

problem. Propositions 3.5-3.9 are necessary and sufficient 

conditions for regularity, either for the Euler or 

Navier-Stokes equations, while Propositions 4.10 is a 

necessary and sufficient condition of regularity for only the 

Navier-Stokes with non-zero viscosity.   

In the next I want to use, the basic local existence and 

uniqueness of smooth solutions to the Navier-Stokes (and 

Euler) equations , that is usually referred also as the well 

posedness, as it corresponds to the existence and uniqueness 

of the physical reality causality of the flow. The theory of 

well-posedness for smooth solutions is summarized in an 

adequate form for this paper by the Theorem 5.4 in [45]TAO, 

T. 2013. 

I give first the definition of mild solution as in [45] TAO, 

T. 2013 page 9. Mild solutions must satisfy a condition on the 

pressure given by the  velocities. Solutions of smooth initial 

Schwartz data are always mild, but the concept of mild 

solutions is a generalization to apply for non-fast decaying in 

space initial data , as the Schwartz data, but for which data we 

may want also to have local existence and uniqueness of 

solutions.  

DEFINITION 3.1 

We define a  H1 mild solution (u, p, u0, f, T) to be fields u, f 

:[0, T] × R3  → R3,  

p : :[0, T] × R3  → R, u0 : R3  → R3, with 0 < T <∞, 

obeying the regularity hypotheses 

)( 31

0 RHu x
 

)],0([ 31 RTHLf xt  

 

)],0([ 3221 RTHLHLu xtxt  

 
 

with the pressure p being given by (Poisson) 

 

fuup jiji   11 )(
          (eq. 7)  

 

(Here the summation conventions is used , to not write the 

Greek big Sigma). 

which obey the incompressibility conditions  (eq. 2), (eq. 

3)  and satisfy the integral form of the Navier-Stokes 

equations 

  

t

ttt dttfpuueuetu
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with initial conditions   u(x,0)=u0(x) . 

We notice that the definition holds also for the in viscid 

flows, satisfying the Euler equations. The viscosity 

coefficient here has been normalized to ν=1.               

In   reviewing the local well-posedness theory of H1  mild 

solutions, the next can be said. The content of the theorem 5.4 

in [45] TAO, T. 2013  (that I also state here for the 

convenience of the reader and from which derive our  

PROPOSITION 3.2)  is largely standard (and in many cases it 

has been  improved by  more powerful  current 

well-posedness theory). I mention here for example the 

relevant research by [38] PRODI G 1959 and [42] SERRIN,J 

1963, The local existence theory follows from the work of 

[24] KATO, T.  PONCE, G. 1988  , the regularity of mild 

solutions follows from the work of [30] 

LADYZHENSKAYA, O. A. 1967 . There are now a number 

of advanced local well-posedness results at  regularity, 

especially that of [25] KOCH, H., TATARU, D.2001. 

There are many other papers and authors  that have proved 

the local existence and uniqueness of smooth solutions with 
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different methods. As it is referred in C. L. [19] 

FEFFERMAN 2006 I refer too  the reader  to the [34] 

MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4, 

I state here for the convenience of the reader the 

summarizing theorem 5.4 as in TAO T. 2013. I omit the part 

(v) of Lipchitz stability of the solutions from the statement of 

the theorem. I use the standard O() notation here, x=O(y) 

meaning x<=cy for some absolute constant c. If the constant c 

depends on a parameter k, we set it  as index of  Ok().  

It is important to remark here that the existence and 

uniqueness results locally in time (well-posedness) , hold also 

not only for the case of viscous flows following the 

Navier-Stokes equations, but also for the case of inviscid 

flows under the Euler equations. There are many other papers 

and authors  that have proved the local existence and 

uniqueness of smooth solutions  both for the Navier-Stokes 

and the Euler equation with the same methodology ,  where 

the value of the viscosity coefficient v=0, can as well be 

included. I refer e.g.   the reader to the [34] MAJDA 

A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4 , 

paragraph 3.2.3, and paragraph 4.1 page 138.  

PROPOSITION 3.1       (Local well-posedness in H1). Let (u0,  

f, T) be H1 data. 

(i) (Strong solution) If (u, p, u0, f, T) is an H1 mild 

solution, then 

)],0([ 310 RTHCu xt 
 

(ii) (Local existence and regularity) If 
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for a sufficiently small absolute constant c > 0, then there 

exists 

a H1 mild solution (u, p, u0, f, T) with the indicated data, with 
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and more generally 
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for each k>=1 . In particular, one has local existence 

whenever 

T is sufficiently small,  depending on the norm H1(u0, f, T). 

 

(iii) (Uniqueness) There is at most one H1 mild solution (u, p, 

u0, f, T) 

with the indicated data. 

 

 (iv) (Regularity) If (u, p, u0, f, T ) is a H1 mild solution, 

and (u0, f, T) 

is (smooth) Schwartz data, then u and p is smooth solution; in 

fact, one has  

)],0([, 3RTHLpu k

t

j

t

j

t  

for all j, K >=0. 

 

For the proof of the above theorem, the reader is referred to 

the[45]TAO, T. 2013 theorem 5.4, but also to the papers and 

books , of the above mentioned other authors.  

Next I state the local existence and uniqueness of smooth 

solutions of the Navier-Stokes (and Euler) equations with 

smooth Schwartz initial conditions , that I will use in this 

paper , explicitly as a PROPOSITION  4.2 here.  

 

 PROPOSITION 3.2 Local existence and uniqueness of 

smooth solutions or smooth well posedness. Let  u0(x) , 

p0(x) be  smooth and Schwartz initial data at t=0 of the 

Navier-Stokes (or Euler) equations, then there is a finite time 

interval [0,T] (in general depending on the above initial 

conditions) so that there is a unique smooth local in time 

solution of the Navier-Stokes (or Euler) equations 

 u(x) , p(x)C(R3 [0,T])  

Proof: We simply apply the PROPOSITION 3.1 above 

and in particular, from the part (ii) and the assumption in the 

PROPOSITION  3.2, that the initial data are smooth 

Schwartz , we get the local existence of H1 mild solution (u, 

p, u0, 0, T). From the part (iv) we get that it is also a smooth 

solution. From the part (iii), we get that it is unique.  

As an alternative we may apply the theorems in [34] 

MAJDA A.J-BERTOZZI A. L. 2002 page 104 Theorem 3.4 , 

paragraph 3.2.3, and paragraph 4.1 page 138, and getthe local 

in time solution, then derive from the part (iv) of the 

PROPOSITION 4.1 above, that they are also in the classical 

sense smooth.                                   QED. 

Remark 3.1 We remark here that the property of  smooth 

Schwartz initial data, is not known in general if is conserved 

in later times than t=0, of the smooth solution in the 

Navier-Stokes equations, because it is a very strong fast 

decaying property at spatially infinity. But for lower rank 

derivatives of the velocities (and vorticity) we have the 

(global and) local energy estimate , and (global and) local 

enstrophyestimate theorems that reduce the decaying of the 

solutions at later times than t=0,  at spatially infinite to the 

decaying of the initial data at spatially infinite. See e.g. TAO, 

T. 2013, Theorem 8.2 (Remark 8.7) and Theorem 10.1 

(Remark 10.6). 

Furthermore in the same paper of formal formulation of the 

Clay millennium conjecture , L. [19] FEFFERMAN 2006 

(see page 3rd line 6 from above),  it is stated that the 3D 

global regularity of such smooth solutions is controlled by the 

bounded accumulation in finite time intervals of the 

vorticity (Beale-Kato-Majda). I state this also explicitly for 

the convenience of the reader, for smooth solutions of the 

Navier-Stokes equations with smooth Schwartz initial 

conditions, as the PROPOSITION 3.6 When we say here 

bounded accumulation e.g. of the deformations D,  on finite 

internals, we mean in the sense e.g. of the  proposition 5.1    

page 171 in the book [34]  MAJDA A.J-BERTOZZI A. L. 

2002 , which is a definition designed to control the existence 

or not of finite blowup times. In other words  for any finite 

time interval  

[0, T], there is a constant M such that  

MdssD

t

L
  )(

0  
I state here for the convenience of the reader, a well known 

proposition of equivalent necessary and sufficient conditions 

of existence globally in time of solutions of the Euler 

equations, as inviscid smooth flows. It is the   proposition 5.1 

in [34] MAJDA A.J-BERTOZZI A. L. 2002 page 171. 

The stretching is defined by  

  DtxS :),(
 if 

0
 and 

0:),( txS
 if 

0
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where 



 :

, ω being the vorticity.  

 

 PROPOSITION 3.3   Equivalent Physical Conditions for 

Potential Singular Solutions of the Euler equations . 

Thefollowing conditions are equivalent for smooth Schwartz 

initial data: 

(1) The time interval, [0, T*) with T* <∞ is a maximal 

interval of smooth Hs 

existence of solutions for the 3D Euler equations. 

(2) The vorticity ω accumulates so rapidly in time that 

  dss

t

L
)(

0



as t tends toT* 

(3) The deformation matrix D accumulates so rapidly in 

time that 

  dssD

t

L
)(

0 as t tends toT* 

 (4) The stretching factor S(x, t)  accumulates so rapidly in 

time that 




dssxS

t

Rx0
3

)],([max

as t tends toT* 

The next theorem establishes the equivalence of smooth 

connected compact support initial data with the smooth 

Schwartz initial data, for the homogeneous version of the 4th 

Clay Millennium problem. It can be stated either for local in 

time smooth solutions or global in time smooth solutions. 

The advantage assuming connected compact support smooth 

initial data, is obvious, as this is preserved in time by smooth 

functions and also integrations are easier when done on 

compact connected sets. 

 

PROPOSITION 3.4.  (3D global smooth compact 

support non-homogeneous regularity implies 3D global 

smooth Schwartz homogeneous regularity)If it holds that 

the incompressible viscous (following the Navier-Stokes 

equations) 3 dimensional  local in time [0,T] , finite energy, 

flow-solutions with smooth compact support (connected with 

smooth boundary)  initial data of velocities and pressures 

(thus finite initial energy) and smooth compact support (the 

same connected support with smooth boundary) external 

forcing for all times t>0,  exist also globally in time t>0 (are 

globally regular) then it also holds that the incompressible 

viscous (following the Navier-Stokes equations) 3 

dimensional  local in time [0,T] , finite energy, flow-solutions 

with smooth Schwartz  initial data of velocities and pressures 

(thus finite initial energy) ,  exist also globally in time for all 

t>0 (are regular globally in time). 

 

Proof: see [26] KYRITSIS, K. June 2017, or [29] 

KYRITSIS, K. February 2019, PROPOSITION 6.4) 

 

 

 

Remark 3.2 Finite initial energy and energy 

conservation equations: 

When we want to prove that the smoothness in the local in 

time solutions of the Euler or Navier-Stokes equations is 

conserved, and that they can be extended indefinitely in time, 

we usually apply a  “reduction ad absurdum” argument:  Let 

the maximum finite time T* and  interval [0,T*) so that the 

local solution can be extended smooth in it.. Then the time T* 

will be a blow-up time, and if we manage to extend smoothly 

the solutions on [0,T*]. Then there is no finite Blow-up time 

T* and the solutions holds in [0,+∞). Below are listed 

necessary and sufficient conditions for this extension to be 

possible. Obviously not smoothness assumption can be made 

for the time T*, as this is what must be proved. But we still 

can assume that at T* the energy conservation and 

momentum conservation will hold even for a singularity at 

T*, as these are  universal laws of nature, and the integrals 

that calculate them, do not require smooth functions but only 

integrable functions, that may have points of discontinuity.   

A very well known form of the energy conservation  

equation and accumulative energy dissipation is the next: 

   
3 3 30

222
0,(

2

1
),(),(

2

1

R

T

R R
dxxudxdttxuvdxTxu

     (eq. 8 ) 

where 


3

2
)0,(

2

1
)0(

R
dxxuE

  (eq. 9 )   

is the initial finite energy 


3

2
),(

2

1
)(

R
dxTxuTE

        .(eq. 10)  

 is the final finite energy 

and

  

T

R
dxdttxuvE

0

2

3
),(

 (eq. 11)  

is the accumulative finite energy dissipation from time 0 to 

time T , because of viscosity in to internal heat of the fluid. 

For the Euler equations it is zero. Obviously 

ΔΕ<=Ε(0)>=E(T)    (eq. 12)  

The rate of energy dissipation is given by 

 
3

0)(
2

R
dxuvt

dt

dE

 (eq. 13) 

  (v, is the density normalized viscosity coefficient. See 

e.g. [34] MAJDA, A.J-BERTOZZI, A. L. 2002  Proposition 

1.13, equation (1.80) pp. 28) 

Remark 3.3 The next are 3 very useful inequalities for the 

unique local in time [0,T], smooth solutions u of the Euler 

and Navier-Stokes equations with smooth Schwartz initial 

data and finite initial energy  (they hold for more general 

conditions on initial data, but we will not use that): 

 

By ||.||m   we denote the Sobolev norm of order m. So if m=0 

itis essentially the L2-norm. By ||.||L∞ we denote the 

supremum norm, u is the velocity, ω is the vorticity, and cm, 

c are constants. 

1) 

 



T

Lmmm
dttxucxuTxu

0

)),((exp()0,(),(

 

(eq. 14) 

(see e.g.[34] MAJDA, A.J-BERTOZZI, A. L. 2002  , proof 

of Theorem 3.6 pp117, equation (3.79)) 
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2)

 



T

L
dttxucxtx

0

00
)),(exp()0,(),( 

 

(eq. 15)  

(see e.g.[34] MAJDA, A.J-BERTOZZI, A. L. 2002  , proof 

of Theorem 3.6 pp117, equation (3.80)) 

 

3)

 



t

LL
dssxxutxu

0

0
)),(exp()0,(),( 

 

(eq. 16)  

(see e.g.[34] MAJDA, A.J-BERTOZZI, A. L. 2002  , proof 

of Theorem 3.6 pp118, last equation of the proof) 

 

The next are a list of well know necessary and sufficient 

conditions , for regularity (global in time existence and 

smoothness) of the solutions of Euler and Navier-Stokes 

equations, under the standard assumption in the 4th Clay 

Millennium problem of smooth Schwartz initial data, that 

after theorem Proposition 4.4 above can be formulated 

equivalently with smooth compact connected support data. 

We denote by T* be the maximum Blow-up time (if it exists) 

that the local solution u(x,t) is smooth in [0,T*).  

 

DEFINITION 3.2  

When we write that a quantity Q(t)  of the flow ,in general 

depending on time, is uniformly in time bounded during the 

flow, we mean that  there is a bound M independent from time 

, such that Q(t)<=M for all t in [0, T*). 

PROPOSITION 3.5 (Necessary and sufficient condition 

for regularity) 

The local solution u(x,t) , t in [0,T*)  of the Euler or 

Navier-Stokes equations, with smooth Schwartz initial data, 

can be extended to [0,T*], where T* is the maximal time that 

the local solution u(x,t) is smooth in [0,T*), if and only if the 

Sobolev norm ||u(x,t)||m  , m>=3/2+2 , remains bounded , by 

the same bound in all of [0,T*), then , there is no maximal 

Blow-up time T*, and the solution exists smooth in [0,+∞) 

Remark  3.4 See for a proof e.g.[34]MAJDA, 

A.J-BERTOZZI, A. L. 2002  , pp 115, line 10 from below) 

1) PROPOSITION 3.6 (Necessary and sufficient 

condition for regularity. Beale-Kato-Majda) 

The local solution u(x,t) , t in [0,T*)  of the Euler or 

Navier-Stokes equations, with smooth compact support  

initial data, can be extended to [0,T*], where T* is the 

maximal time that the local solution u(x,t) is smooth in 

[0,T*), if and only if for the finite time interval [0,T*], there 

exist a bound M>0, so that the vorticity has bounded by M, 

accumulation in [0,T*]: 

 

 


*

0

),(

T

L
Mdttx

    (eq17) 

Then  there is no maximal Blow-up time T*, and the 

solution exists smooth in [0,+∞) 

 Remark 3.5 See e.g.[34]MAJDA, A.J-BERTOZZI, A. L. 

2002  , pp 115, Theorem 3.6. Also page 171 theorem 5.1 for 

the case of inviscid flows. . See also [32]  

LEMARIE-RIEUSSET P.G. 2002 .  Conversely if regularity 

holds, then in any interval from the smoothness in a compact 

connected set, the vorticity is supremum bounded. The above 

theorems in the book [34] MAJDA A.J-BERTOZZI A. L. 

2002 guarantee that the above conditions extent the local in 

time solution to global in time , that is to solutions (u, p, u0, f, 

T ) which is    H1 mild solution, for any T. Then applying the 

part (iv) of the PROPOSITION  4.1  above, we get that this 

solutions is also smooth in the classical sense, for all T>0, 

thus globally in time smooth. 

2) PROPOSITION 3.7 (Necessary and sufficient 

condition of vorticity for regularity) 

The local solution u(x,t) , t in [0,T*)  of the Euler or 

Navier-Stokes equations, with smooth compact support 

initial data, can be extended to [0,T*], where T* is the 

maximal time that the local solution u(x,t) is smooth in 

[0,T*), if and only if for the finite time interval [0,T*], there 

exist a bound M>0, so that the vorticity is bounded by M, in 

the supremum norm L∞ in [0,T*] and on any compact set: 

 

Mtx
L




),(
for all t in [0,T*)      (eq. 18) 

Then  there is no maximal Blow-up time T*, and the 

solution exists smooth in [0,+∞) 

Remark 3.6 Obviously if 
Mtx

L




),(
, then also the 

integral exists and is bounded:

 


*

0

1),(

T

L
Mdttx

 and 

the previous proposition 3.6 applies. Conversely if regularity 

holds, then in any interval from smoothness in a compact 

connected set, the vorticity is supremum bounded. 

PROPOSITION 3.8 (Necessary and sufficient condition 

for regularity) 

The local solution u(x,t) , t in [0,T*)  of the Euler or 

Navier-Stokes equations, with smooth compact connected 

support initial data, can be extended to [0,T*], where T* is 

the maximal time that the local solution u(x,t) is smooth in 

[0,T*), if and only if for the finite time interval [0,T*], there 

exist a bound M>0, so that the space partial derivatives or 

Jacobean is  bounded by M, in the supremum norm L∞ in 

[0,T*]: 

 

Mtxu
L




),(
 for all t in [0,T*)    (eq. 19) 

Then  there is no maximal Blow-up time T*, and the 

solution exists smooth in [0,+∞) 

Remark 3.7 Direct from the inequality (eq.14)   and the 

application of the proposition 3.5.  Conversely if regularity 

holds, then in any finite time interval from smoothness, the 

space derivatives are  supremum bounded. 

PROPOSITION 3.9 ([19] FEFFERMAN C. L. 2006. 

Velocities necessary and sufficient condition for 

regularity) 

The local solution u(x,t) , t in [0,T*)  of the Euler or 

Navier-Stokes equations, and with smooth compact 

connected support initial data, can be extended to [0,T*], 

where T* is the maximal time that the local solution u(x,t) is 

smooth in [0,T*), if and only if  

the velocities ||u(x,t)|| do not get unbounded as t->T*. 

Then  there is no maximal Blow-up time T*, and the 

solution exists smooth in [0,+∞). 



https://doi.org/10.31871/WJRR.13.2.8   World Journal of Research and Review (WJRR) 

                                                                       ISSN: 2455-3956, Volume-13, Issue-2, August 2021 Pages 26-38 

                                                                                      32                                                                                 www.wjrr.org 

Remark 3.8.This is mentioned in the Standard formulation 

of the 4th Clay Millennium problem FEFFERMAN C. L. 

2006 pp.2 , line 1 from below: quote “...For the 

Navier-Stokes equations (v>0) , if there is a solution with a 

finite blow-up time T, then the velocities ui(x,t), 1<=i<=3 

become unbounded near the blow-up time.” The 

converse-negation of this is that if the velocities remain 

bounded near the T*, then there is no blow-up at T* and the 

solution is regular or global in time smooth. Conversely of 

course , if regularity holds, then in any finite time interval, 

because of  the smoothness, the velocities, in a compact set 

are  supremum bounded. 

I did not find a dedicated such theorem in the books or papers 

that I studied, but I take it for granted as the official 

formulation of the problem too.  

A probable line of arguments so as to prove it might goes 

follows: 

We want to prove that it cannot be that a blow-up occurs only 

at the spatial partial derivatives of the velocities and not in the 

velocities themselves. If such a strange blow-up occurs, then 

as in the PROPOSITION 3.8 , the Jacobeanof the velocities 

blows-up.  This gives that the convective acceleration  

uu
t

u

Dt

Du





  

 

also blows-up (as the term in the convective acceleration of 

the partial derivative of the velocity remains either bounded 

by the hypothesis of not blowing-up velocities or oscillates 

wildly) 

 

 

Dt

Du
->+∞ will blows-up as t->T*, 

Thus by integrating on a path trajectory 
T

dt
Dt

Du

0

    we 

deduce that the velocities on the trajectories blow-up which is 

contradiction from the initial hypothesis. Therefore the flow 

is regular in [0,T*] as claimed By Fefferman C.L. in the 

proposition 3.9.  

QED 

We notice that Fefferman C.L. states this condition only for 

the viscous flows, but since PROPOSITION 3.7 holds for the 

inviscid flows under the Euler equations, this necessary and 

sufficient condition holds also for the inviscid flows too.  

Remark 3.9.  

Similar results about the local smooth solutions, hold also 

for the non-homogeneous case with external forcing which is 

nevertheless space-time smooth of bounded accumulation in 

finite time intervals. Thus an alternative formulation to see 

that the velocities and their gradient , or in other words up to 

their 1st derivatives and the external forcing also up to the 1st 

derivatives , control the global in time existence  is the next 

proposition. See [45] TAO. T. 2013 Corollary 5.8 

PROPOSITION 3.10  (Maximum Cauchy development) 

Let (u0, f, T) be H1  data. Then at least one of the following 

two statements hold: 

1) There exists a mild H1 solution (u, p, u0, f, T) in [0,T] 

,with the given data. 

2)There exists a blowup time 0 < T*< T and an incomplete 

mild H1 solution  

(u, p, u0, f, T
* ) up to time T* in [0, T*), defined as complete 

on every [0,t], t<T *  which blows up in the enstrophy  H1 

norm in the sense that 


 )(,

31
**

),(lim
RHTtTt x

txu
 

Remark 3.10 The term “almost smooth”  is defined in [45]  

TAO, T. 2013, before Conjecture 1.13. The only thing that 

almost smooth solutions lack when compared to smooth 

solutions is a limited amount of time differentiability at the 

starting time t = 0; 

The term normalized pressure, refers to the symmetry of 

the Euler and Navier-Stokes equations to substitute the 

pressure, with another that differs at, a constant in space but 

variable in time measureable function. In particular 

normalized pressure is one that satisfies  the (eq. 7) except for 

a measurable at  a, constant in space but variable in time 

measureable function. It is proved in [45] TAO, T. 2013, at 

Lemma 4.1, that the pressure is normalizable (exists a 

normalized pressure) in almost smooth  finite energy 

solutions, for almost all times. The viscosity coefficient in 

these theorems of the above TAO paper has been normalized 

to ν=1.               

 

PROPOSITION 3.11  (Differentiation of a potential) 

Let a sub-Newtonian kernel K(x,y), and f a bounded and 

integral  function on the οpen  set Ω, of  Rn ,then for all  x in 

ΩᴗΣ , where Σ is a relatively open subset of ∂Ω,  

the ∫ΩK(x,y)F(y)dy is in C1(ΩᴗΣ) and  

 

Dxi  ∫ΩK(x,y)F(y)dy=∫Ω Dxi K(x,y)F(y)dy     

Proof: By Dxi  we denote the partial derivative relative to xi 

. For the definition of sub-Newtonian kernel and a proof of 

the above theorem, see [18] HELMS L.L.  (2009) paragraph 

8.2 pp 303 and Theorem 8.2.7 pp 306. QED. 

 

PROPOSITION 3.12  (Estimates of partial derivatives 

of harmonic functions) 

Assume u is harmonic function in the open set Ω of  Rn . 

Then 

 

 𝐷𝑎𝑢(𝑥0) ≤
𝐶𝑘

𝑟𝑛+𝑘
 𝑢 𝐿1(𝐵 𝑥0 ,𝑟 ) 

For each ball B(x0 , r)⸦ Ω and each multi-index a of order 

|a|=k.  

Here 𝐶0 =
1

𝑎(𝑛)
 , 𝐶𝑘 =

( 2𝑛+1𝑛𝑘)𝑘

𝑎(𝑛)
, k=1,…. 

In particular, for the fundamental harmonic function 

u=1/(||x-y||) the next estimates for the partial derivatives 

hold: 

2

11

yxyxxi 






   (eq. 20) 

3

2 41

yxyxxx ji 






(eq.21) 

 

And in general there is constant C(n, β) such that  
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  if |β|=κ>=1        (eq.22) 

Proof: See [9] EVANS L. C.  (2010)  chapter 2, Theorem 

7, pp 29. And for the fundamental harmonic function also see  

[18] HELMS L.L.  (2009), pp 317 equations 8.18, 8.19, 8.20

      QED. 

PROPOSITION 3.13 (The well-known divergence 

theorem in vector calculus) 

Let an non-empty bounded οpen  set Ω, of  Rn    with  C1 

boundary ∂Ω, and let  

F: 𝛺 → 𝑅𝑛  be  vector field that is continuously 

differentiable in Ω and continuous up to the boundary. Then 

the divergence theorem asserts that 

 

 


 FF

    (eq. 23) 

 

where ν is the outward pointing unit normal to the 

boundary ∂Ω. 

 

PROPOSITION 3.14 (Representation formula of the 

bounded solutions of the Poisson equation.) Let 

.3),(
2

 nRCf n

c In other words f is with continuous 

second derivatives, and of compact support. Then any 

bounded solution of the scalar Poisson equation 

fu 
 in Rn   has the form 

 
nR

Cdyyfyxxu )()()(
nRx for some 

constant C, and Φ(x) is the fundamental harmonic function. 

For n=3 , 
x

x
4

1
)( 

. 

Proof: See[9] EVANS L. C.  (2010)  §2.2 Theorem 1 pp23 

and mainly Theorem 9 pp 30. The proof is a direct 

consequence of the Liouville’s theorem of harmonic 

functions. There is a similar representation described e.g. in 

as in [34] MAJDA, A.J-BERTOZZI, A. L. 2002  §1.9.2  

Lemma 1.12 pp 38, where f is defined on all of Rn and not 

only on a compact support.  Notice also that solutions of the 

above Poisson equation that are also of compact support are 

included in the representation. More general settings of the 

Poisson equation with solutions only on bounded regions and 

with prescribed functions on the boundary of the region, do 

exist and are unique but require correction terms and Green’s 

functions as described again in [9] EVANS L. C.  (2010)  

§2.2 Theorem 5 pp28       QED. 

Remark 3.11 

Such a more general form of the solution of the Poisson 

equations as in [34] MAJDA, A.J-BERTOZZI, A. L. 2002  

§1.9.2  Lemma 1.12 pp 38, and in particular when smooth 

bounded input data functions lead to smooth bounded output 

solutions, could allow us to state the new necessary and 

sufficient conditions of the next paragraph 4, with the more 

general hypothesis of the smooth Schwartz initial data, rather 

than compact support initial data Nevertheless, it holds the 

equivalence of the smooth Schwartz initial data with compact 

support initial data holds after  PROPOSITION 3.4.  and 

[26] KYRITSIS, K. June 2017, PROPOSITION 6.4.. In 

other words, we could proceed and try to prove the 4
th

 

Clay Millennium problem without utilizing the 

PROPOSITION 3.4.of the equivalence of smooth 

Schwartz initial data and smooth compact support initial 

data for the 4
th

 Clay Millennium problem. Still it is 

simpler when thinking about the phenomena to have in mind 

simpler settings like compact support flows and that is the 

mode in which we state our results in the next in this paper.  

 

IV. THE PRESSURES SUFFICIENT  CONDITIONS FOR 

REGULARITY. 

 

In this paragraph we utilize one part of our main strategy to 

solve the 4th Clay Millennium problem, which is to derive a 

pressures sufficient condition of regularity The second part of 

the strategy is to integrate over trajectories, and derive 

integral equations of the velocities and their partial spatial 

derivatives. Since integrals of velocities may turn out to 

involve the finite energy which is invariant we hope so to 

bound the supremum norm of the special partial derivatives 

of the velocities and use the very well-known necessary and 

sufficient condition for regularity as in PROPOSITION 3.8 

PROPOSITION 4.1. (The pressures,  sufficient condition 

for regularity) 

Let the local solution u(x,t) , t in [0,T*)  of the  

Navier-Stokes equations with non-zero viscosity, and with 

smooth compact connected support initial data, then it can be 

extended to [0,T*], where T* is the maximal time that the 

local solution u(x,t) is smooth in [0,T*),  and thus to all times 

[0,+∞), in other words the solution is regular, if and only if 

there is a time uniform bound M for the pressures p , in other 

words such that  

 

p≤ 𝑀  for all t in [0,T*)  Still in other words smoothness 

and boundedness of the pressures p on the compact support 

V(t) and in finite time intervals [0,T]  is a characteristic 

condition for regularity.   

 

Proof:Let us start from this characteristic smoothness and 

boundedness of the pressures p on the compact support V(t) 

and in finite time intervals [0,T] to derive regularity.  

We notice that in the Navier-Stokes equations of 

incompressible fluids the pressure forces defines a 

conservative force-field, as it is the gradient     of a 

scalar-field that of the pressures p, which play the role of 

scalar potential. And this property, of being a conservative 

force-field, is an invariant during the flow. It is an invariant 

even for viscous flows, compared to other classical 

invariants, the Kelvin circulation invariant and the Helmholtz 

vorticity-flux invariant which hold only for inviscid flows. 

That the force-field Fp is a conservative field, means that if 

we take two points x1(0), x2(0), and any one-dimensional path 

P(x1(0), x2(0)), starting and ending on them, then for any test 

particle of mass m, the integral of the work done by the forces 

is independent from the particular path, and depends only on 

the two points x1=x1(0), x2=x2(0), and we denote it here by 

W(x1,x2). 

 
)2,1(

21 ),(
xxP

pdsFxxW                     (eq. 24) 
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In particular, it is known by the gradient theorem, that this 

work equals, the difference of the potential at these points, 

and here, it is the pressures: 

W(x1, x2)=(1/c)||p(x2(0))-p(x1(0))|.     (eq. 25) 

(The constant (1/c) here is set, because of the normalization 

of the constant density in the equations of the Navier-Stokes, 

and accounts for the correct dimensions of units of 

measurements of the pressure, force, and work). 

Similarly, if we take a test-flow , of test particles instead of 

one test particle, in the limit of points, again the work density, 

depends only on the two points x1, x2. 

In the next arguments we will not utilize the path invariance 

From the hypothesis that the pressure are time-uniformly 

bounded by the same constant M in [0,T*)  we deduce that the 

integral on a trajectory in (eq24) is also time-uniformly 

bounded by the same constant M in [0,T*).  

MdsF
xxP

p 
)1,0(

 

We may re-write this integral by changing integration 

parameter to be the time as  

 

Mdt
dt

ds
F

ttP

p 
)1,0(

 in [0,T*). Or as it is on a trajectory  

 

MdtuF
ttP

mp 
)1,0(

in [0,T*).                                                                

.                                                                      (eq26) 

Where um is the (material) velocity on the trajectory.  

 

If the um->+∞ blows-up as t->T*, then also the (material) 

convective acceleration  

Dt

Du
->+∞ will blowup as t->T*, 

 

And from the Navier-Stokes equations 

 

iup
Dt

Du
        (eq. 27)  

 

The pressure forces pFp  ->+∞ will blowup as t->T*, 

             as the friction term only subtracts from the pressure 

forces.   

Nevertheless if both Fpand um  will blow-up, so also it will , 

the integral in  

(eq 26) which is a contradiction.  Thus the (material) 

velocities do not blowup!  

Thus we may apply the necessary and sufficient condition for 

regularity as in PROPOSITION 3.6 (FEFFERMAN C. L. 

2006. Velocities necessary and sufficient condition for 

regularity) andwe derive the regularity                        QED. 

 

 

PROPOSITION 4.2. (Smooth particle Trajectory mapping 

and Trajectories finite length, necessary condition for 

regularity) 

Let the local solution u(x,t), t in [0,T*)  of the Euler or  

Navier-Stokes equations of inviscid or viscous flows 

correspondingly, and with smooth compact connected 

support initial data, that it can be extended to [0,T*], where 

T* is the maximal time that the local solution u(x,t) is smooth 

in [0,T*), and thus to all times [0,+∞), in other words the 

solution is regular, then   the particle trajectory mapping is 

smooth in finite time intervals and the trajectories-paths are 

smooth and of length  l(a,t)<=M  that remains bounded by a 

constant M for all t in [0,T*).  

Proof:  

The particle trajectory mapping is the representation of the 

spatial flow in time of the fluid per trajectories-paths. For a 

definition see MAJDA, A.J-BERTOZZI, A. L. 2002 § 1.3 

Equation 1.13 pp 4. Here we apply this mapping on the 

compact support V initial data.  

Let us assume now that the solutions is regular. Then also for 

all finite time intervals [0,T] , the velocities and the 

accelerations are bounded in the L∞  , supremum norm, and 

this holds along all trajectory-paths too. Then also the length 

of the trajectories, as they are given by the formula 


T

dttaxuTal
0

00 ),((),(       (eq. 28) 

are also bounded and finite (see e.g. APOSTOL T. 1974  , 

theorem 6.6 p128 and theorem 6.17 p 135). Thus if at a 

trajectory the lengths becomes unbounded as t converges to  

T*, then there is a blow-up. QED. 

 

V. THE FINITE ENERGY, BOUNDED PRESSURE VARIANCE 

THEOREM FOR INVISCID AND VISCOUS FLOWS AND THE 

SOLUTION OF THE 4TH
 CLAY MILLENNIUM PROBLEM. 

 

Remark 5.1 This paragraph utilizes two  simple 

techniques 

a) Energy conservation in various alternative forms and 

formulae. 

b) The property of the pressures forces being 

conservative in the present situation of incompressible 

flows (gradient theorem). 

The 4
th

 Clay Millennium problem is not just a challenging 

exercise of mathematical calculations. It is an issue of the 

standard modelling the physical reality, and therefore we 

may utilize all our knowledge of the underlying physical 

reality.  

 In the strategy that this paper has adopted here to solve the 

4th Clay Millennium problem, in a short and elegant way, we 

will involve as much as possible intuitive physical ideas that 

may lead us to choose the correct and successful 

mathematical formulae and techniques, still everything will 

be within strict and exact mathematics. As T. Tao has 

remarked in his discussion of the 4thClay Millennium 

problem, to prove that the velocity remains bounded 

(regularity) for all times, by following the solution in the 

general case, seems hopeless due to the vast number of 

flow-solution cases. And that the energy conservation is not 

of much help. And it seems that it is so!  But we need more 

smart and shortcut ideas, through invariants of the flow. In 

particular, we need clever techniques to calculate in 

alternative ways part of the energy of the flow, with 

virtual-test flows, and alternative integrals of virtual work of 

the pressure forces on instantaneous paths, and that still have 

the physical units’ dimensions of energy.  We will base our 

strategy to the next three factors  
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1) The conservation of energy and the hypothesis of finite 

initial energy. Then as by proposition 3.8 , we have from 

this  necessary and sufficient condition of regularity that 

we need to have that the partial derivatives of the 

Jacobean are bounded:  
Mtxu

L




),(
 , and are  

uniformly in time bounded in the maximal time interval 

[0, T*) that a solution exists, then we need to highlight a 

formula that computes the partial derivatives of the 

velocities from integrals of the velocities in space and 

time till then, because the bounded energy invariant is in 

the form of integrals of velocities.    

2) The shortcut of physical magnitude with physical units’ 

dimensions of energy as indeed calculating energy: In 

other words if we reach in the calculations  to an 

expression which has as physical magnitude the physical 

dimensions units of energy then the expression 

calculates indeed energy. 

3)  The technique of virtual-test flows on instantaneous 

paths, to find special formulas for the calculation of 

energy from alternative magnitudes. Instead of having to 

recalculate the energy starting from the classical 

formulae based on the velocities and transform it as the 

fluid flows, we may use shortcuts to calculate parts of the 

energy of the fluid based on alternative perceptions, like 

virtual test-particles flows, and work of the pressure 

forces on instantaneous paths. Of course the alternative 

formulae must always have the physical units’ 

dimensions of energy.  

4) Meanwhile one smart idea to start is to think of 

alternative ways that forms of energy and projections of 

them on to bundle of paths, can be measured, even at 

single time moment and state of the fluid and relate it 

with its total energy which is finite and remains bounded 

throughout the flow. Such alternative measurements of 

parts of the energy as projected on to a bundle of paths, 

can be done by integrating the conservative pressure 

forces Fp of the fluid (gradient of the pressures) on paths 

AB, of space, and relate the resulting theoretical work of 

them with the pressure differences p(A)-p(B) since the 

pressures are a potential to such conservative pressure 

forces.  

PROPOSITION 5.1. (Thefinite energy, uniformly in time 

bounded pressure-variance, theorem). 

Let a local in time , t in [0,T) , smooth flow solution with 

velocities u(x,t) , with pressures p(x,t), of the Navier-Stokes 

equations of viscous fluids or of Euler equations of inviscid 

fluids, with smooth Schwartz initial data, and finite initial 

energy E(0), as in the standard formulation of the 4th Clay 

Millennium problem,.Then the pressure differences 

|p(x2(t))-p(x1(t))| for any two points x1(t), x2(t), for times  that 

the solution exists, remain bounded by kE(0), where k  is a 

constant depending on the initial conditions, and E(0) is the 

finite initial energy.   

Proof: Let us look again at theNavier-Stokes 

equations as in (eq. 1) that we bring them here  

iup
Dt

Du
        (eq. 29)  

Where 
Dt

Du
 is the material acceleration, along the 

trajectory path. 

(It is reminded to the reader, that in the equations of 

Navier-Stokes, as in (eq. 29) as the density, is constant, it is 

custom to either normalised to 1, or it is divided out from the 

left side and it is included in the pressures and viscosity 

coefficient). 

 

We may separate the forces (or forces  multiplied by a 

constant mass density) , that act at a point, by the two terms of 

the right side as  

pFp         (eq. 30) 

which is the force-field due the pressures and the  

uFv         (eq. 31) 

which is the force-field due to the viscosity. 

We notice that (eq. 30) defines a conservative force-field, as 

it is the gradient     of a scalar-field that of the pressures p, 

which play the role of scalar potential. And this property, of 

being a conservative force-field, is an invariant during the 

flow. It is an invariant even for viscous flows, compared to 

other classical invariants, the Kelvin circulation invariant and 

the Helmholtz vorticity-flux invariant which hold only for 

inviscid flows. That the force-field Fp is a conservative field, 

means that if we take two points x1(0), x2(0), and any 

one-dimensional path P(x1(0), x2(0)), starting and ending on 

them, then for any test particle of mass m, the integral of the 

work done by the forces is independent from the particular 

path, and depends only on the two points x1=x1(0), x2=x2(0), 

and we denote it here by W(x1,x2). 

 
)2,1(

21 ),(
xxP

pdsFxxW                     (eq. 32) 

In particular, it is known by the gradient theorem, that this 

work equals, the difference of the potential at these points, 

and here, it is the pressures: 

W(x1, x2)=(1/c)||p(x2(0))-p(x1(0))|.    (eq. 33) 

(The constant (1/c) here is set, because of the normalization 

of the constant density in the equations of the Navier-Stokes, 

and accounts for the correct dimensions of units of 

measurements of the pressure, force, and work). 

Similarly, if we take a test-flow , of test particles instead of 

one test particle, in the limit of points, again the work density, 

depends only on the two points x1, x2. 

Let now again the two points x1(0), x2(0), at the initial 

conditions of the flow then as we assume Schwartz smooth 

initial conditions (and not connected compact smooth initial 

conditions)  , there is at least one double circular cone 

denoted by DC(x1(0),x2(0)), made by two circular cones 

united at their circular bases C and with vertices x1(0), x2(0)  

opposite to the plane of the common circular base C. And let 

us take a bundle of paths, that start from x1(0),  and end at 

x2(0) and  fill all the double cone DC.  We may assume now a 

test-fluid (a flow of test-particles), inside this double cone 

which has volume V ,  that flows from  x1(0), to x2(0) along 

these paths.  Let us now integrate the work-density on paths 

done by the pressure forces Fp of the original fluid, as they act 

on the test-fluid, and inside this 3 dimensional double cone 

DC(x1(0),x2(0)). This will give an instance of a spatial 

distribution of work done by the pressure forces in the 

fluid as projected to the assumed paths. This energy is 

from the instant action of the pressure forces spatially 
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distributed, and depends not only on the volume of 

integration but also on the chosen bundle of paths. It is a 

double integral, 1 dimensional and 2 dimensional (say on the 

points of the circular base C), covering all the interior of the 

double cone DC. Because the work-density per path is 

constant on each such path, by utilizing the Fubini’s theorem 

(e.g. seeSPIVAK, M.   1965 pp 56  ), the final integral is: 

 
C

x

x

pdxdsFW

2

1

 

 .|p(x1(0))-p(x2(0))||)0(  VcW     

 (eq. 34) 

On the other hand this work that would be done by the 

pressure forces of the original fluid at any time t, is real 

energy, it is an instance of a spatial distribution of work 

done by the pressure forces in the fluidas projected to the 

assumed paths and it would be subtracted from the finite 

initial energy E(0). Although this energy is only an 

instance at fixed time t as distributed in space of the 

action of pressure forces as projected on the assumed 

bundle of paths, it still has to be finite as calculated in the 

3-dimesional double cone.This therefore translates in to 

that the instance in time of energy flow due to pressure 

forces as projected on to the assumed bundle of paths, of 

the original fluid is uniformly in time bounded or in other 

words bounded in every finite time interval.  Therefore: 

W<=E(0).        (eq. 35) 

And after combining the   (eq. 35), with (eq. 34), we get 

E(0)|p(x1(0))-p(x2(0))|| Vc    (eq. 36) 

As we remarked that the force field Fd  due to pressures is 

conservative and is an invariant of the flow, and so is the 

volumes , therefore we can repeat this argument for later 

times t in [0,T), so that we also have  

E(t)|p(x1(t))-p(x2(t))||)(  VctW   (eq. 37) 

But since due to energy conservation we have E(t)<=E(0) 

(for inviscid fluids E(t)=E(0)), then also it holds 

E(0)|p(x1(t))-p(x2(t))|| Vc    (eq. 38) 

Which is what it is required to prove for x1 , x2 and  k=1/(cV). 

As an alternative line of arguments, probably simpler, we 

could have started with a 3-ball and instead of instantaneous 

paths on a cone we could have all the trajectories of the points 

of this 3-ball, and again from the bounded of the initial 

energy and thus of the work of the pressure forces on the 3D 

trajectory of this 3-ball, we could have concluded the uniform 

in time boundedness of the pressures at start and end points of 

the trajectories.   

In particular, we notice that if there is a supremum sup(p) and 

infimum inf(p) of pressures at time t, so that | sup(p)-inf(p) | is 

a measure of the variance of the pressures at time t, then this 

variance is bounded up to a constant, by the initial finite 

energy, justifying the title of the theorem. For the case of 

fluid with smooth compact connected support initial data, the 

infimum of the pressures is zero, which occurs at the 

boundary of the compact support. So the pressures, in 

general, are uniformly bounded by the same constant 

throughout the time interval [0,T*).                                                                             

(which includes the case T*=+∞) QED.  

 

Remark 5.2. It is interesting to analyse if we could prove the 

same proposition as the above 5.1 , not for   smooth Schwartz 

initial data, on all the 3 dimensional space , but for connected 

compact Cp region smooth Schwartz initial data. 

The arguments with the finite energy and the pressures is the 

same , except we must be able to find for any two points 

x1(0),x2(0) in the connect compact smooth region Cp, a 

double circular cone denoted by DC(x1(0),x2(0)), made by 

two circular cones united at their circular bases C and with 

vertices x1(0), x2(0)  opposite to the plane of the common 

circular base C.  This is actually a matter of geometric 

topology. If the compact connected region Cp is also simply 

connected it is known that there is a smooth homeomorphism 

F that it sends it to a sphere S3 in the 3 dimensional space. 

Then of course for the points F(x1(0)), F(x2(0)) , there is such 

a double circular cone denoted by DC(F(x1(0)),F(x2(0))), and 

the inverse image F-1(DC) is a curvilinear such double cone 

in the compact connected region Cp, Then we apply the 

3-dimensional integrations of eq(30) on it. If the compact 

connected region Cp is not simply connected it is known that 

there is a smooth homeomorphism F that it sends it to a 

sphere S3, with n-handles Hn in the 3 dimensional space, or in 

symbols. S3 U H1 U ….U Hn . Then again there is a choice of 

the F ( a matter of geometric 3-dimensional topology) such 

that the images of he initial points F(x1(0)), F(x2(0)), are in 

the interior of the sphere S3. And thus there is again a double 

circular cone denoted by DC(F(x1(0)),F(x2(0))), and the 

inverse image F-1(DC) is a curvilinear such double cone in 

the compact connected region Cp, to make the integrations as 

in eq(30). Therefore we may remark that we may have the 

PROPOSITION 5.1 to hold not for   smooth Schwartz initial 

data, on all the 3 dimensional space , but for connected 

compact Cp region smooth Schwartz initial data. 

PROPOSITION 5.2 (The solution of the 4
th

 Clay 

Millennium problem). Let a local in time , t in [0,T) , 

smooth flow solution with velocities u(x,t) , of the 

Navier-Stokes equations of viscous fluids with smooth 

Schwartz initial data, and finite initial energy E(0), as in the 

standard formulation of the 4th Clay Millennium 

problem.Then the solution is regular, in other words it can be 

extended as smooth solution for all times t in [0,+∞).  

 

Proof: From the necessary and sufficient condition of 

regularity that we have stated in the paragraphs 3 and 4 we 

just need to apply any one of them. In addition, we use here 

the equivalence of the smooth Schwartz initial data with 

compact support initial data holds after  PROPOSITION 3.4.  

and [26] KYRITSIS, K. June 2017, PROPOSITION 6.4. 

because the necessary and sufficient conditions for regularity 

of the paragraphs 4 and 5 are stated mainly for smooth 

compact support initial data. As we mentioned in Remark 

3.11 we could avoid using the above equivalence of smooth 

Schwartz and smooth compact support initial data and still 

prove the 4th Clay Millennium problem, but we preferred for 

reasons of simplicity of intuitive physical thinking to state 

our necessary and sufficient conditions of regularity for 

smooth compact support initial data.  

From the previous proposition 5.1, we have that the pressures 

are smooth and bounded in finite time intervals and therefore 

we apply the pressures necessary and sufficient condition of 

regularity as in PROPOSITION 4.1. (The pressures, 

sufficient condition for regularity).    Hence the solution of 

the 4th Clay Millennium problem in its original formulation. 

All the 5 new necessary and sufficient conditions of 
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regularity in paragraph 4, show a clear pattern: Once one of 

the basic magnitudes of the flow (like pressures, velocities, 

trajectories lengths, pressure forces, viscosity forces, 

vorticity etc.) turns out to be bounded in finite time intervals, 

then immediately regularity follows and cascades the same 

boundedness for all the other magnitudes. The magnitudes of 

the flows are no ordinary smooth functions but are smooth 

functions interrelated with Poisson equations through 

harmonic functions.   

We had mentioned this phenomenon in [27] KYRITSIS, K. 

November 2017 in Remark 6.2 as “Homogeneity of 

smoothness relative to a property”        QED.  

Remark 5.3. As we mentioned above and also in Remark 

3.11, it was our choice to prefer to use rather than not use, the 

PROPOSITION 3.4.  and [26] KYRITSIS, K. June 2017, 

PROPOSITION 6.4. in other words, the equivalence of the 

smooth Schwartz initial data with smooth compact support 

initial data for the 4th Clay Millennium problem. But as 

PROPOSITION 4.4 is stated only for the Navier-Stokes 

equations and viscous flows, and not for the Euler equations. 

So we missed to prove the regularity of the Euler equations 

with the previous method. It will be left for the future the 

investigation of a different line of statements that might as 

well prove the regularity of the Euler equations under the 

standard hypotheses for initial data as in the 4th Clay 

Millennium problem.  

 

VI.  EPILOGUE. 

In this paper it is has been proved the regularity of the 

Navier-Stokes equations and therefore it has been solved 

the 4th Clay Millennium problem.  To do so it was utilized 

mainly that the initial energy was finite, the conservation of 

the energy, with alternative ways to compute parts of it, and 

that many of the magnitudes of the flow are interrelated 

through the very well-studied and regular Poisson equation 

through harmonic functions. Finite initial energy, 

conservation of energy and the regularity of the pressures 

gave finally the regularity of the Navier-Stokes equations 

with the standard hypotheses for initial data as in the 

corresponding  Clay Millennium problem. 
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