A Multimodal Model for Predicting Conversational Feedbacks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

A Multimodal Model for Predicting Conversational Feedbacks

Résumé

We propose in this paper a statistical model in the perspective of predicting listener's feedbacks in a conversation. The first contribution of the paper is a study of the prediction of all feedbacks, including those in overlap with the speaker with a good accuracy. Existing model are good at predicting feedbacks during a pause, but reach a very low success level for all feedbacks. We give in this paper a first step towards this complex problem. The second contribution is a model predicting precisely the type of the feedback (generic vs. specific) as well as other specific features (valence expectation) useful in particular for generating feedbacks in dialogue systems. This work relies on an original corpus.
Fichier principal
Vignette du fichier
TSD_2021__version_auteur.pdf (324.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03331446 , version 1 (01-09-2021)
hal-03331446 , version 2 (15-09-2021)

Identifiants

Citer

Auriane Boudin, Roxane Bertrand, Stéphane Rauzy, Magalie Ochs, Philippe Blache. A Multimodal Model for Predicting Conversational Feedbacks. International Conference on Text, Speech, and Dialogue (TSD ), 2021, Olomouc, Czech Republic. ⟨10.1007/978-3-030-83527-9_46⟩. ⟨hal-03331446v2⟩
159 Consultations
320 Téléchargements

Altmetric

Partager

More