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Controllability Properties of Solar Sails

Alesia Herasimenka1, Lamberto Dell’Elce2, Jean-Baptiste Caillau3, and Jean-Baptiste Pomet4

Trajectory design and station keeping of solar sails about a celestial body can be for-

mulated as control problems with positivity constraints. Specifically, when re-emitted

radiation is neglected and the sail is modeled as a flat surface, which are reasonable as-

sumptions for control purposes, force generated by solar radiation pressure is contained

in a pointed convex cone of revolution with axis towards the Sun-satellite direction.

Therefore, classical approaches to infer controllability based on the Lie algebra rank

condition do not apply to these problems. This study offers a novel condition to de-

cide on controllability of control systems with positivity constraints. This condition is

effective as it can be verified by solving an auxiliary convex optimization problem for

which reliable numerical methods are available. A crucial ingredient of this approach

is the theory of positive trigonometric polynomials. The practical interest of this con-

dition is the assessment of a minimum requirement on the optical properties of the

sail, which may be of use for mission design purposes.
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I. Introduction

Solar sails offer a propellant-less solution to achieve interplanetary transfers, planet escapes,

and de-orbiting maneuvers by leveraging on solar radiation pressure (SRP) [1]. Although very

few solar sail missions were launched, the possibility to use SRP as an inexhaustible source of

propulsion attracted the interest of researchers since decades, and several contributions on the

guidance and control of solar sails are available. Specifically, a large body of literature focuses on

the mathematical formulation and numerical solution of optimal interplanetary transfers (mostly

minimum time) using optimization techniques [2], indirect methods [3] or even neural networks [4].

In addition, several contributions investigate locally optimal maneuvers, i.e., maximization of the

instantaneous rate of change of a desired orbital element, in particular increasing semi-major axis

for orbit-raising [5] or decreasing perigee altitude for de-orbiting applications [6]. Classical feedback

algorithms are also used to find sub-optimal trajectories, as for instance Q-law in [7]. Direct methods

are often preferred to tackle the numerical solution of optimal control problems (OCP) of solar sail

transfers [8] because they do not require an initial guess of adjoint variables, differently of indirect

techniques, which were used in very few studies like [9] and [10].

Surprisingly enough, very few studies on the controllability of solar sails are available to date,

although an analysis of the reachable set of passive sails was discussed in [11]. Most often, solutions

of two-point boundary value problems coming for instance from optimal control are investigating

without assessing beforehand whether the targeted point is within the reachable set of the control

system from the initial point; exhibiting a solution of the two-point boundary value problem obvi-

ously proves reachability as a side result, but it is better to be able to certify non controllability

and seek for solutions only when controllability holds.

A major difficulty in assessing the controllability of an SRP-actuated system is that the sail
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cannot generate a force with a positive component toward the direction of the Sun, so that classical

tools of geometric control theory cannot be used. For example, Lie algebra of the system is full rank

(unless a fully absorptive model of the sail is considered), but although it should indicate that the

system is weakly controllable, theory requires that the control set is a neighborhood of the origin,

i.e., both positive and negative controls should be generated, so that it is not sufficient to analyze

the sailing problem. This aspect is particularly critical when considering a non-ideal sail (by ideal,

we mean a perfectly reflective flat surface) because the control set is contained inside a strictly

convex cone of revolution, whose angle depends on the optical properties of the sail.

The main contribution of the paper consists in a controllability check for non-ideal solar sails in

a planet-centered orbit. This requirement is aimed at assessing whether the sail at hand is capable

of decreasing or increasing all possible functions of the Keplerian integrals of motion over an orbital

period. Given some optical properties, a convex cone containing all possible directions of the SRP

is first defined. Then, the condition is verified by means of a worst-case optimization problem

characterized by a finite number of design variables and a two-parameter family of inequality con-

straints, namely, the clock angle of the convex cone and the true anomaly of the sail. Numerical

solution of this semi-infinite problem is achieved by leveraging on the formalism of squared func-

tional systems [12, 13] to exactly enforce inequality constraints for all values of the true anomaly

and the clock angle. No discretization is done to solve the problem numerically. Eventually, the

semi-infinite problem is recast into a finite-dimensional convex programming with a finite number

of linear matrix inequalities (LMI) and an unique well-defined solution. Non-satisfaction of the con-

dition entails some local non-controllability of the system for the given value of the cone angle (and,

consequently, of the optical properties) and orbital conditions. Hence, a fine analysis covering (as

much as possible numerically) the entire phase space of orbital elements is carried out to determine
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the minimum cone angle for a large range of orbits. It is shown that a universal (namely, planet

independent) minimum angle exists that satisfies the condition for all orbits. Its value is about

60 degrees (note that 0 and 90 degrees correspond to fully absorptive and perfectly reflective sails,

respectively). The result indicates that the sail does not have to be ideal to satisfy the requirement.

The methodology is unaware of the specific source of non-ideality of the sail (e.g., specular or dif-

fuse reflection, re-emitted radiation [1]) since it only uses the conical hull of the control set. This

result can be used to provide insight into the controllability of the sail during its lifetime, owing to

the degradation of its optical properties discussed in [14], and may support the design of real-life

missions by serving as a minimal requirement to be satisfied.

Section II introduces the dynamical model of solar sails, geometry of the problem, equations

of motion, and various assumptions used in this work. Section III outlines the novel condition for

investigating local controllability of systems with peculiar constraints on the control set that apply

to solar sails. An efficient numerical methodology based on convex programming to evaluate the

aforementioned condition is detailed in section IV. Finally, this methodology is extensively used in

Section V to deduce minimal requirements on the optical properties of solar sails. Controllability

of heliocentric orbits is briefly discussed as well.

II. Dynamics of a solar sail

A. Force model

Solar sails use SRP as propulsive means to control their trajectory. SRP is due to the interaction

between photons and surface of the sail. The magnitude of the pressure depends on the Sun-sail

distance, r� (in AU). Specifically, denoting by ΦSR ≈ 1367 W m−2 the solar flux at r⊕ = 1 AU
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and by c the speed of light, a simple model is [15, Chap. 3]:

PSR =
ΦSR
c

(
r⊕
r�

)2

A flat sail with surface A and mass m is considered in this work. The resulting force depends on

various optical and geometrical properties of the sail and it is obtained by summing up contributions

of the incoming, reflected, and thermal radiations, namely fa, fr, and fe. In addition, the reflected

force is divided into specular and diffuse components, frs and fru, respectively. The first one is

caused by photons that are reflected symmetrically with respect to the normal of the sail and create

moment in the opposite direction. Conversely, diffuse reflection stems from surface roughness, which

causes photons to be uniformly reflected in all directions, yielding a component of the force toward

the vector normal to the sail. Finally, absorbed photons are then re-radiated in all directions with

energy dependent on the temperature of the sail, generating another component of the force that

is orthogonal to its surface. Figure 1a shows the directions of the various components. Denoting

by ŝ the direction of the Sun, n̂ the unit vector normal to the sail with positive projection toward

ŝ, i.e., cosβ := n̂ · ŝ ≥ 0, and

t̂ :=
n̂× ŝ

‖n̂× ŝ‖
× n̂ =

ŝ− cosβ n̂

sinβ

the tangent unit vector in the plane generated by ŝ and n̂, the components of the specific force

are [16]

fa = ε(r�) cosβ(cosβ n̂ + sinβ t̂)

frs = ε(r�) ρ s cosβ(cosβ n̂− sinβ t̂)

fru = ε(r�)Bf ρ(1− s) cosβ n̂

fe = ε(r�) (1− ρ)
εfBf − εbBb
εb + εf

cosβ n̂

(1)
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(a) Schematic representation.

0 1 2

-1

0

1

0

0.25

0.5

0.75

1

(b) Control sets for different reflectivity

coefficients and s = 1. Here, uX is the

projection of u towards ŝ, while uY and

uZ are orthogonal components.

Fig. 1: Components of the SRP force.

where the function ε(r�) = APSRm
−1 has small magnitude, ρ ∈ [0, 1] is the portion of reflected

radiation, s ∈ [0, 1] the fraction of specular reflection, and εb, εf , Bb, Bf are back and front surface

emissivity and Lambertian coefficients, respectively. The resulting force is thus

fSRP = fa + frs + fru + fe.

B. Parametrization of the control set

Controlling the sail attitude, i.e. the normal vector n̂, allows to change the direction and

magnitude of the resulting SRP. A reliable inference of optical coefficients is indeed mandatory to

accurately estimate the mapping between n̂ and fSRP .

To carry out controllability analysis, solar sail dynamics is conveniently modeled as a nonlinear

control-affine system (see Section IIC), where the control variable is homogeneous to the force
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vector, namely u :=
fSRP
ε(r�)

. Control set U ⊂ R3 is then given by:

U =

{
fSRP (n̂)

ε(r�)
, n̂ ∈ R3, ‖n̂‖ = 1

}
.

Figure 1b shows the projection of U on the plane generated by n̂ and ŝ for various optical

properties. The set is a surface of revolution with axis ŝ, and it is non-convex unless ρ = s = 1.

Note that the interior of the surface is not part of U . When re-emitted radiation is neglected, which

is most often a reasonable assumption for control purposes, U contains the origin but mapping

between n̂ and u is non-smooth at this point. Two extreme cases can be identified: ideal sails are

constituted by perfectly reflective surfaces (ρ = s = 1), whereas perfectly-absorptive surfaces are

the worst-case scenario (ρ = 0, fe neglected) because SRP is systematically parallel to ŝ. Although

sails are designed to be as ideal as possible, partial absorption of the energy is unavoidable in

real-life applications and, in addition, optical properties exhibit degradation with time. Hence, the

fraction of reflected radiation decreases with lifetime of the satellite, as discussed in [14].

C. Equations of motion

Controllability of a solar sail in orbit around a celestial body is considered in this study. The

following assumptions are introduced:

1. Orbital period of the sail is much smaller than the one of the heliocentric orbit of the attractor,

so that variations of the Sun direction ŝ over a single orbit of the sail are neglected.

2. Solar eclipses are neglected. Targeting a certification of non-controllability in Section III,

this assumption is conservative, and it has the major advantage of yielding results that are

independent of the semi-major axis of the orbit.

3. Re-emitted radiation is neglected. In fact, this component of SRP can be reasonably regarded
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Fig. 2: Euler angles orienting the orbit with respect to the reference frame. Here, h and e denote

the angular momentum and eccentricity vectors.

as a disturbance for control purposes.

Equations of motion are written in a set of Keplerian-like orbital elements, which leverages on

the axial symmetry of the problem with respect to the Sun’s direction. Namely, consider a reference

frame with origin at the center of the planet, X̂ axis towards ŝ, whereas Ŷ and Ẑ are arbitrarily

chosen and form a right-hand frame. Because this study focuses on short-time controllability (time is

of the order of one orbital period), motion of this frame is neglected by virtue of the first assumption

above. Let γ1, γ2, γ3 be Euler angles orienting the eccentricity vector according to a X − Y −X

rotation as depicted in Fig. 2, and a, e, and f be semi-major axis, eccentricity and true anomaly,

respectively. Motion of slow elements, I = (γ1, γ2, γ3, a, e)
T ∈M , is governed by

d I
d t

= ε(r�)

√
a
(
1− e2

)
µ

G(I, f)R(I, f)u

d f
d t

= ω(I, f) + ε(r�)F (I, f)R(I, f)u

(2)

where components of u are in the reference frame, R(I, f) = RX(γ3 + f)RY (γ2)RX(γ1) is the
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rotation matrix from reference to local-vertical local-horizontal frames5, ω(I, f) =

√
µ

a (1− e2)3
(1+

e cos f)2, both F (I, f) and G(I, f) can be deduced from Gauss variational equations (GVE) of

classical elements, where G(I, f) is:

G =



0 0
sin (γ3 + f)

sin γ2(1 + e cos f)

0 0
cos (γ3 + f)

1 + e cos f

−cos f

7
te

2 + e cos f

1 + e cos f

sin f

e

cos (γ3 + f)

1 + e cos f
2 a e

1− e2
sin f

2 a e

1− e2
(1 + e cos f) 0

sin f
e cos2 f + 2 cos f + e

1 + e cos f
0


The peculiar choice of Euler angles follows from the symmetry of System (2), and it has the

main consequence that controllability results in Section V are independent of γ1. We also note that

(1 + e cos f)G(I, f)R(I, f) is a trigonometric polynomial in f . This has significant advantages for

the numerical methodology detailed in Section IV.

Finally, orbital perturbations (other than SRP) are not included in Eq. (2) because we are

interest in investigating geometric obstructions to the controllability of solar sails regardless their

size.

III. Controllability of a solar sail

We are interested in studying obstructions to controllability of solar sails in orbit about a

celestial body. More precisely, we want to assess the existence of variations of the current orbital

elements set that a sail cannot generate after a single orbital period.

The classical approach to inspect controllability of control-affine systems with periodic drift

5 Here, RA(ϕ) denotes the rotation matrix of angle ϕ about the axis Â.
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is detailed in [17] and [18, Chap. 4]. Specifically, global controllability (that is existence of an

admissible control steering the system from any initial point towards any target) is guaranteed

(sufficient condition) provided:

1. the drift of the system is periodic (or, more generally, recurrent);

2. the Lie algebra rank condition (LARC) condition holds, namely the set of vector fields defining

the control-affine system are bracket generating;

3. the convex hull of the control set U is a neighborhood of the origin in Rm.

Keplerian motion satisfies the first condition. Two different cases are distinguished for the

computation of the rank of Lie algebra: First, perfectly-absorptive sails (i.e., ρ = 0) are such that

the control set degenerates to a segment aligned to ŝ, as shown in Fig. 1b. Appendix A offers a

detailed evaluation of Lie brackets in this case, which shows that the algebra is rank deficient. This

allows to conclude the non-controllability of the system and to deduce an integral of motion, namely

the projection of the angular momentum towards ŝ [19, Chap. 12]. Second, real-life sails are such

that ρ is strictly positive and smaller than 1. In this case, control set is no more degenerate and

the system is bracket generating. Nevertheless, controllability of this system cannot be assessed

because U does not contain the origin in its interior (the origin is on the boundary of the control set

as depicted in Fig. 1b), so that the third condition above is not satisfied, and the classical approach

cannot be used to investigate controllability of this system.

A novel sufficient condition relaxing the third requirement was proposed in [20] and [21]. Sys-

tem (2) is controllable wrt. to the slow variables, meaning that there exists an admissible control

allowing to reach any final orbit from any initial one,6 if the control set U contains the origin (even

6 Clearly, because of the periodicity of the free motion, the angular position determined by the true anomaly does
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only on its boundary), and if for all I in M the following condition holds:

cone

{
d I(f, I,u)

d t
, u ∈ U, f ∈ S1

}
= TIM. (3)

Here before the operator cone indicates the conical hull: for a subset A of a vector space, cone(A)

is the set of linear combinations with nonnegative coefficients of vectors of A,

k∑
i=1

λixi, k ∈ N, λ1, . . . , λk ≥ 0.

It is always a convex pointed (containing the origin) cone. This result is proved in [20, 21]. If

(3) only holds at one point, it remains true around it and controllability in the corresponding

neighborhood follows. Conservely, (3) cannot hold if, for some orbit I0, there exists a nonzero

one-form pI0 ∈ T ∗I0M such that〈
pI0,

d I(f, I0,u)

d t

〉
> 0, f ∈ S1, u ∈ U. (4)

In this case, there is an obstruction to local controllability in the following sense: one can find a

neighborhood of I0 on which motion is prescribed to a half-space (see Fig. 3); orbits in the forbidden

neighborhood half might be reached (e.g. if global controllability holds), but only by trajectories

that must leave this neighborhood. For a detailed discussion on the gap between (3) and (4), we

refer to [21].

IV. Numerical methodology to inspect local controllability

Given some optical properties of the sail and orbital state I, we are interested in determining

if Eq. (4) has any non-trivial solution pI 6= 0. Two manipulations are introduced to facilitate this

task.

not play any role; any initial/final longitude can be departed from/reached, up to some additional time spent along
the periodic initial/final orbit.
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Fig. 3: Schematic representation of a half-space of the neighborhood of I where motion is (locally)

forbidden.

First, the time derivative of I in Eq. (4) is replaced by G̃(I, f)u, where

G̃(I, f) := (1 + e cos f)G(I, f)R(I, f),

which is a second-degree trigonometric polynomial in f . Such property offers major benefits when

positivity constraints are numerically enforced in Section IVB. This operation has no impact on the

sign of Eq. (4). We also note that System (2) is axially symmetric with respect to the Sun-planet

direction, and that semi-major axis and planetary constant have no impact on the sign of Eq. (4).

Hence, all outcomes of this controllability study are independent of both the semi-major axis and

γ1 (because of symmetry), and they are valid for any attractor (spherical symmetric central body),

since magnitude of SRP does not impact the non-controllability condition (which is a geometric

obstruction).

Second, control set U is replaced by its conical hull,Kα := cone(U), which is a cone of revolution

of angle α, as illustrated in Fig. 4. This approximation makes the problem convex (in fact, convex

programming is used to get numerical certifies of the feasibility problem in Section IVA). Replacing
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U by Kα has no impact on the closure of the reachable set of the control system, as discussed in [21].

Therefore, non-controllability of the system with controls in Kα implies non-controllability of the

system with the original control set, U . Neglecting thermal radiation (this simplification is not

strictly necessary), cone angle α can be directly deduced from the optical properties of the sail

introduced in Eq. (1). The relation is obtained by solving:

tanα = max
β∈[0,π2 ]

fSRP · ŝ∥∥∥(I− ŝŝT
)
fSRP

∥∥∥ = max
β∈[0,π2 ]

ρ s sin 2β +Bfρ(1− s) sinβ

1 + ρ s cos 2β +Bfρ(1− s) cosβ
. (5)

This condition holds for:

β∗ = cos−1

−Bfρ(1− s)(3ρs+ 1) +
√
B2
fρ

2(1− s)2((3ρs− 1)2 − 4ρs)− 32ρ2s2(ρs− 1)

8ρs

 .

If Bf = 0, Eq. (5) simplifies to

α(ρ, s) = tan−1

(
ρ s√

1− ρ2 s2

)
, ρ s =

tanα√
1 + tan2 α

· (6)

Hence, Eq. (4) is finally recast into

if ∃ pI ∈ T ∗M, pI 6= 0 such that〈
pI , G̃(I, f)u

〉
> 0, f ∈ S1, u ∈ Kα.

(7)

A. Constructive approach to verify the controllability condition

A practical check of the feasibility Problem (7) is carried out by solving the auxiliary optimiza-

tion problem

max
J, ‖pI‖≤1

J s.t.

〈
pI , G̃(I, f)u

〉
≥ J, f ∈ S1, u ∈ ∂Kα, ‖u‖ = 1.

(8)

The constraint ‖pI‖ ≤ 1 is preferred to ‖pI‖ = 1 to preserve convexity of Problem (8). Prob-

lem (8) is convex and semi-infinite, because inequality constraints need to be enforced on two
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(a) Schematic representation (b) Three-dimensional representation

Fig. 4: Approximation of the control set (blue) by a convex cone (red).

infinite sets, namely for all true anomalies between 0 and 2π and for all u on the surface of the

cone. Evaluating inequalities in the interior of the cone is not necessary because dynamics is affine

in u. If J∗, solution of Problem (8), is positive, (7) is verified: then, as discussed in the previous

section, for the cone angle α, there is an obstruction to local controllability around the orbit I.

Conversely, when (3) holds at I7, both J∗ and the associated minimizer pI must be zero.

To emphasize the practical interest of Problem (8), Figure 5 depicts an example solution for

a given orbit as a function of α (the detailed numerical algorithm to achieve these solutions is

provided in Section IVB). One can check that a minimum cone angle exists (for the specific I

used in this simulation) for which (7) (and the corresponding obstruction to local controllability)

cannot hold. This angle can be mapped into minimal requirements for the reflectivity of the sail

7 In practice, of course, the check can only be made at a single point, while the condition must hold for all I to
ensure global controllability.
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Fig. 5: Example of the solution of Problems (8) (black curve) and (9) (red dot). Here,

γ2 = 50deg, γ3 = 40deg, and e = 0.7.

via Eq. (6), and it can be evaluated by solving

min
α

α s.t.

J∗(α) = 0

(9)

where J∗(α) denotes solution of Problem (8) for a given α.

B. Optimization problem

Numerical solution of Problem (8) is achieved by using the formalism of positive trigonometric

polynomials [12, 13] to enforce positivity constraints for all values of f and u without introducing

any relaxation or discretization of the problem.

Let δ be an angle parametrizing control vectors on the surface of the cone, as shown in Fig. 6,
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Fig. 6: Parametrization of the control vector.

namely

u =


cosα

cos δ sinα

sin δ sinα


Positivity of the following constraints must be verified:

pTI G̃(I, f)u− J ≥ 0 f ∈ S1, u ∈ ∂Kα. (10)

Inspection of G̃(I, f)u reveals that Eq. (10) is a bivariate trigonometric polynomial of second

degree in f and first degree in δ. Let 〈·, ·〉H be the Hermitian product of two complex-valued vectors,

i.e., 〈a, b〉H = 〈Re(a),Re(b)〉 + 〈Im(a), Im(b)〉, and denote Φ(f, δ) =
[
1, eiδ

]T ⊗ [1, eif , e2if ]T =[
1, eif , e2if , eiδ, eifeiδ, e2ifeiδ

]T the basis of bivariate trigonometric polynomials of degree 2 in

f and 1 in δ, respectively (here, ⊗ denotes Kronecker’s product). The left-hand term of Eq.(10)
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can be reformulated as〈
pI , G̃(I, f)u

〉
− J = pTI

(
1∑

l=−1

2∑
k=−2

G̃u
(k,l)

ei k f ei l δ
)
− J =

〈
Φ(f, δ), G̃u pI − e1J

〉
H

where G̃u
(k,l)

(I) is the kl-th coefficient of the Fourier transform8 of G̃(I, f)u, and e1 = [1, 0, 0, 0, 0, 0]T .

The formalism of squared functional systems outlined in [12] and [13] allows to recast the

continuous positivity constraints into LMI. The corresponding squared functional system of Φ(f, δ)

is S2(f, δ) = Φ(f, δ)ΦH(f, δ), where ΦH(f, δ) denotes conjugate transpose of Φ(f, δ). Let N be the

dimension of Φ(f, δ) (6 in our application) and ΛH : CN → CN×N be a linear operator mapping

coefficients of polynomials in Φ(f, δ) to the squared base, so that application of ΛH on Φ(f, δ) yields

ΛH(Φ(f, δ)) = Φ(f, δ)ΦH(f, δ)

and define its adjoint operator Λ∗H : CN×N → CN as〈
Y, ΛH(G̃u)

〉
H
≡
〈

Λ∗H(Y ), G̃u
〉
H
, Y ∈ CN×N , G̃u ∈ CN .

Theory of squared functional systems postulated by Nesterov [12] proves that trigonometric

polynomial is non-negative if and only if a Hermitian positive semidefinite matrix Y exists such

that G̃u = Λ∗H(Y ). Dumitrescu extends this theory for multivariate trigonometric polynomials

in [13, Chap. 3] and shows that all nonnegative bivariate trigonometric polynomials can be written

as sum-of-squares. This equivalence is false for three or more variables.

Thus,
〈
Φ(f, δ), G̃u

〉
H

is non-negative for all f ∈ S1 and for all u ∈ Kα if and only if a Hermitian

positive semidefinite matrix Y exists such that G̃u = Λ∗H(Y ), namely〈
Φ(f, δ), G̃u

〉
H
≥ 0, f ∈ S1, u ∈ Kα ⇐⇒ ∃Y � 0 : G̃u = Λ∗H(Y ).

8 We note that G̃kl = G̃(−k,−−l) because G̃(I, f)u is real valued.
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In fact, it holds in this case that

〈
Φ(f, δ), c

〉
H

=
〈
Φ(f, δ), Λ∗H(Y )

〉
H

=
〈
ΛH(Φ(f, δ)), Y

〉
H
,

=
〈
Φ(f, δ)ΦH(f, δ), Y

〉
H

= ΦH(f, δ)Y Φ(f, δ) ≥ 0.

For trigonometric polynomials Λ∗ is given by

Λ∗H(Y ) =



tr(
〈
Y, T00

〉
)

...

tr(
〈
Y, Tkl

〉
)

...

tr(
〈
Y, T21

〉
)


k = 0, 1, 2, l = 0, 1.

where Tj j = 0, 1, 2 are the elementary Toeplitz matrices with ones on the j-th diagonal and zeros

elsewhere and Tkl are obtained from a Kronecker product of such matrices, e.g.,

T0 =

1 0

0 1

 , T1 =


0 1 0

0 0 1

0 0 0

 , T10 = T0 ⊗ T1 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


Finally, the inequality in Eq. (10) is rewritten as an LMI:

〈
pI , G̃(I, f)u

〉
− J ≥ 0, f ∈ S1, u ∈ ∂Kα ⇐⇒ ∃ Y � 0 such that G̃u pI − e1J = Λ∗H(Y )

where Y ∈ C6×6 is a Hermitian matrix to be determined. Hence, the finite-dimensional counterpart

18



of Problem (8) is

min
J, ‖pI‖≤1, Y ∈C6×6

J s.t.:

Y � 0

Λ∗H(Y ) = G̃u pI − e1J

(11)

Eventually, solution of Problem (9) is carried out by means of a simple bisection algorithm. The

CVX software [22, 23] is used to solve the convex Problem (11). Fourier coefficients of G̃(I, f) are

evaluated by means of the fast Fourier transform (FFT) algorithm.

We stress that there is no relaxation of Problem (11) with respect to Problem (8). Remarkably,

enforcement of the constraint for all values of f and u is exact and stems from the trigonometric

nature of G̃(I, f)u. Hence, this methodology outperforms the algorithm that we proposed in [20],

where controls necessary to move towards the vertexes of a simplex encompassing I where explicitly

evaluated. In that case, a large number of harmonics was necessary to model the control variable

and, eventually, to achieve a conservative estimate of the minimal cone angle α, as depicted in

Fig. 7.

V. Minimal optical requirements

Figure 8 shows the minimum cone angle satisfying the condition as a function of γ2 and γ3 for

various values of eccentricity (we recall that semi-major axis and γ1 have no influence on this an-

gle). The minimal angle is symmetric with respect to γ2 = 90deg because
〈
pI , G̃(e, γ2, γ3, f)u

〉
=〈

−pI , G̃(e, π − γ2, γ3, f)u
〉
. Solution is independent of γ3 for circular orbits, as expected. Sen-

sitivity with respect to γ3 remains moderate even for larger eccentricities. The minimal angle

approaches zero as sin(γ2)→ 0. In this case, ŝ is aligned with the angular momentum of the orbit.

On the other hand, for γ2 = 90deg, the Sun is in the orbital plane.

19



10 20 30 40 50 60 70
19

19.1

19.2

19.3

19.4

19.5

19.6

Fig. 7: Convergence of the results obtained in [20] as the number of harmonics increases (in red)

towards the minimum angle obtained with the methodology detailed in this paper (in blue).

Figure 9 represents αmin as function of γ3 or γ2 (Fig. 9a and 9b, respectively) for various values

of eccentricity. Results confirm high dependency of αmin on γ2, and γ3 for large eccentricity. Hence,

controllability of near circular orbits requires more reflective sails with respect to high-eccentric

orbits. Finally, we stress that the minimum angle α exists for all orbits, and it is systematically

smaller than 90 deg, which means that the sail has not to be ideal to make System (2) controllable.

To compare with a real solar sail, optical properties of the NASA reference model [24] (designed to

support NEA Scout and Lunar Flashlight solar sail missions) correspond to a cone angle of 58.6 deg.

This value is sufficient to satisfy the proposed condition for most planet-centered orbits, except for

highly inclined ones.

A. A comment on heliocentric orbits

Consider now a sail in a heliocentric orbit. This scenario can be a case for interplanetary trans-

fers, for example. The same equations with two major corrections are used to model the problem.
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(a) Near-circular orbit: e ≈ 0
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(b) Weak eccentricity e = 0.1
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(c) Elliptic orbit with e = 0.5
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(d) High eccentricity e = 0.9

Fig. 8: Results for different geocentric orbits

First, the rotation matrix R in Eq. (2) is removed, since the local vertical local horizontal frame

is used, and ŝ is aligned with the radial direction. Moreover, the problem has central symmetry,

so that results do not depend on any orbital element except for the eccentricity. For a perfectly

absorptive solar sail, the dynamical system is not bracket generating, because the control is radial,

as proved in [25]. The integral of motion related to this rank deficiency is the magnitude of the

angular momentum. For a non-ideal sail, the system becomes bracket generating as soon as a
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Fig. 9: Minimum cone angle as a function of Euler angles.

tangential component appears: even for very weakly reflective sails.

Using the methodology of Section IV indicates that even a very poorly reflective sail (i. e.,

0 < ρ� 1) is locally controllable over an orbital period. However, an orbital period of heliocentric

orbits is of the order of the year, this is why the proposed methodology is not well suitable to tackle

realistic mission scenario of interplanetary transfers using solar sails. In fact, a sail can be moved

towards any direction of the tangent manifold of the orbital elements set, but the requirement is

unaware of the orbital period’s magnitude, so that these maneuvers could possibly last for years.

VI. Conclusion

We introduced a novel requirement to assess the controllability of solar sails in orbit around

a celestial body. This was formulated as a geometric condition on the reachable set of orbits

(slow variables of the system, in contrast with longitude which is the fast one). A failure of this

requirement typically indicates that a half neighborhood of the state vector exists where the sail

cannot be moved. A numerical algorithm based on convex optimization and leveraging on the theory
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of square functional systems for trigonometric polynomials was proposed to efficiently evaluate this

requirement. Extensive exploitation of the algorithm revealed that any orbital condition can tolerate

a certain amount of absorption of solar radiation. A remarkable byproduct of this analysis is that

local controllability properties hold universally (that is for all orbital conditions) for non-ideal sails

provided a sufficient amount of incoming radiation is reflected.
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APPENDIX A: LIE BRACKETS COMPUTATION FOR A PERFECTLY-ABSORPTIVE

SAIL

Consider a control-affine dynamical system

ẋ = F 0(x) +

m∑
i=1

uiF
i(x), x ∈M, u = (u1, . . . , um) ∈ U ⊂ Rm (A1)

where M is an n-dimensional manifold, F i : M→ TM are smooth vector fields on M. We note

that Eq. (2) can be recast into the form of Eq. (A1) by choosing columns of G(I, f)R(I, f) as vector

fields F i.

To compute Lie algebra, only directions of vector fields matter. To simplify, assume that control

system is given by a simple two-body equation with a term of perturbation, as denoted in (A2)

with ŝ solar vector, considered fixed for a few orbits. For a perfectly absorptive solar sail, only

the cross-sectional surface is controlled, so that control is assumed to be u ∈ [0, 1] with a certain

coefficient ε defining SRP magnitude.

Using x = (r,v) ∈ R6 as state vector, where r and v denote Cartesian position and velocity
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vectors, respectively, System (A2) can be rewritten as:

ẋ = F 0(x) + ε uF 1(x)

with F 0 the recurrent drift and F 1 the SRP perturbation.


d r
d t

= v

dv
d t

= − µ
r3

r + ε(r�) ŝu

(A2)

where r = ‖r‖. System (A2) provides two vector fields:

F 0 = vX
∂

∂rX
+ vY

∂

∂rY
+ vZ

∂

∂rZ
− rX
r3

∂

∂vX
− rY
r3

∂

∂vY
− rZ
r3

∂

∂vZ

F 1 = sX
∂

∂vX
+ sY

∂

∂vY
+ sZ

∂

∂vZ

To simplify, let us denote vector fields:

v
∂

∂r
= vX

∂

∂rX
+ vY

∂

∂rY
+ vZ

∂

∂rZ
,

r

r3
∂

∂v
=
rX
r3

∂

∂vX
+
rY
r3

∂

∂vY
+
rZ
r3

∂

∂vZ

s
∂

∂v
= sX

∂

∂vX
+ sY

∂

∂vY
+ sZ

∂

∂vZ

and

F sr = s
∂

∂r
, F rr = r

∂

∂r
, F vr = v

∂

∂r
, F sv = s

∂

∂v
, . . .

Finally, by denoting ŝ ·r a scalar product of two vectors ŝ and r, computation of Lie brackets gives
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the following results:

F 0 = v
∂

∂r
− r

r3
∂

∂v
= F vr − 1

r3
F rv; F 1 = s

∂

∂v
= F sv; F 01 =

[
F 0, F 1

]
= −F sr

F 001 =
[
F 0, [F 0, F 1]

]
=

3 (ŝ · r)

r5
F rv − F sv

r3
, F 101 =

[
F 1, [F 0, F 1]

]
= 0

F 0001 =
[
F 0, [F 0, [F 0, F 1]]

]
=

1

r3
F sr +

3(v · r)

r5
F sv +

(3(ŝ · v)

r5
− 15(ŝ · r)(v · r)

r7

)
F rv

+
3(ŝ · r)

r5
(F vv − F rr)

All subsequent iterations are linear combinations of the previous vector fields. Thus, Lie algebra

of the system (A2) has 5 independent vector fields if ŝ · r 6= 0:

F sr, F sv, F rv, F vr, F vv − F rr .

dim Lie(F 0, F 1, ...) = 5 < dim R6 = 6

Moreover, rank deficiency implies that an integral of motion exists, which happens to be the

projection of the angular momentum h towards ŝ, namely ŝ · h = ŝ · (r × v) = det(r,v, ŝ) In fact,

Lie derivative of ŝ ·h with respect to the controlled vector field, F 1 = sX
∂
∂vX

+ sY
∂
∂vY

+ sZ
∂
∂vZ

is:

LF 1(det(r,v, ŝ)) = sX
∂

∂vX
det(r,v, ŝ) + sY

∂

∂vY
det(r,v, ŝ) + sZ

∂

∂vZ
det(r,v, ŝ)

= sX(−rY sZ + rZsY ) + sY (rXsZ − rZsX) + sZ(−rXsY + rY sX)

= 0
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