
HAL Id: hal-03331505
https://hal.science/hal-03331505

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical Coulomb blockade under a temperature bias
H. Duprez, F. Pierre, E. Sivre, A. Aassime, F. Parmentier, A. Cavanna, A.

Ouerghi, U. Gennser, I. Safi, C. Mora, et al.

To cite this version:
H. Duprez, F. Pierre, E. Sivre, A. Aassime, F. Parmentier, et al.. Dynamical Coulomb blockade under
a temperature bias. Physical Review Research, 2021, 3 (2), �10.1103/PhysRevResearch.3.023122�.
�hal-03331505�

https://hal.science/hal-03331505
https://hal.archives-ouvertes.fr


Dynamical Coulomb blockade under a temperature bias

H. Duprez,1 F. Pierre,1, ∗ E. Sivre,1 A. Aassime,1 F.D. Parmentier,1 A.

Cavanna,1 A. Ouerghi,1 U. Gennser,1 I. Safi,2 C. Mora,3, 4 and A. Anthore1, 5
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We observe and comprehend the dynamical Coulomb blockade suppression of the electrical con-
ductance across an electronic quantum channel submitted to a temperature difference. A broadly
tunable, spin-polarized Ga(Al)As quantum channel is connected on-chip, through a micron-scale
metallic node, to a linear RC circuit. The latter is made up of the node’s geometrical capacitance
C in parallel with an adjustable resistance R ∈ {1/2,1/3,1/4} × h/e2 formed by 2–4 quantum Hall
channels. The system is characterized by three temperatures: a temperature of the electrons in the
large electrodes (T ) and in the node (Tnode), and a temperature of the electromagnetic modes of the
RC circuit (Tenv). The temperature in the node is selectively increased by local Joule dissipation,
and characterized from current fluctuations. For a quantum channel in the tunnel regime, a close
match is found between conductance measurements and tunnel dynamical Coulomb blockade theory.
In the opposite near ballistic regime, we develop a theory that accounts for different electronic and
electromagnetic bath temperatures, again in very good agreement with experimental data. Beyond
these regimes, for an arbitrary quantum channel set in the far out-of-equilibrium situation where
the temperature in the node significantly exceeds the one in the large electrodes, the equilibrium
(uniform temperature) prediction for the conductance is recovered, albeit at a rescaled temperature
αTnode.

The conductance of a quantum conductor embedded
into an on-chip dissipative circuit is generally diminished
at low temperatures and voltages. This phenomenon
originates from the granularity of charge transfers across
non-ballistic quantum conductors. The corresponding
current shot noise excites the electromagnetic modes of
the surrounding circuit, which suppresses the electrical
conductance in proportion to the coupling to modes of
unavailable high-energy (see [1] for a review). Taking
into account this so-called dynamical Coulomb blockade
(DCB) can be essential for the quantum nano-engineering
of circuits assembled from several quantum components.
However, the many previous DCB studies mostly as-
sumed a single, uniform temperature. In contrast, driv-
ing composite nano-circuits usually involves an internal
Joule dissipation, notably at the interconnect nodes (see
e.g. [2]), which results in temperature gradients. These
gradients do not induce any thermoelectric currents in
systems with a preserved electron-hole symmetry. Nev-
ertheless, they profoundly change the probability to ex-
cite the electromagnetic modes of the surrounding circuit,
and therefore the DCB suppression of the electrical con-
ductance. Here, we investigate the DCB as a function of
a quantitatively controlled temperature difference (bias)
across a quantum conductor. For this purpose, we focus
more specifically on the revealing linear regime of small
bias voltages.

The DCB was initially addressed theoretically and ex-

∗ e-mail: frederic.pierre@c2n.upsaclay.fr

plored experimentally on tunnel junctions embedded into
circuits described by a linear impedance [3–15]. In this
limit, the junction can be treated as a small pertur-
bation, thereby giving access to a full theoretical solu-
tion, including different temperatures for electrons on
the large electrode side and the node side of the junc-
tion (T and Tnode, resp.) and also for the electromag-
netic modes of the linear impedance (Tenv). The tun-
nel DCB theory is experimentally well established for
arbitrary bias voltages and any uniform temperature
(T = Tnode = Tenv). This quantitative understanding al-
lows one to exploit DCB as a tool, for example as a pri-
mary electron thermometer [16]. In addition, the DCB
across a tunnel junction in series with a relatively low
resistance (R ∼ 1.5 kΩ ≪ RK = h/e2 ≃ 26 kΩ, with h the
Planck constant and e the electron charge) was previously
used as a probe for the unknown energy distribution of
electrons driven out-of-equilibrium [17] (see [18] for a re-
lated theoretical development). However, in that case,
the validity of the tunnel DCB theory beyond a uniform
temperature was assumed. Here, in a first step, we put to
experimental test the tunnel DCB theory in the presence
of a thermal bias across the junction.

Second, beyond the limit of tunnel quantum conduc-
tors, the DCB theory itself remains very much incom-
plete (for notable theoretical and experimental advances,
see e.g. [19–35]). An important exception is for a single
(spin-polarized) quantum channel of arbitrary electron
transmission probability τ ∈ [0,1] set in series with a
linear resistance R. Under those circumstances, a fruit-
ful mapping has been established with the problem of
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a spinless Luttinger liquid of interaction parameter K =

1/(1+R/RK) with a single impurity [24]. Exploiting the
results for a Luttinger liquid [35–37], this mapping pro-
vides the DCB conductance and all current cumulants at
arbitrary voltages and any uniform temperature well be-
low the capacitive cutoff (eV, kBT ≪ h/2πRC). Remark-
ably, a crossover toward an insulating state in the low
temperature limit persists with any non-zero series resis-
tance R, even for a channel that is almost (but not per-
fectly) ballistic above the DCB capacitive cutoff [24, 28].
These theoretical predictions were found in precise quan-
titative agreement with experiments [29, 30, 33, 34] (as
well as with numerical functional renormalization group
simulations of a one dimensional electron lattice [34] and
also approximate but remarkably accurate Luttinger liq-
uid expressions [31]). However, in the presence of a
temperature bias across the quantum conductor and/or
the linear series resistance, the DCB-Luttinger mapping
breaks down and, consequently, so does the resulting
DCB solutions. The present work expands the DCB pre-
dictions to encompass near-ballistic quantum conductors
submitted to an arbitrary temperature bias (T , Tnode),
with a linear series resistance characterized by a third,
‘electromagnetic environment’ temperature (Tenv), and
establishes these new predictions experimentally. In ad-
dition, beyond the tunnel and near-ballistic limits, we ex-
perimentally characterize at arbitrary transmission τ the
deviations induced by a temperature bias, with respect
to the conductance at a uniform temperature. A sim-
plification is found to occur for large temperature differ-
ences (Tnode ≫ T ), where the measured conductance ap-
proaches the uniform temperature prediction, although
at a rescaled value of the temperature αTnode significantly
above the mean value (α > 0.5). This finding generalizes
a behavior that we specifically derive theoretically in the
tunnel and near ballistic limits.

The studied quantum conductor (see Fig. 1(a)) con-
sists in a single, fully tunable electronic channel realized
by a quantum point contact (QPC) formed by field effect
in a high-mobility Ga(Al)As 2D electron gas (2DEG) lo-
cated 105 nm below the surface. The 2DEG is immersed
in a large perpendicular magnetic field B ≃ 4 T, corre-
sponding to the integer quantum Hall regime at filling
factor ν = 2. By lifting the spin degeneracy, the ap-
plied B allows us to implement a single tunable channel.
This generic short channel (red dashed line) is connected
on one side to a small floating circuit node at a tem-
perature Tnode (light gray central part and red disk in
Fig. 1(a) and (b), respectively), and further away on the
other side to a macroscopic electrode at a temperature
T (right rectangles in panels (a) and (b)). The central
node is also connected through two different paths to ad-
ditional macroscopic electrodes at the same temperature
T (left and top rectangles in panel (a)), each path be-
ing composed of either one or two ballistic quantum Hall
channels (N1,2 ∈ {1,2}). These parallel ballistic channels
implement altogether a precisely known linear resistance
R = RK/N , with N = N1 +N2 ∈ {2,3,4}, which is in se-

FIG. 1. (a) Device e-beam micrograph. A single generic chan-
nel of electron transmission probability τ ∈ [0,1] (with τ/RK

its conductance; RK ≡ h/e2), as well as N1 and N2 fully trans-
mitted channels (N1 = N2 = 1 shown) are separately connected
to a small metallic island (light gray). The two quantum Hall
edge channels are represented as lines. A Joule heating of
the island is realized by applying balanced voltages across
the fully transmitted channels (N1V1 +N2V2 = 0), such that
the island’s dc voltage ⟨Vnode⟩ remains zero. The heated-
up island temperature Tnode is monitored through noise mea-
surements. (b) Schematic representation. The total number
of fully transmitted channels controls the series resistance
R = RK/(N1 + N2). The applied Joule power PJ results in
a temperature bias Tnode − T across the generic channel and
also across R. In contrast with the thermally biased generic
channel, the RC circuit is here approximately modeled as a
heated up electromagnetic environment at a uniform temper-
ature Tenv generally taken as (T + Tnode)/2.

ries with the studied generic channel (see Appendix A
for a discussion). As this resistance consists of N chiral
channels emitted from the heated node at Tnode (red on
Fig. 1) and N emitted from large ohmic contacts at T
(blue on Fig. 1), it is also submitted to the same tem-
perature bias as the quantum conductor. In contrast,
however, the electromagnetic modes of the correspond-
ing RC circuit are here modeled theoretically as being
at a well defined, uniform electromagnetic environment
temperature Tenv. This approximation may be justified
by the relatively low effect of Tenv (see Appendix D 4 for
a discussion). In practice, unless stated otherwise, the
plausible mean value Tenv = (T +Tnode)/2 (see Fig. 1(b))
is systematically used for the data/theory comparison
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(together with distinct T and Tnode across the studied
channel). The small floating node is effectively realized
by a micron-size metallic island that is thermally dif-
fused into the Ga(Al)As to make contact with the buried
2DEG. The small size of the metallic island results in
a small geometrical capacitance C ≃ 2.5 fF. (Additional
measurements with R = RK/2 were performed on a dif-
ferent sample with C ≃ 3.1 fF.) This is essential for a
well-developed DCB effect, as the capacitance effectively
short-circuits the series resistance for all possible energy
exchanges with the electromagnetic environment that are
comparable to or higher than the energy of one photon
at the cutoff frequency h/2πRC. In practice, for uniform
temperatures (T ≃ Tnode ≃ Tenv) and low bias voltages
(eV ≪ kBT ), the influence of the capacitance on the tem-
perature dependence of the conductance becomes notable
when 3kBT ≳ h/2πRC (T ≳ N × 30 mK for C ∼ 3 fF and
R = RK/N).

The floating node / metallic island is heated up by the
locally dissipated Joule power PJ = (N1V

2
1 +N2V

2
2 )/2RK

(note the factor 1/2 [2]), with V1(2) the voltage feed-
ing the path along N1(2) quantum Hall edge channels
(see Fig. 1(a)). In order to avoid the simultaneous
build-up of a bias voltage across the studied generic
channel, we apply balanced voltages of opposite signs
N1V1 = −N2V2, such that the node / island remains
at zero dc voltage ⟨Vnode⟩ ≃ 0. Note that the dc ther-
moelectric current through the generic channel is di-
rectly measured and remains negligible (corresponding
to e∣Vnode∣ < 0.01kBTnode), as expected from particle-
hole symmetry (see e.g. [38] for a discussion). The re-
sulting increase in the node temperature Tnode depends
on heat evacuation through each of the connected elec-
tronic channels and toward the phonons (see [39] for an
experimental investigation involving one generic quan-
tum channel). In practice, the strong increase of the
electron-phonon heat flow with temperature limits us to
Tnode ≲ 100 mK.

The temperature Tnode can be experimentally deter-
mined from the electrical current fluctuations emitted
from the metallic island [2, 39, 40]. It should be noted
that the measured noise involves the contributions of two
sources of noise that both depend on Tnode: the thermal
fluctuations of the current emitted from the metallic is-
land, and the shot noise induced by the temperature dif-
ference across the studied non-ballistic quantum channel
(also called δT -noise [39, 41, 42]). Following the pro-
cedure established in [39], we separate these two noise
contributions by performing two independent noise mea-
surements, on different electrodes. Then we determine
the increase in Tnode solely from the thermal fluctuations
(see Appendix D). Alternatively, it is also possible to
calculate Tnode based on the heat flow theory that was
experimentally validated with a high accuracy in [39] on
a similar device. Here, the measured Tnode are found to
match calculated values within a negligible error < 4%
(see Appendix Fig. 7). In the following, the displayed
node temperatures Tnode at base temperature T ≃ 8 mK

(V-Vnode)

1 10

0.2

0.4

0.6

90.0 
59.7
39.8 
29.1 
14.6 
7.7
thy
∝

RK/3, �∞��0.1

��
� ∞

V-Vnode (µV)

T (mK)

2/3

FIG. 2. Renormalized transmission probability versus bias
voltage in the tunnel regime. Symbols represent, in a log-
log scale versus V − Vnode and for different uniform temper-
atures T ≃ Tnode ≃ Tenv, the experimental values of τ/τ∞.
Those are obtained from RK/τ=1/G − R, with G the mea-
sured differential conductance of the sample including both
tunnel contact and series resistance R = RK/3 (see Appendix
Fig. 9 for similar data at R = RK/2 and RK/4). The in-
trinsic (unrenormalized) transmission probability τ∞ depends
on applied gate voltages, and constitutes the only adjustable
parameter in the data-theory comparison. Black continuous
lines: full quantitative predictions of the tunnel DCB theory
(see Eq. (1) and Appendix B 1). Red dashed line: power

law η (V − Vnode)
2R/RK predicted for kBT ≪ e(V − Vnode) ≪

h/2πRC, using the quantitative theoretical value of η (see
Appendix Eq. (5)).

are obtained from noise measurements, except for the
limit case of tunnel junctions. In that tunnel case, and
also for higher values of the large electrodes’ temperature
T ≳ 15 mK, the calculated Tnode were used (as perform-
ing noise measurements with sufficient resolution is time
consuming).

We first focus on the tunnel limit of a quantum channel
of small intrinsic (not renormalized by DCB) transmis-
sion probability τ∞ ≪ 1. This regime is described by
the tunnel DCB theory, also called P (ε) theory [1]. In
this framework, the transmission probability τ reduced
by DCB (i.e. the channel’s differential conductance in
units of e2/h) can be expressed as a function of the Fermi
distributions fT(Tnode)(E) in the electrodes at the tem-
peratures T and Tnode on either side of the tunnel con-
tact, as well as of the probability PTenv(ε) that the energy
ε is absorbed (ε > 0) or emitted (ε < 0) by the electromag-
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netic environment at a temperature Tenv:

τ/τ∞ = 1 + ∫ dεdE PTenv(ε)fT (E − e (V − Vnode))

{∂EfTnode
(E + ε) − ∂EfTnode

(E − ε)} ,
(1)

where V is the bias voltage applied to the electrode be-
hind the generic channel (see Appendix B for full details
and analytical asymptotic solutions). We start by verify-
ing the canonical DCB behavior of the tunnel quantum
channel in the well-established regime of a uniform tem-
perature Tnode ≃ T ≃ Tenv as a function of V . In practice,
the transmission probability renormalized by DCB is ob-
tained from τ = RK/(1/G −R), where G is the measured
differential conductance across the whole sample (generic
channel in series with R). Note that τ∞ is not accurately
known experimentally (approximately obtained from the
channel’s conductance in e2/h units at large voltage bias
where the DCB renormalization is small). Therefore, un-
less stated otherwise, τ∞ is considered as an adjustable
parameter applying globally to all the measurements per-
formed with the same setting of the device. As shown
in Fig. 2 for R = RK/3, a good agreement is observed
between data and theoretical predictions without any
other adjustable parameters (see also Appendix Fig. 9
for R = RK/2 and RK/4). Henceforth, we focus on the
conductance in the linear regime (V → 0).

In Fig. 3, the transmission probability ratio τ/τ∞ is
now shown versus node temperature Tnode and in the
presence of a series resistance R = RK/N with N ∈

{2,3,4}. For a uniform temperature (Tnode ≃ T ≃ Tenv),
the data points displayed as full symbols follow the power

law T
2R/RK

node (black dashed lines) predicted at kBTnode ≪

h/2πRC (see Appendix Eq. (10) for a novel exact analyt-
ical expression). Significant deviations from the asymp-
totic power law are only expected to show up for the
largest uniform temperatures achieved at R = RK/2. This
can be seen in Fig. 3 by comparing the black dashed lines
with the full predictions of the tunnel DCB theory dis-
played as dash-dotted gray lines (see Appendix B 1, and
also Appendix Eqs. (6), (7) and (8) for a numerically
more efficient formulation of the linear conductance).
With this precise confirmation of the canonical tunnel
DCB behavior of our device versus uniform temperature,
we can now investigate the influence of a temperature
bias.

Measurements performed for a fixed T of either 8 mK,
15 mK or 28 mK, as a function of the heated-up Tnode,
are shown in Fig. 3 as open symbols. The transmis-
sion probability directly separates itself from the power
law predicted at low uniform temperatures (black dashed

lines). Yet, we find that the same power law T 2R/RK is
recovered for large Tnode/T ≳ 4, although with a lower
multiplicative factor (red dashed lines). This behavior
is expected from the tunnel DCB theory. We derived
a novel exact analytical expression, given in Appendix
Eq. (16), for the conductance in the limit of large tem-
perature bias across the tunnel junction (Tnode ≫ T ),
assuming the electromagnetic environment is at the av-
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FIG. 3. Renormalized transmission probability versus node
temperature in the tunnel regime (τ∞ ≪ 1) at low bias voltage
(V → 0). Full symbols: experimental τ/τ∞ at a uniform tem-
perature (Tnode ≃ T ≃ Tenv) for R = RK/3 (purple) and RK/4
(green). Gray dash-dotted lines and black dashed lines: full
and asymptotic (kBT ≪ h/2πRC) predictions, respectively,
both of them for a uniform temperature T = Tnode = Tenv.
Open symbols: renormalized transmission probability data
obtained in the presence of the series resistances R = RK/2,
RK/3 and RK/4, with a temperature bias Tnode −T ≥ 0 devel-
oping from different fixed values of the temperature T . Black
continuous lines and red dashed lines: full and asymptotic
(kBT ≪ kBTnode ≪ h/2πRC) predictions, respectively, both
of them versus Tnode at fixed T and assuming an electromag-
netic environment at Tenv = (T + Tnode)/2. For clarity, the
data/theory are shifted vertically in this log-log plot by a fac-
tor of 2 (4) for R = RK/3 (RK/4).

erage temperature Tenv ≃ Tnode/2 (see part (ii) of Ap-
pendix B 2 for a derivation). The red dashed lines were
obtained using this expression without adjustable param-
eters. Compared to the power law at a uniform tempera-
ture Tnode = T = Tenv, we find here the same power law ex-
ponent of Tnode but with a multiplicative factor reduced
by (21−2R/RK/

√
π)Γ(1.5 +R/RK)/Γ(1 +R/RK) (Γ is the

gamma function), in quantitative agreement with exper-
imental observations. It is useful to note that the above
mentioned reduction factor on the conductance can be
formulated as a rescaling in temperature by a reduction
factor α (as we are in the presence of a power law). As
discussed later, such a formulation is better suited for ex-
trapolation beyond the tunnel regime. Remarkably, this
Tnode rescaling factor of approximately α = 0.637, 0.648
and 0.655 for R = RK/2, RK/3 and RK/4, respectively
(see Appendix B 3), is markedly higher (∼ +30%) than
the 1/2 factor corresponding to the asymptotic mean
temperature Tnode/2. The tunnel DCB theory also al-
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lows us to numerically evaluate τ/τ∞ over the complete
span of Tnode ≥ T . The black continuous lines show such
calculations performed assuming Tenv = (T + Tnode)/2.
(Note that our experimental accuracy does not allow us
to precisely resolve what is the most appropriate choice
for Tenv in our device, with a similarly good agreement
at Tenv ∈ [(T + Tnode)/2, Tnode], see Appendix D 4 and
Appendix Fig. 8). As previously, the only adjustable pa-
rameter in the data/theory comparison is τ∞, which is
here set by matching the theory at a uniform tempera-
ture with the lowest Tnode data point (where Tnode ≃ T ).
The precision agreement between data and full numerical
calculations observed in Fig. 3 establishes the validity of
the tunnel DCB theory of a temperature biased tunnel
junction.

We now investigate the more general case of an elec-
tronic quantum channel of arbitrary electron transmis-
sion probability (τ∞ ∈ [0,1]) submitted to a temperature
bias. Theoretically, arbitrary values of τ∞ can be ad-
dressed through the mapping of the DCB problem in the
presence of a series resistance R to that of one impurity in
a Luttinger liquid [24], which holds for uniform tempera-
tures T ≃ Tnode ≃ Tenv and arbitrary voltages V provided
that eV, kBT ≪ h/2πRC. The corresponding Luttinger
crossover toward an insulating state at low temperatures
and voltages was fully solved first for special values of the
resistance in the pioneer work [43] (reducing to a simple
analytical expression for R = RK, see e.g. [28]) and re-
cently for any value of R [35]. This solution takes, in
the linear regime V → 0, the form of a renormalization
curveGeq

R/RK
(T /TI) for the sample conductance. It is said

‘universal’ because the influence of microscopic parame-
ters, such as the high-energy capacitive cutoff and the
intrinsic channel transmission τ∞ in the absence of DCB,
are encapsulated into the single temperature scale TI.
The previously discussed tunnel regime corresponds to
the power-law expected when approaching the insulating
low temperature limit Geq

R/RK
(T /TI → 0) ∝ (T /TI)

2R/RK .

In a first step, let us consider the near ballistic regime
(1 − τ ≪ 1). For a Luttinger liquid with an impurity, a
duality is predicted between strong back-scattering (tun-
nel regime) with a Luttinger interaction parameter K,
and weak back-scattering (near ballistic regime) with
an interaction parameter 1/K [36, 44, 45]. Thus the

dual of the tunnel conductance power law T 2/K−2 reads
in the near ballistic regime Gmax − G ∝ (T /TI)

2K−2 ∝

(T /TI)
−2R/(RK+R) with Gmax = N

N+1
R−1

K [24]. Accord-
ingly, as shown in Fig. 4 for R = RK/N with N ∈ {2,3,4},
the Luttinger universal renormalization curves at equi-
librium Geq

R/RK
(T /TI) (dash-dotted gray lines) asymp-

totically approach the corresponding power laws (black
dashed lines) as Gmax − G → 0 (Tnode/TI → ∞). How-
ever, this duality is not expected to hold beyond the
regime of both low and uniform temperatures where the
DCB-Luttinger liquid mapping applies. Consequently, it
is not expected to give access to the quantitative mul-
tiplicative factor for the conductance, as it depends on

-2R/(RK+R)
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FIG. 4. Conductance versus node temperature in the near
ballistic regime (1 − τ ≪ 1). The difference Gmax − G, be-
tween ballistic limit Gmax = N

N+1R
−1
K and sample linear con-

ductance G(V → 0), is plotted in a log-log scale as a func-
tion of the rescaled node temperature Tnode/TI for R = RK/2,
RK/3 andRK/4. Gray dash-dotted lines: full universal predic-
tions at uniform temperatures (Tnode = T = Tenv) [35]. Black
and red dashed lines: asymptotic (Gmax −G → 0) power law
predictions at uniform temperatures (black) and in the limit
Tnode ≫ T with Tenv = Tnode/2 (red). Black continuous lines:
predictions for a near ballistic junction temperature biased
at Tnode ≥ T with T = 8 mK and Tenv = (T + Tnode)/2. Full
and open symbols: measurements at a uniform temperature
T ≃ Tnode (full) and in the presence of a temperature bias at
fixed T ≃ 8 mK (open), respectively. The scaling temperature
TI is set by adjusting to the universal theory the lowest tem-
perature point Tnode ≃ 8 mK.

the capacitive cutoff. Here, we overcome these limita-
tions by providing new DCB predictions for near bal-
listic junctions (Gmax − G ≪ 1). As detailed in Ap-
pendix C 1, we obtain a novel exact analytical expres-
sion for the conductance at low uniform temperatures
(Tnode = T = Tenv ≪ h/2πkBRC, see Appendix Eq. (22)),
by expanding upon the approach of [46]. Remarkably,
the duality tunnel - near ballistic regime is found to hold
not only for the power law exponent, but also for the nu-
merical multiplicative factor. In the presence of a tem-
perature biased channel (T ≠ Tnode ≠ Tenv ≪ h/2πkBRC),
novel predictions are obtained within a different approach
based on the Keldysh formalism [47], and take the form
of an integral readily evaluated numerically (see Ap-
pendix C 3). The black continuous lines in Fig. 4 display
these new predictions, obtained by assuming that the
electromagnetic environment is at the mean temperature
Tenv = (T+Tnode)/2 (see Appendix Eq. (26)). Similarly to
the tunnel regime, we predict that the power law depen-
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dence of Gmax −G for uniform temperatures is recovered
at Tnode ≫ T , with a change in the multiplicative factor
displayed by the shift in log-log scale between black and
red dashed lines. This factor change here applies to the
difference Gmax−G, instead of the channel’s conductance
in the opposite tunnel regime. For a quantitative com-
parison between these two regimes, the factor change can
also be recast as an effective reduction of the node tem-
perature Tnode → αTnode. We find α ≃ 0.61, 0.62 and 0.64
for R = RK/2, RK/3 and RK/4, respectively. Although
not exactly identical, the temperature reduction factor α
in the tunnel and quasi-ballistic regimes are very close
to one another, within 5% for each of the presently in-
vestigated series resistances. However, larger differences
between these regimes are predicted to develop for larger
series resistances.

Comparing theory and experiment in the near ballistic
regime, first for uniform temperatures (Tnode ≃ T ≃ Tenv),
we find a very good agreement between the full universal
theory curves (dash-dotted gray lines) and the data (full
symbols) for R = RK/3 and RK/4. The only fit parame-
ter is the value of TI, determined by matching the data
point at the lowest temperature with the predicted value
Geq
R/RK

(Tnode/TI) (see Appendix C 2 and Appendix Fig. 6

for a parameter-free comparison, limited by the experi-
mental uncertainty on τ∞). Note that a good match with
the corresponding asymptotic power law (black dashed
lines) is observed up to the highest uniform tempera-
ture of about 100 mK. Second, the node temperature
is now changed while T ≃ 8 mK is kept fixed to create
a temperature bias. The corresponding Gmax − G data
points (blue open symbols) depart from the predictions
at a uniform temperature Tnode = T = Tenv (dash-dotted
gray lines and black dashed lines). In contrast, a pre-
cise agreement is observed with the presently developed
DCB predictions for a temperature-biased near-ballistic
channel, here evaluated at fixed T = 8 mK and assuming
Tenv = (T + Tnode)/2 (black continuous lines).

Does an effective temperature rescaling at Tnode ≫ T
persist for an arbitrary transmission probability τ ∈ [0,1]
across the generic quantum channel, beyond the tunnel
and near ballistic limits? First, as previously demon-
strated [33, 34], we find a good agreement over the full
range of conductance 0 < G < Gmax between the uni-
versal renormalization curves at uniform temperatures
Geq
R/RK

(Tnode/TI) (gray dash-dotted lines in Fig. 5 and

Appendix Fig. 11) and the sample conductance mea-
sured at Tnode ≃ T (see Appendix Fig. 10 for a com-
parison). Now turning to the regime of a temperature
bias Tnode ≥ T , we focus in Fig. 5 on the representative
R = RK/3 at T ≃ 8 mK for clarity (see Appendix Fig. 11
for R = RK/2 and RK/4). The measured conductance G
across the whole sample – non-ballistic channel and R
– is displayed as open symbols, with each identical set
of symbols of the same color corresponding to a fixed
tuning of the quantum channel (a fixed τ∞, see insets in
Fig. 5 for two data sets each corresponding to a different
tuning). A single value of the scaling temperature TI is

G
 (

1/
R

K
)

0.6

0.4

0.2

0.0
0.001 0.01 0.1 1 100 100010

Tnode/TI

Tnode/TI

Tnode/TI

G
 (

1/
R

K
)

G
 (1/R

K )

RK/3

0.3

0.2

0.70

0.65

40 200

1

0.2

FIG. 5. Conductance for arbitrary channel tunings and
R = RK/3 versus node temperature. Open symbols: mea-
sured sample conductance G at T ≃ 8 mK versus heated-up
Tnode. Different tunings (τ∞) of the channel are shown using
different symbols and colors. For each tuning a unique value
of TI is determined by matching the lowest temperature data
point at Tnode ≃ T ≃ 8 mK with Geq

1/3(T /TI), the universal pre-

diction at uniform temperatures (gray dash-dotted line). The
black line corresponds to the universal prediction with the
temperature reduction factor Tnode → αTnode predicted to ap-
ply for large temperature bias in the tunnel regime (α ≃ 0.648,
see Appendix Eq. (18)). Insets: magnified view for interme-
diate channel tunings.

associated with a fixed tuning of the channel, together
with a specific RC environment. It is here obtained by
matching the equilibrium Geq

1/3
(Tnode/TI) with the con-

ductance measured for this tuning at the lowest Tnode

where the temperature is uniform (Tnode ≃ T ≃ 8 mK).
As Tnode increases, a temperature bias develops and the
measured conductance moves away from Geq

1/3
(Tnode/TI).

Remarkably, we find that for large enough temperature
bias (Tnode/T ≳ 4), the universal uniform temperature
curve is recovered at the experimental resolution pro-
vided we apply a temperature rescaling Tnode → αTnode.
The temperature reduction factor in the tunnel and near
ballistic regimes being very close to one another (within
5%), we only display for this comparison Geq

1/3
(αTnode/TI)

with α the tunnel temperature reduction factor given by
Appendix Eq. (18) (black continuous line).

The conductance reduction experienced by a quantum
conductor when it is embedded into an on-chip dissipa-
tive circuit, the so-called dynamical Coulomb blockade
(DCB), has been explored in the presence of tempera-
ture gradients. We experimentally have established the
existing tunnel DCB theory under a temperature bias,
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and obtained novel analytical expressions for the con-
ductance. In the near ballistic regime, we have devel-
oped the theory and provided quantitative predictions
as a function of the device parameters and for arbitrary
temperatures differences, which have been verified exper-
imentally. More generally, beyond the tunnel and near
ballistic limits, we have observed that the equilibrium

predictions apply to a good approximation for large tem-
perature differences, provided a simple effective rescaling
of the temperature is performed. This work develops
and establishes our understanding of thermally inhomo-
geneous quantum circuits, a knowledge set to play a role
for the future engineering of functional quantum devices
involving local dissipation.
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APPENDIX

A. Samples

The sample was made in the same batch as the one
used in [16], with additional fabrication steps. It con-
sists of a Ga(Al)As two-dimensional electron gas buried
105 nm below the surface, of density 2.5 × 1011 cm−2 and
of mobility 106 cm2V−1s−1. Its nanostructuration is per-
formed by standard e-beam lithography, dry etching and
metallic deposition. The central metallic island (nickel
(30 nm), gold (120 nm) and germanium (60 nm)) was
thermally annealed (440 ○C for 50 s) to achieve a good
ohmic contact with the 2DEG.
The contact quality between the metallic island and the
2DEG is fully characterized, through the individual de-
termination of the electron reflection probability at the
interface for each connected quantum Hall channel, with
the same experimental procedure previously detailed in
Methods of [48]. We find a reflection probability below
≲ 0.001% (the statistical uncertainty) for all the used
channels.
The typical electronic level spacing in the metallic island
is estimated to be negligibly small (δ ≈ kB×0.2µK), based
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on the electronic density of states of gold (νF ≈ 1.14 ×
1047 J−1m−3) and the metallic island volume (≈ 3µm3).
Due to technical problems, the initial electrostatic gates
(shown on Fig. 1) were etched out, redefined and rede-
posited with 40 nm of aluminum.
An important device parameter is the charging energy
EC ≡ e2/2C of the island. For this specific device, one
of the channel remains open and standard Coulomb dia-
mond determination of EC could not be performed. In-
stead, the value EC ≃ kB × 0.37 K is obtained by fitting
the overall G(V ) tunnel data at a uniform temperature,
at all T ≃ Tnode ≃ Tenv (from 8 to 90 mK) and for all
the series resistances RK/N with N ∈ {2,3,4}. Note that
this value is slightly higher (∼ +20%) than the one found
in [16]. The reduced geometrical capacitance C might
come from imperfect new gates. However, note also that
EC is sufficiently large to have a relatively small impact,
notably in the data-theory comparison as a function of
a temperature bias. This can be seen in Fig. 3 from the
small difference between black continuous lines and red
dashed lines at the largest Tnode.
The resistance in series with the studied, non-ballistic
channels is simply taken as the dc electrical resistance
RK/N of the constitutive N quantum Hall channels in
parallel. In principle, deviations from this value could
occur at high frequencies. However, these deviations are
limited by the high-frequency cutoff introduced by the
capacitance C of the island. For instance, such devi-
ations could result from a non-zero conductivity across
the 2D bulk at the frequency ν when the energy hν be-
comes comparable with the quantum Hall gap. Yet, in
our sample the quantum Hall gap is about two orders of
magnitude higher than h/RC = N ×EC. Also, the transit
time ttransit along the micron-scale distance between the
back-scattering location in the non-ballistic channel and
the island could lead to an inductive correction to R. Yet,
given the typical velocity of ∼ 105 m/s for the propagation
of charge along the quantum Hall edge, the associated
energy scale h/ttransit is about one order of magnitude
higher than h/RC. In practice, we check the validity
of our RC circuit description by comparing the conduc-
tance data with the DCB theory in the well-established
regimes of a uniform temperature (see Figs. 2, 9, 10, and
full symbols in Figs. 3 and 4).

B. P (E) theory of dynamical Coulomb Blockade
for a tunnel junction

Here we focus on the predictions for the DCB renor-
malization of the transmission probability τ across an
electronic channel in the tunnel regime (τ, τ∞ ≪ 1), when
it is embedded in an RC circuit. These results can be ap-
plied to a high-resistance tunnel junction including many
such channels replacing τ/RK and τ∞/RK by, respec-
tively, the junction renormalized and intrinsic differential
conductance.

1. Numerically efficient formulation at arbitrary voltage
and uniform temperature T = Tnode = Tenv with an RC

environment

Numerical calculations of the conductance of a coher-
ent conductor in the tunnel limit in presence of environ-
mental back-action were made with the efficient formula-
tion of the DCB theory for small tunnel junctions given
in [49]. In this section, we recapitulate the expressions
used in the case of uniform temperatures and finite bias
voltages.

The transmission probability τ ≡ RKdI/dV across a
short electronic channel in the tunnel regime, embedded
in an electromagnetic environment described by the series
impedance Z(ω), at a uniform temperature T = Tnode =

Tenv, and for a voltage V applied here across the chan-
nel (corresponding to V − Vnode in Fig. 2, as shown in
Fig. 1(a)) reads [11]:

τ(V,T )/τ∞ − 1 =

∫

+∞

0
dt

2πt

sinh2 πtkBT
h̵

(
kBT

h̵
)

2

Im [eJ(t)] cos
eV t

h̵
,

(2)

with the channel intrinsic resistance RK/τ∞ assumed to
be very large compared to the environmental impedance
Re[Z(ω)] ≪ RK/τ∞.

For the simplified RC model of the electromagnetic
environment shown in article Fig. 1(b) (Z(ω) = R/(1 +
iRCω)), J(t) reads:

J(t) =
πR

RK

⎛

⎝
(1 − e−∣t∣/RC)(cot

h̵

2RCkBT
− i)

−
2kBT ∣ t ∣

h̵
+ 2

+∞

∑
n=1

1 − e−ωn∣t∣

πn [(RCωn)2 − 1]

⎞

⎠
,

(3)

where ωn = 2πnkBT /h̵ are Matsubara’s frequencies and

2
+∞

∑
n=1

1 − e−ωnt

πn [(RCωn)2 − 1]
= −

1

π
[2γ +Ψ(−x) +Ψ(x)

+2 ln(1 − y) +
y

1 + x
2F1(1,1 + x,2 + x, y)

+
y

1 − x
2F1(1,1 − x,2 − x, y)],

(4)

where γ ≃ 0.5772 is Euler’s constant, Ψ is the loga-
rithmic derivative of the Gamma function, 2F1 is the
hypergeometric function, y = exp(−2πtkBT

h̵
), and x =

ECRK/(2π2RkBT ) with EC = e2/(2C) the charging en-
ergy.

2. Analytical asymptotic expressions versus V at
T = Tnode = Tenv = 0, and versus T = Tnode = Tenv at V = 0

We detail here the derivation of analytical expressions
at a uniform temperature T = Tnode = Tenv for the
asymptotic limits kBT ≪ eV ≪ h̵/RC (abbreviated in
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equations as V → 0, T = 0), plotted on Fig. 2, and
eV ≪ kBT ≪ h̵/RC (abbreviated as T → 0, V = 0),
plotted on Fig. 3.

Although the expression given by Eq. (2) is convenient
for performing numerical evaluations in most practical
situations, the singularity of the integrand in Eq. (2)
is troublesome when attempting to obtain analytical re-
sults. To express asymptotic limits in the case of a RC
environment, other formulations are required.

(i) At T = Tnode ≪ eV /kB, in [7], the conductance
at low voltages with respect to the capacitive cutoff
(eV ≪ h̵/RC) is obtained from a P (ε) formulation such
as Eq. (1). The transmission probability then reads:

τ(T = 0, V → 0)

τ∞
≃

1 + 2R/RK

Γ(2 + 2R/RK)
(
πReV

eγRKEC
)

2R/RK

.

(5)

(ii) For the linear conductance at eV ≪ kBT , we have
developed an equivalent formulation of the tunnel con-
ductance by extending the analysis to the complex plane
in t, managing the poles and shifting the integral contour.
We then get:

τ(V = 0, T )

τ∞
= ∫

+∞

0
dt

πkBT /h̵

cosh2 πtkBT
h̵

× eJ
�
(t,T ). (6)

For the simplified RC model of the electromagnetic en-
vironment shown in Fig. 1(b), J� reads:

J�
(t, T ) =

πR

RK

⎛

⎝

cos h̵
2RCkBT

− e−t/RC

sin h̵
2RCkBT

−
2tkBT

h̵

⎞

⎠

+
2R

RK

∞

∑
n=1

1 − (−1)ne−ωnt

n(ω2
nR

2C2 − 1)
.

(7)

The sum over Matsubara’s frequencies then becomes:

−
∞

∑
n=1

1 − (−1)ne−ωnt

n(ω2
nR

2C2 − 1)
= Ψ(x) +

1

2x
+ γ + ln(

√
y +

1
√
y
)

+
πyx

2 sin(πx)
−

y

2(1 + x)
2F1(1,1 + x,2 + x,−y)

−
y

2(1 − x)
2F1(1,1 − x,2 − x,−y),

(8)

recalling for clarity that ωn = 2πnkBT /h̵ are Matsub-
ara’s frequencies, γ is Euler’s constant, Ψ is the log-
arithmic derivative of the Gamma function, 2F1 is
the hypergeometric function, y = exp(−2πtkBT /h̵), and
x = ECRK/(2π2RkBT ).

For the asymptotic limit kBT ≪ h̵/RC, the low tem-
perature behavior is dominated by large values of t≫ RC
in Eq. (6). We can thus use the long t, small T expansion
[50]:

J�
(t) ≃ −

2R

RK
(ln [2 cosh(

πtkBT

h̵
)] + ln(2x) + γ) . (9)

Inserting this expansion in Eq. (6), we find the asymp-
totic (eV ≪ kBT ≪ h̵/RC) analytical expression of the
transmission probability:

τ(V = 0, T → 0)

τ∞
≃

√
π

2

Γ(1 +R/RK)

Γ(1.5 +R/RK)
(
π2RkBT

eγRKEC
)

2R/RK

.

(10)

Note that previously, in [16], we proposed a slightly
different empirical expression extracted from [51], which

differs by a factor (πe−2γ)R/RK from the exact asymptotic
expression Eq. (10) (this factor deviates from 1 by less
than 1% for R/RK ≤ 1).

3. Extension to different bath temperatures T,Tnode, Tenv

We now focus on the case where the voltage-biased
tunnel contact is embedded between two electrodes L
and R at different temperatures Tnode and T , and with
an electromagnetic environment at the temperature Tenv.

Following Joyez et al. and their notations [49], the rel-
ative conductance reduction in the tunnel regime reads:

τ

τ∞
− 1 = ∫ dE ∫ dεPTenv(ε)fTnode(E − eV )

∂

∂E
[fT(E + ε) − fT(E − ε)] ,

(11)

with PTenv(ε) the probability distribution to exchange
the energy ε with the electromagnetic environment (pre-
viously introduced in Eq. (1)), and fTx the Fermi func-
tion at temperature Tx with x ∈ {L,R}.

Equivalently, in the time-domain, the relative conduc-
tance reduction reads:

τ(V,Tnode, Tenv, T )

τ∞
− 1 = ∫

+∞

0
dt2πt Im [eJ(t,Tenv)]

×
kBT /h̵

sinh(πtkBT /h̵)

kBTnode/h̵

sinh(πtkBTnode/h̵)
cos

eV t

h̵
.

(12)

In the limit T = 0, one finds:

τ(V,Tnode, Tenv, T = 0)

τ∞
− 1 = 2∫

+∞

0
dt Im [eJ(t,Tenv)]

×
kBTnode/h̵

sinh(πtkBTnode/h̵)
cos

eV t

h̵
.

(13)

A natural approximation for the environment tem-
perature is the average temperature Tenv = Tnode/2; if
eV ≪ kBTnode, Eq. (13) then simplifies to:

τ(V = 0, Tnode = 2Tenv, Tenv, T = 0)/τ∞ = eJ
�
(0,Tenv).

(14)
Note that Eq. (14) is equivalent in the energy domain to:

τ(V = 0, Tnode = 2Tenv, Tenv, T = 0)/τ∞ =

∫

∞

−∞
dε

2PTenv(ε)

1 + eε/2kBTenv
= ∫

∞

−∞
dεPTenv(ε)e

−ε/2kBTenv .
(15)
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When Tenv = Tnode/2 ≪ h̵/kBRC, we have J�(0, Tenv) ≃

− 2R
RK

(ln(2x) + γ). The low temperature asymptotic be-

havior of Eq. (14) then reads :

τ(V = 0, Tnode ≪ h̵/kBRC,Tenv = Tnode/2, T = 0)/τ∞ ≃

(
π2RkBTnode

2 eγRKEC
)

2R/RK

.

(16)

Equation 16 with one null temperature and Eq. (10)
with uniform temperatures are both temperature power
laws with the same exponent 2R/RK. They correspond
to, respectively, the red and black dashed lines plotted on
Fig. 3. The constant ratio between these limits allows us
to calculate the temperature rescaling factor α discussed
in the main paper:

τ(V = 0, Tnode ≪ h̵/kBRC,Tenv = Tnode/2, T = 0)

τ(V = 0, Tnode = Tenv = T ≪ h̵/kBRC)
=

2
√
π

Γ(1.5 +R/RK)

Γ(1 +R/RK)
2−2R/RK = α2R/RK .

(17)

Consequently, the temperature reduction factor α reads,
in the tunnel regime:

α =
1

2
[

2
√
π

Γ(1.5 +R/RK)

Γ(1 +R/RK)
]

RK/2R

. (18)

For the implemented series resistances R = RK/2, RK/3
and RK/4, we obtain α ≃ 0.637, 0.648 and 0.655, respec-
tively.

C. Dynamical Coulomb blockade theory in the
near-ballistic regime

1. Quantitative predictions at a uniform temperature
T = Tnode = Tenv

The power law exponent in the vicinity of the ballis-
tic regime is known from the duality predicted between
strong back-scattering (tunnel) and weak back-scattering
(near ballistic) regimes across an impurity in a Luttinger
liquid of interaction parameter K and 1/K, respectively
[36, 44, 45]. The corresponding prefactor is nonetheless
not universal and depends on the microscopic details,
such as the high frequency capacitive cutoff. It has been
inferred in the particular case R = RK (K = 1/2) in [33],
adapting [46]. We extend here such a quantitative pre-
diction to R = RK/N with N ∈ N. Remarkably, we find
that the duality also exactly applies to the prefactor.

Following Ref. [46], we assume an energy-independent
back-scattering at the contact in the absence of DCB, and
describe the N fully ballistic channels and the weakly re-
flected one with bosonic variables φj(x) (j = 1, . . . ,N+1).
The nearly ballistic (weakly reflected) edge channel is de-
noted by j = 1. Each channel has a fictitious right(left)-
moving part, corresponding to the edge path before (af-
ter) entering the charged island in the region x > 0. The

island electric charge is thus

Q̂ = −
e

π

N+1

∑
j=1
∫

+∞

0
dx∂xφj(x) =

e

π
∑
j

φj , (19)

where we set the notation φj ≡ φj(0). It is in fact easier
to work with the (properly normalized) total charge field

φ̃1 = 1
√
N+1
∑j φj . Employing current conservation, the

Kubo formula can be written as

G = Gmax
2ωn
π

⟨φ̃2(ωn)φ̃2(−ωn)⟩iωn→0+ , (20)

where the imaginary (Matsubara) frequency ωn =

2πnkBT /h̵ is analytically continued to the real axis
and then sent to zero. Here we have introduced a
second linear combination of the original fields φ̃2 =√
N/(N + 1) (φ1 −

1
N ∑j≠1 φj), with coefficients orthog-

onal to those of φ̃1. The advantage of performing this
orthogonal change of variables is that the Hamiltonian
then couples only the two fields φ̃1 and φ̃2. We can fac-
tor out the other linear combinations φ̃j (j ≥ 2) for the
evaluation of the Kubo formula.

With this formulation, the Euclidean action that gov-
erns the dynamics of the two relevant bosonic fields is
S = ∑j=1,2∑

+∞
n=0 φ̃j(iωn)Kj φ̃j(−iωn) + SBS with the in-

verse Green’s functions πKj = ∣ωn∣ +δj,1(N +1)EC/π and
the back-scattering term

SBS =
D

√
1 − τ∞
π

∫

h̵/kBT

0
dτ cos(

2φ̃1(τ) + 2
√
Nφ̃2(τ)

√
N + 1

) ,

(21)
with D the edge electrons’ energy bandwidth that is nec-
essarily introduced in bosonization. D acts as a high-
energy regularization which cancels out when evaluating
the conductance.

Equipped with this action, we follow Appendix A.1
from Ref. [46] and compute the conductance to lead-
ing non-vanishing order in the back-scattering amplitude√

1 − τ∞ ≪ 1. We find the analytical result

Gmax −G =
RK

√
π (1 − τ∞)

2 (R +RK)
2

Γ [RK/ (R +RK)]

Γ [1/2 +RK/ (R +RK)]

× [
eγEC(1 +RK/R)

π2kBT
]

2R
R+RK

,

(22)

where we recall that Gmax = (R +RK)−1. We obtain the
desired temperature scaling T 2K−2 also predicted from
the duality tunnel-near ballistic with, in addition, an ex-
act prediction for the prefactor in terms of the transmis-
sion τ∞, the charging energy EC = e2/2C and the ratio
of resistances RK/R corresponding to the number of bal-
listic channels connecting the island.

Remarkably, although this was not expected to our
knowledge, we find that the duality between tunnel and
near ballistic regimes also applies for the exact value of
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FIG. 6. Insets: symbols show illustrative measurements at
τ∞ ∼ 0.98 of G −Gmax for R = RK/N (top and bottom panel:
N = 4 and 3, resp.) versus equilibrium temperature T at
V = 0, with Gmax = 1

RK

N
N+1 (data also shown in Fig. 4);

Continuous lines are quantitative theoretical predictions of
Eq. (22), using τ∞ = τ(V = −58µV) without any fit parame-
ter; Dashed lines are fits using τ∞ as a free parameter adjusted
by matching the data point at T = 90 mK. Main panel: sym-
bols represent the fitted values of τ∞ versus the corresponding
large bias voltage measurements τ(V = −58µV).

the multiplicative factor, despite the dependence of this
prefactor on the capacitive cutoff. More precisely, we
compare the expressions of τ/τ∞ in the tunnel regime (ob-
tained from Eq. (10)), with (Gmax −G)/(Gmax −G∞) in
the near ballistic regime (obtained from Eq. (22)), where
G∞ ≡ (RK/τ∞ + R)−1 is the device conductance in the
absence of DCB renormalization. It turns out that these
two expressions map exactly onto one another provided
K = RK/(R +RK) is replaced by 1/K = R/RK + 1. This
remarkable robustness of the duality also suggests that
Eq. (22), which was obtained for R = RK/N , may ap-
ply for arbitrary values of R (a theoretical treatment of
arbitrary R is in preparation [47]).

2. Comparison quantitative predictions-experiments at a
uniform temperature T = Tnode = Tenv

In Fig. 6, we confront the new predictions of Eq. (22)
with the experimental conductance measured at equilib-
rium in the near ballistic regime, for R = RK/3 and RK/4.

The insets display a direct comparison of the predicted
(continuous lines) and measured (symbols) conductance
at a representative channel tuning of τ∞ ∼ 0.98. The
quantitative predictions of Eq. (22) are calculated with-

out any fit parameter, assuming τ∞ ≃ τ(V = −58µV)

on the basis that for such large dc bias voltage only
a relatively small renormalization due to DCB is ex-
pected (V being of the order of the capacitive cutoff
NEC/πe = h/2πeRC). We observe here a relatively small
quantitative discrepancy of ∼ 7% and ∼ 16% for R = RK/4
and RK/3, respectively. This small discrepancy could re-
sult from the experimental uncertainty on τ∞, due to a
residual DCB renormalization as well as a non-negligible
energy dependence of τ∞ at large bias voltages.

In the main panel, we perform a quantitative
data/theory comparison over a broad span of τ∞ ∈

[0.96,1]. For this purpose, the fitted value τfit
∞ is ob-

tained by matching the prediction of Eq. (22) with the
conductance measured at T ≃ 90 mK. The resulting τfit

∞

is plotted as symbols versus the measured transmission
probability at high bias voltage τ(V = −58µV). In the
ideal case where τ∞ = τ(V = −58µV), we would expect
the τfit

∞ points to fall on the continuous straight line cor-
responding to τfit

∞ = τ(V = −58µV). We observe that the
data points are relatively close to this line, and that the
distance reduces as τ∞ approaches one. This compari-
son establishes the quantitative predictions of Eq. (22)
at a good relative accuracy, which we believe is here
limited by experimental discrepancies between τ∞ and
τ(V = −58µV).

3. Near ballistic theory with different bath temperatures
T,Tnode, Tenv

The QPC is here coupled to two electrodes at temper-
atures Tnode and T . In that case one cannot use the Eu-
clidian action employed at equilibrium, and an adapted
Keldysh approach is required. Here, we restrict ourselves
to a simple resistance R = RK/N in series with the QPC.
A full analysis including exactly the parallel capacitance
C will be performed separately [47].

The QPC is modeled by a weak local back-scattering
term at x = 0:

HBS =
√

1 − τ∞ cos(2φ1(0))/2πt0, (23)

with 1 − τ∞ ≪ 1, t0 a short time cutoff of the order
of h̵/EC, and φ1 the bosonic field introduced in Ap-
pendix C 1. We treat the remaining N channels as
a linear resistance R = RK/N (note that the present
approach applies to arbitrary values of R). The cou-
pling term between the QPC and this environment reads:
eφ1(0)(V − û)/π, with V the voltage applied to the all
device (QPC and series resistance), eφ1(0)/π the total
charge transferred through the QPC, and û the volt-
age operator across the resistance, whose fluctuations are
given by ∂2

t J(t) (see Eq. (3)) and are determined by R
and Tenv.

First, we need to distinguish the right and left going
electron fields ΨR,1,ΨL,1. ΨR,1 moves away from the
island, at a temperature Tnode. ΨL,1 moves toward it,
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corresponding to electrons injected from the right elec-
trode at temperature T (see article Fig. 1(b)). Second,
we adopt a similar strategy to Ref. [24] by integrating out
the environment, ending up with an effective Keldysh ac-
tion for the bosonic field φ1(0) [47].

The mapping of this DCB problem to a one-
dimensional Luttinger liquid with an impurity breaks
down (also when including C, which corresponds to
finite-range interactions as discussed in the supplemental
material of [30]). Yet, it is still convenient to use the
parameter K = (1+R/RK)−1, which determines the non-
diagonal element of the Keldysh matrix Green’s function
for φ1(0):

Cneq
(t;Tnode, Tenv, T ) =

K

2
[Ceq

(t;Tnode) +C
eq
(t;T )]

+(1 −K)Ceq
(t;Tenv). (24)

Here we use the Green’s function obtained at a uni-
form temperature T in a Luttinger liquid with pa-
rameter K and at the same cutoff t0: Ceq(t;T ) =

−(K/2) ln [h̵ sinh (πkBT (−t + it0)/h̵) /πkBTt0)].
To lowest order with respect to the back-

scattering amplitude
√

1 − τ∞, the Green’s function
Cneq(t;Tnode, Tenv, T ) determines fully the current
as a function of the voltage V and temperatures
Tnode, Tenv, T . Here we restrict ourselves to the ex-
perimentally measured linear conductance at zero dc
voltage, using an extension of Kubo’s formula [38, 52].
We find:

Gmax −G(Tnode, Tenv, T ) =

−iK2 1 − τ∞
πt20RK

∫

∞

−∞
dt t e4Cneq

(t;Tnode,Tenv,T ). (25)

We can determine the effective time cutoff t0 by com-
parison to the prediction for a uniform temperature T
given in Eq. (22): t0 = h̵πKe−γ/EC, with γ the Euler’s
constant. Note that this prefactor can also be recovered
from a complete analysis including C, as will be detailed
elsewhere [47].

Injecting Eq. (24) into Eq. (25) and restricting our-
selves to the experimental hypothesis Tenv = (T +

Tnode)/2, we finally obtain:

Gmax −G(Tnode,
Tnode + T

2
, T ) =

2K2(1 − τ∞)

πRK
sinπK

×[
2eγEC

π2KkB(Tnode + T )
]

2(1−K)

[
8 TnodeT

(Tnode + T )2
]

K2

∫

∞

0
dt

t

(sinh t)
2K(1−K)

[cosh 2t −cosh(2t
Tnode − T

Tnode + T
)]

−K2

.

(26)

We recall that K = (1+R/RK)−1 and Gmax = (R+RK)−1 =

K/RK. The integral in Eq. (26) can be readily evaluated
numerically. This allows one to compute the conductance
at arbitrary values of T , Tnode, as long as both remain
small with respect to the high energy cutoff (T,Tnode ≪

EC/kB) and that the back-scattering remains weak (1 −
G/Gmax ≪ 1). The continuous lines in Fig. 4 are the
predictions of Eq. (26).

D. Experimental electronic temperatures

Having a good knowledge of the different electronic
temperatures (base T and node Tnode) is crucial for the
present experiments. In this section, we first summa-
rize how these temperatures are separately measured.
Then we detail how Tnode can be calculated based on the
heat Coulomb blockade theory previously established,
and compare with our measurements. Finally, we dis-
cuss the possible choices for the temperature Tenv of the
electromagnetic environment composed of the series RC
circuit.

1. Measurement of the electrons’ temperature T in the large
electrodes

Following [16], we have obtained T from shot noise
measurements in a device configuration where the metal-
lic island is bypassed (thanks to lateral gates visible in
Fig. 1(a), which are operated as short-circuit switches).
For temperatures T ≥ 40 mK, we used the mixing cham-
ber temperature measured by a RuO2 thermometer,
which was previously shown to match very closely the
electrons’ temperature on the same setup [16].

2. Measurement of the electrons’ temperature in the
metallic island Tnode

Following [39], the temperature increase of the elec-
trons in the central node is inferred from two inde-
pendent noise measurements, performed on the elec-
trodes 1 and 3 of Fig. 1(a). Here, one noise measure-
ment is realized behind the partially transmitted chan-
nel (on electrode numbered 3, schematically connected
to an amplifier and resonator) and the other one be-
hind the N1 ballistic channels (on electrode numbered
1, also schematically connected to an amplifier). Specif-
ically, we measure the difference with respect to equi-
librium in the auto-correlation signals ∆S11 and ∆S33,
and in the cross-correlation signal ∆S13. From cur-
rent conservation and the negligible charge accumulation
in the device at the MHz measurement frequencies, we
find following [39, 40] that the thermal noise increase
∆Sth ≡ 2kB(Tnode − T )/RK is given by the excess (in-
crease in) noise signals:

∆Sth
= ∆S11

N1 +N2

N1N2
−∆S33

N1

N2 (N1 +N2)
(27)

or alternatively

∆Sth
= ∆S11

N1 +N2

N1N2
+

∆S13

N2
. (28)
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FIG. 7. Symbols: relative difference between the calculated
node temperature T calc

node and the measured one Tmeas
node , shown

at base temperature T ∼ 8 mK for both R = RK/3 and R =

RK/4, over the full range of explored τ values.

Note that both expressions allow one to extract Tnode−T
independently. We have checked that they were equiva-
lent. None of these expressions depend on τ .

In practice, each data point is averaged over about
10 min to get a temperature resolution of ∼ 0.1 mK. At
this resolution, we are also sensitive at our lowest tem-
perature to a small heating of the central node by the
spurious low-frequency noise induced by vibrations. This
noise, which depends on the device configuration, is sep-
arately determined to be δVnoise ∼ 0.4µV. It results in a
small heating of the central node of ≲ 0.2 mK.

3. Calculation of the electrons’ temperature in the metallic
island Tnode

We also relied on our knowledge of heat flow in the
device [39] to calculate Tnode. These calculated values
were used in the tunnel regime and also for the out-of-
equilibrium measurements performed at temperatures T
larger than our base temperature ∼ 8 mK.

The node temperature is determined by balancing the
injected Joule power in the metallic node (PJ) with the

outgoing heat currents, from electrons to phonons (JQph)

and through the connected electronic channels (JQel ).
The electron-phonon heat flow is determined when the

device only hosts ballistic channels. We find:

JQph ≃ 1.8 × 10−8 (T 5.5
node − T

5.5) W. (29)

The flow of heat across the electronic channels reads

�∞~0.1

�/
� ∞
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0.1

1

Tnode (mK)

thy Tenv= (T+Tnode)/2

thy Tenv∈ [T,Tnode]
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RK/4

T=8 mK

FIG. 8. Open symbols: renormalized transmission probabil-
ity τ/τ∞ of the generic channel in series with a resistance
RK/2, RK/3 and RK/4 versus the node temperature at V = 0
at the base temperatures T ≃ 8 mK in a log-log scale. Black
lines: predictions of the full tunnel DCB theory for different
temperatures (see Appendix B 3) calculated using T = 8 mK,
Tnode, and Tenv = (T + Tnode)/2. τ∞ is the only adjustable
parameter per value of R/RK in the data-theory comparison.
The gray areas correspond to the predicted range of conduc-
tance for Tenv ∈ [T,Tnode], using T = 8 mK and Tnode.

[39]:

JQel = (N + τ)
π2k2

B

6h
(T 2

node − T
2)

+(N + τ)
(N + τ2)E2

C

π2h

× [I (
(N + τ)EC

πkBT
) − I (

(N + τ)EC

πkBTnode
)] ,

(30)

with I(x) = 1
2
[ln ( x

2π
) − π

x
− ψ ( x

2π
)].

Knowing the injected power PJ =
N1V

2
1 +N2V

2
2

2RK
, N =

N1 +N2, the charging energy EC = kB × 370 mK and the
temperature T , we can solve the heat balance equation
for each measured point τ and thereby find the only un-
known parameter Tnode.

The relative accuracy of the heat Coulomb blockade
theory on the present device is tested at base tempera-
ture T ∼ 8 mK in Fig. 7, where we plot as symbols the
relative difference between calculated and measured node
temperatures. The agreement is better than 4% over the
full τ and Tnode ranges.
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4. Temperature of the electromagnetic environment Tenv

The environment temperature appears as a separate
parameter Tenv in the tunnel DCB theory as well as in
the novel theory developed in the near ballistic regime
(Appendix C 3). In the main paper, we use the average
value Tenv = (Tnode +T )/2. Here, we determine the range
of Tenv over which the tunnel DCB theory is compatible
with the data.

For this purpose, we show in Fig. 8 the same tunnel
data points as in Fig. 3, and the black continuous lines
also correspond to the tunnel DCB theory predictions
with Tenv = (Tnode + T )/2. In addition, the gray areas
enclose the tunnel DCB predictions for the full interval
Tenv ∈ [T,Tnode]. In practice the data points are close
or slightly above the prediction for Tenv = (Tnode + T )/2,
suggesting that Tenv ≳ (Tnode + T )/2. However, the in-
terval Tenv ∈ [∼ (Tnode + T )/2, Tnode] remains within our
experimental uncertainty (approximately the size of the
points).

E. Complementary data

1. DCB under a bias voltage in the tunnel regime at RK/2
and RK/4
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FIG. 9. Tunnel DCB theory-data comparison under a bias
voltage at RK/2 and RK/4. Symbols: measured renormalized
transmission probability across the generic channel in series
with a resistance RK/2 (RK/4) plotted versus the channel
bias voltage V −Vnode at different temperatures T in a log-log
scale. Black lines: full tunnel DCB theory calculated with the
parameters C = 3.1 fF (C = 2.5 fF) and the measured temper-
ature T . Red dashed line: asymptotic power law predictions
at zero temperature with no fit parameter.

To complement Fig. 2 focusing on R = RK/3, we plot

in Fig. 9 the measured conductances (symbols) and DCB
predictions (lines) in the tunnel regime for the series re-
sistance R = RK/2 and RK/4 at different temperatures
T .
2. Full Tomonaga-Luttinger conductance renormalization

curve at equilibrium

0.01 1 100 10000
T/TI

0.0

0.2

0.4

0.6

0.8

G
(1
/R
K
)

RK/3

RK/4

FIG. 10. Universal renormalization flow of the conductance
at equilibrium. Colored continuous lines represent the exper-
imental curves (green for RK/4 is shifted vertically by 0.1,
purple shows RK/3) obtained by averaging the ensemble of
data measured from T = 8 mK to T = 90 mK for each τ∞
configuration (see [33] for the detailed procedure). The ex-
act theoretical predictions Geq

R/RK
(T /TI) derived in [35] are

shown as black dashed lines. The full renormalization curve
has not been measured for R = RK/2.

As in [33, 34], we show on Fig. 10 the pertinence of the
mapping to a TLL by comparing the measured conduc-
tance G(V = 0, T ) versus T /TI at equilibrium (colored
continuous lines) to the predictions Geq

R/RK
(T /TI) from

[35] (black dashed lines).

3. DCB of a generic channel under a temperature bias with
RK/2 and RK/4

The figure 11 complements the data at arbitrary chan-
nel tuning shown in main manuscript Fig. 5 for R = RK/3,
with here the conductance measured at RK/2 (panel (a))
and RK/4 (panel (b)).
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FIG. 11. Conductance of a generic channel in series with R = RK/2 (panel (a)) and RK/4 (panel (b)) under a temperature bias
(Tnode ≥ T ) at base temperature T ≃ 8 mK. Open symbols: measured sample conductance G for different channel settings of τ∞,
each shown using a different color and symbol shape. For a given channel setting, a unique value of the renormalization tem-
perature TI is determined by matching the first data point at equilibrium (Tnode ≃ T ) with the predicted universal conductance
curve at equilibrium Geq

R/RK
(Tnode/TI) (gray dash-dotted line). Black lines: universal conductance curve at equilibrium with

the same effective reduction in temperature expected at large Tnode/T from the tunnel DCB theory, namely Geq
R/RK

(αTnode/TI)

with α given in Eq. (18).


