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Abstract

A two-velocity biphasic model is presented to describe particle migration in
mono-disperse suspensions of neutrally buoyant particles. Compared to previ-
ous migration models, introduction of a second velocity variable ensures rigorous
mass conservation for the particle phase. In addition, the upper bound on parti-
cle volume fraction (jamming limit) is rigorously imposed through a non-smooth
complementarity condition and the introduction of a particle contact pressure.
The model is applied to an axisymmetric Poiseuille flow and solved using a
finite-element method. For that purpose, a specific, fully implicit algorithm
based on non-smooth optimisation tools is developed and validated. Prelimi-
nary comparisons with experimental data from the literature show promising
agreement. In particular, the model properly captures the formation of an inner
plug region, in which the material is saturated and jammed.

Keywords: suspension, migration, congested problem, augmented Lagrangian
method, asymptotic expansion

1. Introduction

Last decade saw the introduction of granular concepts to describe the rheology
and flow of suspensions of rigid particles [1, 2]. While hydro-dynamical effects
are prominent in dilute mixtures, inter-particle contacts and friction start to
play a role as soon as particle volume fraction φ exceeds values of 0.2–0.25,
typically [3]. Contacts and friction, in particular, appear to be responsible for
a number of specific rheological properties of concentrated suspensions, such
as existence normal stress differences, particle pressure and micro structure
anisotropy [3, 4]. Contacts and friction can also lead to shear-thickening ef-
fects, and influence the value of the critical particle volume fraction φm above
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which the suspension is jammed and behaves as a solid [5, 6]. Various consti-
tutive models have been proposed to describe these properties, either through
phenomenological expressions of the particle stresses [7, 8, 6], inclusion of auxil-
iary conformation tensors related to micro structure evolution [9, 10, 11, 12, 13],
or by explicitly accounting for granular processes [14, 15].

Among the specific properties of concentrated suspensions, shear-induced par-
ticle migration received a lot of attention since the seminal study of Leighton
and Acrivos [16]. This process is responsible for the spontaneous development
of particle volume fraction heterogeneities in sheared suspensions and can lead,
for sufficiently large values of the average volume fraction, to the formation of
jammed plugs in which φ reaches φm [17, 18]. While some recent approaches
explore the direct numerical simulation of the fluid containing a discrete distri-
bution of particles (see e.g. [19]), most numerical simulations of the migration
process base on a continuous mathematical model for the fluid-particle mix-
ture. Since the first phenomenological modelling attempt by Phillips et al.
[20], various models based on diphasic mixture theory [21] have been proposed.
Formulation of a closed system of conservation laws for a diphasic continuous
medium requires closure assumptions to express the contributions of each phase
to the Cauchy stress tensor of the mixture as well as the forces on the particle
phase [22, 23]. Specific attention should be paid to the contribution of parti-
cles and contacts to stresses, as it is now clear that shear-induced migration
is driven by the existence of normal stress gradients in the suspension [3, 4].
The classical suspension balance model (SBM), which is based on empirical ex-
pressions for the particle stress and inter-phase drag, expresses, in absence of
inertia, as a closed system of equations for the mixture velocity and particle
volume fraction [24, 7]. Qualitatively, this model proved successful in capturing
migration effects in different flow configurations [25, 8]. However, difficulties
arise when φ approaches the limit φm and the strain rate vanishes. In practice,
these issues are usually dealt with by considering unrealistically large values
of φm, and by adding an ad-hoc non-local term that effectively prevents the
strain rate from vanishing [25]. As a consequence the model cannot capture
the formation of truly jammed plugs. Note however that a recent extension
of SBM, implementing a process of inelastic compressibility through which the
particle volume fraction can increase beyond the limit φm in jammed regions,
has been shown to overcome this limitation, and to effectively predict realistic
plugs [15]. Another drawback of such single velocity models is the difficulty to
impose proper conditions on the particle flux at the boundaries of the domain.
As a consequence, conservation of particle mass might not always be ensured in
numerical implementations [25].

In this paper, we propose an alternative migration model that explicitly inte-
grates the saturation of the mixture when the volume fraction reaches the limit
φm. A unilateral constraint is added to the system of conservation laws through
a complementarity condition to ensure that φ remains effectively bounded by
φm. In addition, the model is based on a two-velocity formulation, and em-
bodies an explicit computation of the difference between the mixture velocity
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and the particle phase velocity (i.e. the migration velocity). Hence, bound-
ary conditions on the particle flux can be explicitly imposed, such that strict
conservation of particle mass is ensured. Since the study is primarily devoted
to the formulation and numerical solution of the system of conservation laws,
particle stress is modelled using the classical phenomenological constitutive re-
lation proposed by Morris and Boulay [7]. Inter-particle friction or effects of
micro structure are not directly taken into account at this stage, although they
might be included in further versions of the model by using more sophisticated
constitutive relations [10, 15, 13]. As explained below, we do however intro-
duce an additional pressure term that can be interpreted as a contact pressure,
to properly deal with the complementarity condition. Compared to SBM, our
model also involves an additional inter-phase stress term required to ensure the
stability of the two-velocity formulation.

From a mathematical standpoint, flow models involving a complementarity con-
dition are usually referred to as congested problems [26, 27]. The mathematical
properties of such systems were first studied by Lions and Masmoudi [28], and
more recently by Bresch et al. [26]. Hyperbolic variants of these models, without
diffusive terms, were first applied to road traffic [29, 30] using the asymptotic
preserving numerical method [31]. Later, these models were also applied to
crowd motion [32], granular media [33, 34], and shallow flows in cavities [35].
A general overview of hyperbolic systems with unilateral constraints was ex-
posed by Bouchut et al. [36], and specific solutions were studied by Berthelin
[37], Berthelin and Bouchut [38] and recently Chen and Zhai [39].

The paper is structured as follows. The proposed diphasic model for the mix-
ture velocity, migration velocity and particle volume fraction is presented in sec-
tion 2. A link with mixture theory of Jackson [40] is also established. Through
an asymptotic analysis, a reduced system is then derived for the case of a uni-
form axisymmetric Poiseuille flow (flow in a circular tube). Section 3 proposes
a numerical method to solve the model in the case of the Poiseuille problem,
implementing a specific augmented Lagrangian approach to handle the nonlin-
earity associated with the complementarity condition. Spatial discretization is
performed using finite elements. Results are presented and discussed in sec-
tion 4. After a careful investigation of the convergence properties of the nu-
merical method, the physical characteristics of the solutions are described, and
direct comparisons with experimental measurements of Oh et al. [18] are shown.
Section 5 presents final discussions and conclusions.

2. Migration model

2.1. Two velocity formulation

Let rp be the radius of the rigid spherical particles, and η0 be the viscosity of
the interstitial Newtonian fluid. For the sake of simplicity, we assume here a
neutral buoyancy: let ρ denote the constant mass density of both the fluid and
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notation description
u bulk velocity
w migration velocity
q pipe flow rate
p mixture pressure
pc contact pressure
φ volume fraction
φm maximal volume fraction

ψ = φ/φm reduced volume fraction
Ω flow domain
R tube radius
L tube length
T final time
rp particle radius

notation description
ρ fluid and particle density
η0 fluid viscosity
τ p particle stress tensor

Q = diag(1, λ2, λ3) normal stress tensor
s(ψ) hindrance function
α exponent in s(ψ)

Kn, Ks reduced viscosities
ε = rp/R dimensionless particle radius

Re = 2ρq/(πR) Reynolds number
h mesh size

∆t time step
µ augmentation parameter

Table 1: Notations used in the paper.

the particles. This assumption is not fundamental, and the present theory could
be extended to also include different mass densities and sedimentation effects.
The dynamics of the mixture, at a continuous macroscopic scale, is described by
two independent velocities. Without loss of generality, we choose as independent
variables the velocity of the mixture, denoted by u, and the velocity difference
between the two phases, hereafter called migration velocity, denoted by w. Note
that u+w represents the velocity of the particles phase.

The volume fraction is denoted by φ and is bounded by the maximal volume
fraction φm. When φ = φm, the mixture is jammed and behaves as a solid.
For convenience, the reduced volume fraction ψ = φ/φm is introduced. The
constraint φ 6 φm, or equivalently ψ 6 1, can be expressed as a linear comple-
mentarity problem Cottle and Dantzig [41], Duvaut and Lions [42]:

0 6 (1− ψ) ⊥ pc > 0⇔

 1− ψ > 0
pc > 0

(1− ψ)pc = 0
(1)

Hence, the two quantities 1 − ψ and pc should always be positive, and the ⊥
notation expresses that their product should also be zero. When ψ < 1, we then
have pc = 0, while pc can be nonzero when ψ = 1 in the jammed case. This
constraint expresses, at the macroscopic scale, the microscopic non-penetration
between the rigid particles when contacts occur. The quantity pc is a Lagrange
multiplier that can be interpreted as a particle contact pressure. Note that (1)
should be satisfied locally, as some regions of the flow can be jammed while
others are not.

Table 1 summarises the main notations used in this paper. Let Ω ⊂ Rd denote
the flow domain, where d > 1 is the physical space dimension, and let T > 0 be
the final time. The problem to solve writes:
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(P ): find u, w, p, ψ, pc, defined in ]0, T [×Ω, such that

ρ

(
∂u

∂t
+ u.∇u

)
− div (−pI + 2η0D(u) + τ p) = f in ]0, T [×Ω

ρ φmψ

(
∂(u+w)

∂t
+(u+w).∇(u+w)

)
−div (−pcI+τ p)+

η0s(ψ)

r2
p

w − div (2η0s(ψ)D(w)) = 0

in ]0, T [×Ω

divu = 0 in ]0, T [×Ω

∂ψ

∂t
+ div ((u+w)ψ) = 0 in ]0, T [×Ω

0 6 (1− ψ) ⊥ pc > 0 in ]0, T [×Ω

τ p = 2η0
ψ

1− ψ

(
5φm

2
+

ψ

1− ψ
KsD (u)

)
D (u)

−2η0

(
ψ

1− ψ

)2

Kn |D (u)|Q
in ]0, T [×Ω

u = uΓ and w = wΓ in ]0, T [×∂Ω

ψ = ψΓ in ]0, T [×∂Ω−

u(t=0) = u0, w(t=0) = w0 and ψ(t=0) = ψ0 in Ω

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)
(2h)
(2i)

Equations (2a) and (2c) and (2b) express the momentum and mass conser-
vation of the mixture, respectively, while Equations (2b) and (2d) express
the momentum and mass conservation the particle phase. Note that the lat-
ter has the form of an evolution equation for the reduced volume fraction ψ.
Equation (2a) involves the expression of the Cauchy stress tensor of the mix-
ture −pI + 2η0D(u) + τ p, where D(u) = (∇u+∇uT )/2. The Lagrange multi-
plier p, that interprets as the bulk pressure, is introduced to enforce the mixture
incompressibility constraint (2c). The quantity τ p represent the contribution of
the particle phase to the extra-stress tensor, and will be discussed later. On the
right-hand-side, f represents any external body force. Equation (2b) involves
the Cauchy stress of the particle phase −pcI + τ p, where pc is the contact pres-
sure related to the jamming constraint (2e), as explained above, and a net force
exerted on the particle phase:

η0s(ψ)

r2
p

w − div (2η0s(ψ)D(w)) .

The first term in this force corresponds to the drag force exerted by the fluid
phase, where s(ψ) is a hindrance function for which we use the following ex-
pression [43]:

s(ψ) =
9

2(1− φmψ)α−1(1− ψ)
,

with α ∈ [2, 5] a material parameter. The second term, namely
div (2η0s(ψ)D(w)) , represents a second-order correction with respect to par-
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ticle radius rp. It is added here in order to allow for the imposition of boundary
conditions on particle velocity u+w, or equivalently on w (see Equation (2g)).

Equation (2f) is the phenomenological constitutive relation for the particle stress
tensor τ p initially proposed by Morris and Boulay [7]. Constants Ks and Kn are
material parameters that control the shear and normal viscosities, respectively.
The tensor Q expresses as diag(1, λ2, λ3) in the velocity, gradient, vorticity
basis associated to viscosimetric flows [see, e.g., 44, p. 158], where λ2 and λ3

are material parameters controlling the two normal stress differences. Note that
expression of Q adapted to the case of non-viscosimetric flows have also been
proposed [45], but will not be used here.

Finally, the problem is closed by suitable initial and boundary conditions on
velocities u and w and reduced volume fraction ψ, expressed by Equations (2g)–
(2i). Here ∂Ω− denotes the upstream boundary domain for the particle phase:

∂Ω− = {x ∈ ∂Ω such that (u+w)(x) · n(x) < 0} ,

and uΓ, wΓ, ψΓ, u0, w0, ψ0, are given boundary and initial data satisfying
divu0 = 0,

∫
∂Ω
uΓ ds = 0 and ψ0, ψΓ ∈ [0, 1]. Observe that, from (2d) and since

ψ(t=0) > 0, then ψ(t) > 0 for any t > 0.

Let us comment on the mathematical structure of problem (2a)-(2i). The
pair (u, p) satisfies an incompressible Navier-Stokes-like subsystem (2a), (2c),
while the triplet (w, ψ, pc) satisfies a compressible Navier-Stokes-like subsystem
(2b), (2d) associated to (2e) that guarantees ψ ∈ [0, 1]. Coupling between the
two subsystems is introduced by the tensor τ p that expresses in terms of u
and ψ from (2f).

Suspension balance model (SBM), which only implements the mixture veloc-
ity [25], can be recovered by neglecting inertial terms in equations (2a) and (2b),
and omitting the condition (2e) as well as the term div (−pcI + 2η0s(ψ)D(w))
in equation (2b). In SBM, the constraint ψ 6 1 is not strictly imposed, but ef-
fectively verified through the addition of an ad-hoc non-local term to the particle
stress tensor τp.

2.2. Link with mixture theory

The mixture theory developed by Jackson [40] is based on an asymptotic analysis
for small particle radius rp. This leads, at first order in rp, to a two-velocity
system of conservation equations that admits the following general structure [see
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also 23]:

ρ

(
∂u

∂t
+ u.∇u

)
− div (−pfI + 2η0D(u) + σh + σc) = f

ρ φmψ

(
∂(u+w)

∂t
+ (u+w).∇(u+w)

)
− div (σc)− fh = 0

divu = 0

∂ψ

∂t
+ div((u+w)ψ) = 0

(3a)

(3b)

(3c)

(3d)

where σh and σc denote contributions to the Cauchy stress of the mixture due
to hydrodynamic and contact interactions between the particles, respectively,
pf is the fluid phase pressure, and fh is the force exerted by the fluid phase on
the particle phase.

Identifying (2a) with (3a), and (2b) with (3b), we obtain the following expres-
sions for the Cauchy stress tensor of the mixture and the forces in the particle
phase:

−pfI + 2η0D(u) + σh + σc = −pI + 2η0D(u) + τ p

−div (σc)− fh = −div (−pcI + τ p + 2η0s(ψ)D(w)) +
η0s(ψ)

r2
p

w

(4a)

(4b)

The following closure relation can be considered:

pf = p− pc (5a)

Then, Equations (4a) and (4b) successively lead to

σh + σc = −pcI + τ p

−fh + div(σh) =
η0s(ψ)

r2
p

w − div (2η0s(ψ)D(w))

The first relation corresponds to a classical closure in mixture theory [40,
chap. 2], though which the hydrodynamic and contact contributions σh, σc
are lumped into the particle stress τ p. The second relation writes equivalently:

fh = −η0s(ψ)

r2
p

w + div (σh + 2η0s(ψ)D(w))

This expression identifies term by term with Equation (62) of Nott et al. [23],
where the first term on the right-hand side represents the drag force, and the
second term is a particle phase hydrodynamic stress. Note that the new cor-
rective term introduced in our model identifies as the difference between the
particle phase hydrodynamic stress and the hydrodynamic stress involved in
the fluid phase conservation (3a), as discussed by Nott et al. [23]. Since this
corrective term is of second-order with respect to rp, it does not change the
accuracy of the mixture model.
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Figure 1: Circular tube geometry for the Poiseuille flow.

2.3. Uniform Poiseuille flow

Let us consider here the circular tube geometry represented on figure 1, with
L the length of the tube and R its radius. Let (r, θ, z) be the associated cylin-
drical coordinate system. We consider axisymmetric flows independent upon
θ. The tube is assumed to be sufficiently long, i.e. L → ∞, such that the
flow is also considered to be independent upon z. Hence, mixture velocity
writes u(t, r) = (0, 0, uz(t, r)), while migration velocity can develop a nonzero
radial component and expresses as w(t, r) = (wr(t, r), 0, wz(t, r)). The average
reduced particle volume fraction ψ0 is constant for t > 0, and we also consider
that the mixture flow rate q is imposed and constant for t > 0.

An asymptotic analysis for L → ∞, presented in Appendix A,
shows that problem (2a)-(2i) then reduces to, in dimensionless form:
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(Q): find uz, wz, wr, ψ, pc,0, defined in ]0, T [×]0, 1[ and fz, fc,z, in ]0, T [, s.t.

Re∂tuz −
∂r
r

(r ηapp(ψ) ∂ruz) + fz = 0 in ]0, T [×]0, 1[

Reφmψ ∂t(uz + wz) +
s(ψ)

ε2
wz

−∂r
r

(r s(ψ) ∂rwz + r (ηapp(ψ)− 1) ∂ruz) + fc,z = 0

in ]0, T [×]0, 1[

Reφmψ ∂twr +
s(ψ)

ε2
wr −

∂r
r

(2 r s(ψ) ∂rwr)

+
ηn,θ(ψ) |∂ruz|

r
− ∂r

r
(r ηn,r(ψ) |∂ruz|) + ∂rpc,0 = 0

in ]0, T [×]0, 1[

∂tψ +
∂r
r

(rwrψ) = 0 in ]0, T [×]0, 1[

0 6 (1− ψ) ⊥ pc,0 > 0 in ]0, T [×]0, 1[∫ 1

0

uz(t, r) r dr =
1

4
, ∀ t ∈ ]0, T [∫ 1

0

(uz(t, r) + wz(t, r))ψ(t, r) r dr =
ψ0

4
, ∀ t ∈ ]0, T [

∂ruz(t, r=0) = uz(t, r=1) = 0 , ∀ t ∈ ]0, T [

∂rwz(t, r=0) = wz(t, r=1) = 0 , ∀ t ∈ ]0, T [

wr(t, r=0) = wr(t, r=1) = 0 , ∀ t ∈ ]0, T [

uz(t=0) = wz(t=0) = wr(t=0) = 0, ψ(t=0) = ψ0 in ]0, 1[

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

(6h)
(6i)
(6j)
(6k)

where ε = rp/R and Re = ρUR/η0,, with U = 2q/(πR2) the characteristic ve-
locity scale. Here, pc,0 denotes the Lagrange multiplier associated to the com-
plementarity condition (6e). Similarly, fz and fc,z are Lagrange multipliers as-
sociated to the mixture and particle flow rate constraints (6f)-(6g), respectively.
Note that fz interprets as the longitudinal gradient of mixture pressure and fc,z
as the longitudinal gradient of contact pressure. The rheological functions ηapp,
ηn,r and ηn,θ involved are given by

ηapp(ψ) = 1 +
5φm

2

(
ψ

1− ψ

)
+Ks

(
ψ

1− ψ

)2

ηn,r(ψ) = −αn,r
(

ψ

1− ψ

)2

ηn,θ(ψ) = −αn,θ
(

ψ

1− ψ

)2

with αn,r = λ2Kn and αn,θ = λ3Kn. With these notations, the dimensionless
particle stress tensor expresses as:

τ p =

 ηn,r(ψ) |∂ruz| 0 (ηapp(ψ)−1) ∂ruz
0 ηn,θ(ψ) |∂ruz| 0

(ηapp(ψ)−1) ∂ruz 0 ηn,z(ψ) |∂ruz|

 (7)
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Finally, note that, unlike for 2D plane channel flow [15], particle normal stress
differences are explicitly involved in the circular tube flow considered here.

Let us observe the mathematical structure of problem (6a)-(6k). Relations (6a)
and (6f) constitute a linear constrained parabolic sub-problem for the un-
known uz and the Lagrange multiplier fz, where ψ is considered as known.
This first linear sub-problem is closed by boundary and initial conditions (6h)
and (6k) for uz. Similarly, relations (6b) and (6g) constitute a second linear
constrained parabolic sub-problem for the unknown wz and the Lagrange mul-
tiplier fc,z, where both uz and ψ are considered as known. This second linear
sub-problem is closed with boundary and initial conditions (6i) and (6k) for wz.
Finally, relations (6c), (6d) and (6e) constitute a nonlinear constrained sub-
problem for the unknowns wr and ψ and the Lagrange multiplier pc,0, where uz
is considered as known. This problem will henceforth be called the congested
flow sub-problem. This third nonlinear sub-problem is closed with boundary
and initial conditions (6j) and (6k) for wr and ψ. The Lagrange multiplier pc,0
that imposes the nonlinear constraint ψ 6 1 in (6e) acts on wr via its evolu-
tion equation (6c). Then, ψ is convected by wr in accordance with the mass
conservation equation (6d). Hence, pc,0 acts as a subtle indirect control upon ψ
via wr. The numerical solution of the problem presented in the following section
is mainly suggested by observation of this mathematical structure.

3. Numerical resolution

We present in this section a fully implicit algorithm for the numerical resolution
of problem (Q) (uniform Poiseuille flow). At each time step of an outer loop,
the three sub-problems outlined above are solved, and a fixed point inner loop
ensures the convergence. Note that, unlike Degond et al. [31] and Degond and
Tang [46] who solved an hyperbolic congested flow problem with an explicit
time scheme, we choose here an implicit time discretization to avoid restrictions
on time steps due to stability criteria. As the present problem also involves vis-
cous and diffusion terms, such conditions on time step would be too restrictive.
Particle migration tends to be a slow process, for which the use of large time
steps is required.

Presentation of the numerical algorithm is organised as follows. Subsection 3.1
describes the fixed point method that splits problem (Q) into the three asso-
ciated sub-problems. Two of these sub-problems, namely (S1) and (S2), are
linear and provide computations of (uz, fz) and (wz, fc,z), respectively. The
three other unknowns, wr, pc,0, ψ, are solution of a non smooth optimisation
problem (S3). Problem (S3), which implements a complementarity condition
between pc,0 and ψ, cannot be solved by classical optimisation algorithms. This
problem is thus approached by another problem (S̃3), implementing a comple-
mentarity condition between pc,0 and ∂rwr/r. An optimisation method to solve
problem (S̃3) is presented in subsection 3.2. A corrective term is added to
the cost function to apply an augmented Lagrangian method. The solution of
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(S̃3) then expresses as a critical point of the augmented cost function, and is
found using an Uzawa algorithm. Finally, subsection 3.3 describes the spatial
discretization used.

3.1. Implicit time discretization

Let ∆t > 0 be the time step and tn = n∆t, n ∈ N, be
the discrete times. A sequence of semi-discrete in time solutions(
u

(n)
z , w

(n)
z , w

(n)
r , ψ(n), f

(n)
z , f

(n)
c,z , p

(n)
c,0

)
n>0

is defined by recurrence. When n = 0,

the solution is provided by the initial conditions, u(0)
z = w

(0)
z = w

(0)
r = p

(0)
c,0 = 0,

ψ(0) = ψ0 and f
(0)
z = f

(0)
c,z = 0, i.e. the material is at rest and homogeneous

and ψ0 ∈ [0, 1[ is the given initial reduced volume fraction. When n > 1, let
us assume by recurrence that the numerical solution of system (Q) is given
at time tn−1, i.e.

(
u

(n−1)
z , w

(n−1)
z , w

(n−1)
r , ψ(n−1), f

(n−1)
z , f

(n−1)
c,z , p

(n−1)
c,0

)
is known.

Then,
(
u

(n)
z , w

(n)
z , w

(n)
r , ψ(n), f

(n)
z , f

(n)
c,z , p

(n)
c,0

)
is computed using the following

fixed point procedure.

Let k ∈ N denotes the index of the fixed point inner loop. At each step n > 1,
a sequence

(
u

(n,k)
z , w

(n,k)
z , w

(n,k)
r , ψ(n,k), f

(n)
z , f

(n)
c,z , p

(n)
c,0

)
k>0

is defined by recur-

rence. When k = 0, this inner loop is initialised from the values at the previous
time step, i.e.(

u(n,0)
z , w(n,0)

z , w(n,0)
r , ψ(n,0), f (n,0)

z , f (n,0)
c,z , p

(n,0)
c,0

)
=(

u(n−1)
z , w(n−1)

z , w(n−1)
r , ψ(n−1), f (n−1)

z , f (n−1)
c,z , p

(n−1)
c,0

) .
When k > 1, let us assume by recurrence that(
u

(n,k−1)
z , w

(n,k−1)
z , w

(n,k−1)
r , ψ(n,k−1), f

(n,k−1)
z , f

(n,k−1)
c,z , p

(n,k−1)
c,0

)
is known. Then,(

u
(n,k)
z , w

(n,k)
z , w

(n,k)
r , ψ(n,k), f

(n,k)
z , f

(n,k)
c,z , p

(n,k)
c,0

)
is defined by splitting (Q)

into three subsystems, two of them are linear and will be referred as (S1) and
(S2), the third one is a congested nonlinear problem, referred as (S3).

By introducing two numerical parameters, kmax and εfp, a stopping criterion is
defined:

‖ψ(n,k−1) − ψ(n,k)‖2 + ‖w(n,k−1)
r − w(n,k)

r ‖2

+‖w(n,k−1)
z − w(n,k)

z ‖2 + ‖u(n,k−1)
z − u(n,k)

z ‖2 6
√

2 ∆t εfp
or k > kmax (8)

where ‖.‖ denotes the usual L2 norm with axisymmetric weighting, defined for
all function f by

‖f‖ =

(∫ 1

0

f(r) r dr

) 1
2

11



When stopping criterion (8) is satisfied, the fixed point loop is ter-
minated and the last element of the sequence is simply denoted as(
u

(n)
z , w

(n)
z , w

(n)
r , ψ(n), f

(n)
z , f

(n)
c,z , p

(n)
c,0

)
, i.e. the second index k is omitted.

With the notations defined above, the two linear subsystems solved at each fixed
point iteration write:

(S1): find u(k,n)
z , defined in ]0, 1[, and fk,nz ∈ R, such that

Re

∆t

(
u(n,k)
z −u(n−1)

z

)
−∂r
r

(
r ηapp

(
ψ(n,k−1)

)
∂ru

(n,k)
z

)
+f (n,k)

z = 0

in ]0, 1[

∫ 1

0

u(n,k)
z r dr =

1

4

∂ru
(n,k)
z (r=0) = u(n,k)

z (r=1) = 0

(9a)

(9b)

(9c)

(S2): find w(k,n)
z , defined in ]0, 1[, and fk,nc,z ∈ R, such that

Reφm ψ
(n,k−1)

∆t

(
w(n,k)
z − w(n−1)

z

)
+ ε−2s

(
ψ(n,k−1)

)
w(n,k)
z

−∂r
r

(
r s
(
ψ(n,k−1)

)
∂rw

(n,k)
z

)
+ f (n,k)

c,z

=
Reφm ψ

(n,k−1)

∆t

(
u(n,k)
z − u(n−1)

z

) in ]0, 1[

∫ 1

0

(
u(n,k)
z + w(n,k)

z

)
ψ(n,k−1) r dr =

ψ0

4

∂rw
(n,k)
z (r=0) = w(n,k)

z (r=1) = 0

(10a)

(10b)

(10c)

Similarly, the nonlinear congested subsystem write:
(S3): find w(n,k)

r , p(n,k)
c,0 and ψ(n,k), defined in ]0, 1[, such that

Reφm ψ
(n,k−1)

∆t

(
w(n,k)
r − w(n−1)

r

)
+ ε−2s

(
ψ(n,k−1)

)
w(n,k)
r

− ∂r
r

(
2 r s

(
ψ(n,k−1)

)
∂rw

(n,k)
r

)
+ ∂rp

(n,k)
c,0

=
∂r
r

(
r ηn,r

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣)
− 1

r
ηn,θ

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣
in ]0, 1[

0 6
(
ψ∗ − ψ(n,k)

)
⊥ p

(n,k)
c,0 > 0 in ]0, 1[

1

∆t

(
ψ(n,k) − ψ(n−1) ◦X(n,k−1)

)
+
∂r
r

(
r w(n,k)

r

)
ψ(n,k) = 0 in ]0, 1[

w(n,k)
r (r=0) = w(n,k)

r (r=1) = 0

(11a)

(11b)

(11c)

(11d)

12



where X(n,k−1)(r) = r −∆t w
(n,k−1)
r (r) in (11c) denotes a first order approxima-

tion of the characteristics. Observe that the unilateral constraint ψ 6 1 has
been replaced in (11b) by ψ(n,k) 6 ψ∗, where ψ∗ < 1 is a numerical threshold
close to 1. This threshold is used to ensure that the hindrance function s and the
viscosities ηapp, ηn,r and ηn,θ remain bounded during the numerical resolution.
In practice, a value ψ∗ = 1− 10−4 is used.

The two linear systems (S1) and (S2) are standard, while the solution of the
congested nonlinear system (S3) requires more work. Observe that (11c) can be
explicitly solved in term of ψ(n,k) as:(

1 + ∆t
∂r
r

(
r w(n,k)

r

))
ψ(n,k) = ψ(n−1) ◦X(n,k−1) (12)

Indeed, for sufficiently small ∆t > 0, the first factor of the left-hand side of (11c)
is strictly positive in ]0, 1[, and thus ψ(n,k) is well-defined by an explicit expres-
sion. This expression of ψ(n,k) can then be replaced in (11b). After rearrange-
ments, we obtain a constraint in terms of w(n,k)

r :

− 1

∆t

(
ψ∗ − ψ(n,k−1) ◦X(n,k−1)

)
6

∂r
r

(
r w(n,k)

r

)
⊥ p

(n,k)
c,0 > 0

This complementarity condition means that the compressibility of the particle
phase is bounded negatively, depending on the value of the volume fraction.

Hence, congested subsystem interprets as an obstacle problem coupled to an
advection equation :

(S̃3): find w(n,k)
r and p(n,k)

c,0 , defined in ]0, 1[, such that

Reφm ψ
(n,k−1)

∆t

(
w(n,k)
r − w(n−1)

r

)
+ ε−2s

(
ψ(n,k−1)

)
w(n,k)
r

− ∂r
r

(
2 r s

(
ψ(n,k−1)

)
∂rw

(n,k)
r

)
+ ∂rp

(n,k)
c,0

=
∂r
r

(
r ηn,r

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣)
− 1

r
ηn,θ

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣
in ]0, 1[

− 1

∆t

(
ψ∗−ψ(n,k−1) ◦X(n,k−1)

)
6
∂r
r

(
r w(n,k)

r

)
⊥ p

(n,k)
c,0 > 0 in ]0, 1[

w(n,k)
r (r=0) = w(n,k)

r (r=1) = 0

(13a)

(13b)

(13c)

As soon as w(n,k)
r is known, ψ(n,k) can be explicitly computed from (12).

We recognise in (S̃3) the standard obstacle problem in mathematical physics [47,
48, 49, see, e.g.,]. It is expressed here in term of w(n,k)

r with a convex con-
straint (13b) on all the interior of the domain ]0, 1[, where p(n,k)

c,0 is the associated
Lagrange multiplier.
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3.2. Resolution of the non smooth obstacle sub-problem

Problem (S̃3) defined above can be solved efficiently, without any regularisation,
by an augmented Lagrangian method described in this subsection. Since there is
no ambiguity, indices n and k are omitted here on the unknowns. The problem
becomes:

(O): find wr and pc,0, defined in ]0, 1[, such that
κwr −

∂r
r

(r β ∂rwr) + ∂rpc,0 = f in ]0, 1[

g 6
∂r
r

(r wr) ⊥ pc,0 > 0 in ]0, 1[

wr(r=0) = wr(r=1) = 0

(14a)

(14b)

(14c)

where the following notations are introduced for the known data:

κ = Reφm ψ
(n,k−1)

β = 2 s
(
ψ(n,k−1)

)
f = κw(n−1)

r +
∂r
r

(
r ηn,r

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣)− 1

r
ηn,θ

(
ψ(n,k−1)

) ∣∣∣∂ru(n,k)
z

∣∣∣
g = − 1

∆t

(
ψ∗ − ψ(n,k−1) ◦X(n,k−1)

)
Let L2, H1, H−1, and H1

0 denote the usual Hilbert functional spaces associated
with the weight r for the cylindrical coordinates. Let us introduce the following
convex subset of L2:

K =
{
ξ ∈ L2 ; ξ > g

}
Note that K is indeed convex, since each convex combinations of any elements
of K belongs to K. Let us also introduce the following bilinear and linear forms,
defined for all w, v ∈ H1 and q ∈ L2 by:

a(w, v) =

∫ 1

0

(κw v + β ∂rw ∂rv) r dr

b(w, q) =

∫ 1

0

∂r(r w) q dr

`(v) =

∫ 1

0

f v r dr

With κ, β ∈ L∞, and f ∈ H−1, where L∞ denotes the space of bounded
functions. Hence, these forms are well-defined.

Moreover, we assume that g ∈ L2. Let B denotes the linear operator from H1

to L2 associated to the bilinear form b and defined for all v ∈ H1 by

Bv = r−1∂r (r v) .

14



It interprets as the divergence operator in the axisymmetric tube section. The
quadratic function J is defined for all v ∈ H1 by

J(v) =
1

2
a(v, v)− `(v)

Problem (O) then expresses as a convex minimisation problem:

wr = arg min
v∈H1

0

J(v)

subject to Bv ∈ K

Note that the convex set K is not a vector space. Thus, the previous optimi-
sation problem is difficult to solve by finite element method, which is based on
vector space approximations of functional spaces. For this reason, we introduce
the indicator function IK : L2 → [0,∞], defined for all ξ ∈ L2 by:

IK(ξ) =

{
0 when ξ ∈ K
∞ otherwise

Observe that IK is a convex function since K is a convex set. The problem can
then be rewritten as:

wr = arg min
v∈H1

0

J(v) + IK(Bv)

The problem now expresses as an unconstrained minimisation problem of a con-
vex non-differentiable function on a vector space, which is more suitable to a
finite element approximation. The main difficulty is to minimise with respect
to IK(Bv), which is the non-differentiable part. A solution is to introduce an
auxiliary variable δ, together with the additional constraint δ = Bw and its as-
sociated Lagrange multiplier, which shall coincide with the contact pressure pc,0.
We then introduce the following augmented Lagrangian [see, e.g., 50]:

L(v, ξ ; q)=J(v) + IK(ξ) +

∫ 1

0

(ξ −Bv) q r dr +
µ

2

∫ 1

0

(ξ −Bv)
2
r dr (15)

where µ > 0 is the augmentation parameter. The problem is equivalent to
finding the following saddle point:

(wr, δ ; pc,0) = arg min
v ∈ H1

0

ξ ∈ L2

max
q∈L2

L(v, ξ ; q)

Observe that the term factored by the augmentation parameter µ in (15) is
the square of the constraint: the saddle-point of the Lagrangian L is thus in-
dependent of µ. The numerical parameter µ only influences the convergence of
minimisation algorithm.

The solution is computed by an Uzawa descent method, fully described in Ap-
pendix B.
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3.3. Finite element spatial discretization

The dimensionless space interval [0, 1] is discretized by a uniform mesh whose
step is denoted h > 0. Components uz, wz and wr of the velocities are approx-
imated by continuous and piece wise quadratic functions, while the reduced
volume fraction ψ, the contact pressure pc,0 and the divergence δ are approxi-
mated by continuous and piece wise linear functions. The algorithm described
in the previous subsections is implemented using Rheolef C++ finite element
library [51]. Four different values of dimensionless mesh size h were investigated,
namely h = 1/100, 1/200, 1/400, and 1/800. The dimensionless time step ∆t
is adapted according to the value of h as follows: ∆t = 400h. Hence, for each
refinement of the mesh, the time step is divided by two.

Final computation time T is set such that steady state is reached, and typically
depends on the value of initial reduced volume fraction ψ0. For the numeri-
cal tests presented below (subsections 4.2, 4.3, 4.4), an arbitrary large value
T = 4000 was chosen. For comparisons with experiments, the value of T was
adapted to the volume fraction considered based on a steady-state criterion (see
subsection 4.5).

4. Results and discussion

This section is dedicated to a preliminary exploration of the predictions of the
new migration model presented in this paper. The solutions, computed with the
algorithm presented in the previous section, are compared with experimental
results obtained by Oh et al. [18]. This section starts with a presentation of
the experimental setup and the choice of model material parameters. Then,
validations of our numerical algorithm are presented. We start by a study of
the convergence of the residual terms in the two inner loops of the implicit
time discretization scheme, and then turn to the convergence of the solution
versus mesh and time step refinement. Finally, the main physical features of
the solution are described, together with comparisons to experiments and a
sensitivity analysis.

4.1. Experimental setup

Oh et al. [18] injected a mono-disperse particle suspension in a circular tube
from a tank with an imposed flow rate q. At the inlet of the tube, the volume
fraction is supposed to be uniform, equal to φ0. Particle volume fraction φ and
axial velocity of the mixture uz were measured by MRI at a sufficiently long
distance from the inlet to ensure fully developed flow. Note that this distance,
at which the flow can be considered as fully developed, depends upon several
parameters [18]: the volume fraction at the inlet of the tube φ0, the density of
both the fluid and the particles, the fluid viscosity η0, the particle radius rp,
and the tube radius R. Inlet flow rate was varied between 0.5 and 3 ml/min.
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symbol value unit
ρ 1056 kg.m−3

η0 3.6 Pa.s
rp 7× 10−5 m
R 3.15× 10−3 m
q 3.14× 10−8 m3.s−1

φ0 0.32 ; 0.5
φm 0.585 – 0.64

symbol value unit
Ks 0.6
Kn 1
λ2 0.9
λ3 0.5
α 2

Table 2: Values of model material parameters.

For the computations presented thereafter, we retained an intermediate value
q = 1.88 ml/min.

The values of model constants chosen for the computations presented in this
section are summarised in table 2. The parameters Kn, Ks, λ2, λ3 and α of
the rheological model were identified from experimental data, as explained in
Appendix C. The choice of the maximum volume fraction φm will be discussed
in the forthcoming paragraph dedicated to comparisons with experiments.

4.2. Convergence of the inner loops

This paragraph documents the convergence of the augmented Lagrangian loop
and the fixed point loop. These numerical tests were performed with values of
φ0 = 0.32, φm = 0.585, and T = 4000. The link between h and ∆t is provided
by table 4. Figure 2 left plots the relative error in L2 norm of the auxiliary
variable δ(m) during the augmented Lagrangian loop as a function of loop index
m. The convergence is studied for k = 0, i.e. at the first iteration of the
fixed point loop, and for t = T/4, i.e. fully developed flow is not reached yet.
First, observe that the relative error decrease for all values of the augmentation
parameter µ, as expected from theory (see Fortin and Glowinski [50]). Next,
observe that the convergence is faster for intermediate values of µ: the optimal
value is near µ = 2560.

Let us now turn to the convergence of the fixed point loop. Figure 2 right
presents the relative error for the volume fraction ψ(n,k) versus total number of
iterations k×mmax of the inner loops. The initial relative error ‖ψ(n,1) − ψ(n,0)‖
is of about 10−9, and decreases to about 10−12, when rounding effects appear.
Hence, the normalised relative error decreases to about 10−3. Recall that there
is an inner augmented Lagrangian loop, whose index is m and maximal number
of iterations is mmax. To understand how the two loops interact, the value of
mmax has been varied. Observe that it is not necessary to iterate more than
once in the augmented Lagrangian loop, for the fixed point loop to converge.
Moreover, this strategy appears to be the most efficient in terms of overall
convergence rate of the algorithm.
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10−9

10−6

10−3

1

0 5× 103 104

‖δ(m+1) − δ(m)‖
‖δ(1) − δ(0)‖

m

µ = 640
= 1280
= 2560
= 5120
= 10240

10−3

10−2

10−1

1

0 25 50

‖ψ(n,k+1) − ψ(n,k)‖
‖ψ(n,1) − ψ(n,0)‖

k ×mmax

mmax = 20
= 5
= 2
= 1

Figure 2: Convergence of the two inner loops at t = T/4 (h = 1/400). (left) Convergence of
the augmented Lagrangian loop: normalised relative error on the auxiliary variable δ(m) versus
iteration number m for various values of augmentation parameter µ. (right) Convergence of
the fixed point loop: relative error for the volume fraction ψ(n,k) versus total iteration number
k ×mmax for various values of mmax.

symbol value description
µ 2560 augmented Lagrangian parameter

mmax 1 inner augmented Lagrangian maximum iteration
kmax 40 outer fixed point maximal iteration
εfp 10−12 fixed point stopping criterion
ψ∗ 1− 10−4 maximal reduced volume fraction

Table 3: Numerical parameters of the algorithm.

Finally, the numerical parameters retained for the simulations of the next sec-
tions are grouped in table 3. The values of µ, mmax and kmax ensure proper
convergence of the inner loops. The stopping criterion (8) of the fixed point
outer loop is fixed at εfp = 10−12. Recall that the parameter ψ∗ < 1 (maximal
reduced volume fraction) is introduced to prevent the components of the stress
tensor to diverge, since the term 1 − ψ appears in the denominator of (2f); in
practice its value is set to ψ∗ = 1− 10−4.

4.3. Spatial and temporal convergences

This paragraph is dedicated to the convergence of the solution versus the si-
multaneous refinement of the time and space steps. The four considered mesh
configurations are summarized in table 4. An additional subscript h is added to
the solution, e.g. wr,h, ψh, in order to indicate this mesh dependence. Again,
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these numerical tests were performed for values of φ0 = 0.32, φm = 0.585, and
T = 4000.

1/h #time steps
100 1000
200 2000
400 4000
800 8000

Table 4: Parameters of the numerical discretization for dimensionless final time T = 4000.

10−7

10−6

10−5

10−4

10−3

0 T/2 T

‖wr,h(t, .)‖

t

h = 1/800
= 1/400
= 1/200
= 1/100

10−5

10−4

10−3

10−3 10−2

max
t∈[0,T ]

∣∣∣∣ψ0

2
−
∫ 1

0

ψh(t, r) r dr

∣∣∣∣

1

h

Figure 3: Convergence versus simultaneous time and space mesh refinement. (left) L2 norm
of the radial component wr,h of the particle velocity versus dimensionless time t. (right)
Maximum particle mass error versus h.

Figure 3 left plots the L2 norm of the radial migration velocity wr,h versus
dimensionless time t for the four mesh refinements (table 4). Observe first that,
on all meshes, wr,h decays exponentially with time: indeed, lateral particle
migration vanishes in steady-state regime. The slope of this decay appears to
be mesh-independent, as expected.

The model should conserve the mass of the fluid and the solid particles, as
expressed by the two mass conservation equations (2c) (whole mixture) and (2d)
(particle phase). At t = 0, the particle mass is given by

∫ 1

0
φ0 r dr = φ0/2.

figure 3 right shows the maximum particle mass error as a function of mesh
size h. This error is never exactly zero, as the finite element method only
provides an approximation of the solution. The error does however tend to zero
as O(h), i.e. linearly with mesh refinement. This linear convergence represents
a major improvement compared to other existing migration models: for the first
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time, our formulation enables us to impose a boundary condition (2g) on the
particle velocity u+w, or equivalently on w, while avoiding uncontrolled mass
loss. We recall that this feature is made possible by introducing the second-order
differential term on w in (2b).

−1.5 10−5

−10−5

−5.10−6

0

0 rc(T/2) 0.5 1

wr,h(r)

−3.10−6

0

0.15 rc 0.25

r

h = 1/800

= 1/400

= 1/200

= 1/100 0

2

4

0 rc(T/2) 0.5 1

pc,h(r) 3

0 rc 0.25

r

h = 1/800
= 1/400
= 1/200
= 1/100

Figure 4: Convergence versus simultaneous time and spatial refinement: Radial profiles at t =
T/2 of (left) radial migration velocity wr,h(r), and (right) particle contact pressure pc,h(r).
Insets show close-ups on the inner plug region.

Figure 4 presents the radial profiles of migration velocity wr,h and particle con-
tact pressure pc,h(r) at time t = T/2 for the four mesh refinements. The am-
plitude of wr,h at this time is already very small. A progressive convergence
with h of the profiles of wr,h and pc,h can nevertheless be observed. Note also
that the peak of pc,h in the vicinity of the symmetry axis r = 0 appears to
remain bounded when h → 0. For each mesh size h, there exists a critical
radius, denoted by rc,h(t), such that wr,h(t, r) = 0 for all r ∈ [0, rc,h(t)] (fig-
ure 4 left). This region corresponds to a central plug, where no more migration
is possible. As expected from the complementarity condition (14b), the contact
pressure pc,h is nonzero inside the plug [0, rc,h], while it is zero outside the plug
(figure 4 right). Mesh effects appears to affect sightly value of the critical ra-
dius rc,h, converge of this quantity is not obvious. More in-depth investigation
including time dependent convergence study would be necessary to conclude.

4.4. Main features of the solution

This paragraph describes the typical spatial and temporal evolution of the solu-
tion predicted by the present migration model. Values of φ0 = 0.32,φm = 0.585,
and T = 4000 are still considered, here and the finest mesh, namely h = 1/800,
is retained for the computations. Note that the h subscript is omitted in what
follows.
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Figure 5 shows radial profiles of various physical quantities in the tube section at
three different times. It is observed that the profile of uz progressively flattens
over time, and a plateau grows in the center of the tube (Fig. 5.top-left). This
region corresponds to a central plug, in which the mixture is jammed and cannot
be sheared. The material in this region is saturated (ψ = ψ∗ ≈ 1), as clearly
visible on the profile of reduced volume fraction ψ (Fig. 5.top-right). At the
transition between the plug and the outer region where the mixture is sheared
(r = rc(t)), the reduced volume fraction ψ is continuous but not differentiable.
As already mentioned, the migration velocity wr strongly decreases with time,
and vanishes in the plug (Fig. 5.bottom-left). Negative values of wr in the
sheared region indicate that particles migrate from the wall to the center of
the tube. Finally, the particle contact pressure pc, which is nonzero only in
the plug, progressively increases as the plug develops (Fig. 5.bottom-right).
Observe also that the contact pressure profile displays a small discontinuity at
the transition between the plug and the sheared region for intermediate times.
This discontinuity tends to vanish in the fully developed regime, while the first
derivative of pc profile still shows a jump at r = rc.
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Figure 5: Radial profiles of mixture velocity uz , reduced volume fraction ψ, migration velocity
wr, and particle contact pressure pc at different times. Time t = T corresponds to fully-
developed flow (φ0 = 0.32, φm = 0.585, h = 1/800).
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4.5. Comparison with experiments

This paragraph presents direct comparisons between the experimental measure-
ments of Oh et al. [18], performed on fully developed flows, and steady-state
solutions of the present migration model. These authors report data for sev-
eral values of average particle volume fraction φ0. We retained here results
corresponding to a semi-concentrated and to a concentrated case, with nominal
values φ0 = 0.35 and φ0 = 0.52 respectively. We observed that these nomi-
nal values of volume fraction slightly differ from the values obtained by direct
integration of the measured radial profiles of φ. Such integration leads to effec-
tive values φ0 = 0.32 and φ0 = 0.5 for the semi-concentrated and concentrated
cases, respectively. To avoid systematic discrepancies between experimental and
numerical profiles, model solutions were computed for these effective values of
φ0.

Choosing the value of the maximal volume fraction φm in the model requires
care. As explained by Lecampion and Garagash [15], volume fraction φ is ac-
tually characterised by two noticeable limits in highly-concentrated mixtures.
The first limit is the random close packing fraction φrcp = 0.64, which cannot
be exceeded. The second limit is the critical volume fraction φc ≈ 0.585, above
which the mixture is unyielded, i.e. behaves as a solid. In regions where φ > φc,
volume fraction can still continue to increase by compaction, as the particle
phase behaves as a compressible solid. As shown by Oh et al. [18], the actual
steady-state volume fraction reached in the unyielded regions depends upon φ0,
and results from a complex balance between particle pressure pc and friction. In
consequence, the apparent maximal volume fraction φm included in the present
model, which does not account for solid compressibility, should be considered
as living in the range [φc, φrcp]. Hence, for each average volume fraction φ0

considered, model solutions corresponding to several values of maximal volume
fraction φm were computed and compared to experimental data.

run 1 2 3 4 5
φ0 0.32 0.50
φm 0.64 0.60 0.585 0.64 0.585
ψ0 0.50 0.53 0.55 0.78 0.85
T 5907 4923 4418 945 469

Table 5: Values of average volume fraction φ0, maximal volume fraction φm, average reduced
volume fraction ψ0, and dimensionless final computation time T , for the five simulation runs
compared to experiments. Other model parameters are indicated in Table 2.

Table 5 summarises the parameters of the five model solutions, corresponding to
different values of φ0 and φm, that are discussed below. Final computation time
T was varied, ensuring that a fully-developed flow is reached in all cases. For
that purpose, a steady-state criterion based on the exponential decay of wr (see
figure 3 left) is used. More precisely, the time loop is stopped when ‖wr(t)‖ is
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reduced by a factor of 400 compared to its value at the end of the first iteration.
Observe that the final dimensionless time T decreases as the average reduced
volume fraction ψ0 increases (Table 5).

Figure 6 presents comparisons between the model steady-state solution at t = T
and experimental measurements for the semi-concentrated case (φ0 = 0.32).
It is observed that the radial profile of mixture velocity uz across the tube
section is very well reproduced by the model, and this for any choice of φm in
the range 0.585–0.64 (Fig. 6.top-left). Concerning particle volume fraction φ,
two of the main features visible in the experimental data are qualitatively well
reproduced (figure 6 top-right): (i) the existence of the plug in the center of
the tube, where the mixture is saturated in particles, and (ii) the value of φ in
the vicinity of the walls of the tube. While the choice of the maximal volume
fraction φm has only little influence on the profiles of φ in the sheared region,
this parameter obviously has a strong effect on the value of φ in the plug.
Experimental measurements appear to be best captured with φm = 0.60 in this
case.

Similar observations can be made for the concentrated case (φ0 = 0.50). Here
also, the radial profile of uz is well reproduced in the full tube section for any
choice of φm (figure 6 bottom-left). In this case, the value of volume fraction
in the central plug is best captured with the upper bound φm = 0.64, while
the value of φ near the walls depends only slightly on the choice of φm (fig-
ure 6 bottom-right).

In both cases, discrepancies between model predictions and experimental data
can be noted concerning the width of the plug rc and the sharpness of the tran-
sition with the sheared region. Experimental measurements seem to indicate
thinner plugs, and a smoother transition between the two zones. These discrep-
ancies are probably attributable to the limitation of the model, which does not
account for the process of solid compressibility in jammed regions. In the model,
the suspension is supposed to be saturated in particles, and to behave as a rigid
solid, as soon as φ reaches the maximum value φm. In contrast, experimen-
tal results clearly indicate that the unyielded plug encompass the region where
φ ∈ [φc, φrcp], and that volume fraction increases in this region and saturates
only when φ = φrcp. Physically, such solid compressibility of jammed regions
can arise due to non-local effects and fluctuations induced by the neighboring
sheared region [52, 15, 53].
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Figure 6: Comparisons of the present migration model with experimental results of Oh et al.
[18] for the fully developed flow regime. (top) semi-concentrated case φ0 = 0.32 ; (bottom)
concentrated case φ0 = 0.50. Note that error bars on the data correspond to experimental
uncertainties estimated by Oh et al. [18] based on measurements on the interstitial fluid, and
might thus be underestimated for concentrated mixtures.
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5. Conclusion and perspectives

This paper presents a new migration model for mono-disperse suspensions of
neutrally buoyant particles. Unlike the suspension balance model (SBM), which
involves a single velocity [25], our new model involves two-velocities and two
pressures. The two-velocity formulation, coupled to the introduction of a dif-
fusive term on the migration velocity w, allows us to properly impose non-
penetration boundary conditions for the particles across walls, and thus to en-
sure a rigorous mass conservation for the particle phase. The unilateral con-
straint φ 6 φm on the particle volume fraction is rigorously imposed through
the introduction of the particle contact pressure pc. This Lagrange multiplier,
which is nonzero only in jammed regions, represents the contribution to the
mixture pressure of the contact chains that develop between particles in these
regions.

Through an asymptotic analysis, a reduced 1D migration model is derived in
the case of an axisymmetric Poiseuille flow, and a fully implicit algorithm is
proposed for computing numerical solutions of this reduced model. The origi-
nality lies in the handling of the unilateral constraint, through an augmented
Lagrangian method embedded in a fixed point iteration at each time step. This
algorithm is coupled to a finite element spatial discretization, and the conver-
gence properties of the scheme are carefully demonstrated. In particular, the
inner loops involved in the augmented Lagrangian and the fixed point are shown
to converge in a small number of iterations. The error on particle mass is also
shown to converge linearly with mesh refinement.

Quantitative comparisons with experimental measurements in fully-developed
flow regime [18] are presented for both a semi-concentrated and a concentrated
case. Mixture velocity profiles, characterised by the formation of a central plug,
appear to be very well reproduced. The model is thus able to accurately cap-
ture the effects of jamming and the effective viscoplastic behavior [1] in highly-
concentrated mixtures. Some discrepancies between model predictions and ex-
perimental data remain nevertheless visible on the volume fraction profiles, par-
ticularly at the transition between the plug and the outer sheared region. To
overcome these limitations, future improvements of the model shall concentrate
on including more sophisticated constitutive relations accounting for granular
processes in concentrated regions. In particular, inelastic compressibility be-
yond the jamming limit seems to be a necessary ingredient to better capture
the effective volume fraction reached in plug regions [15]. The elastoviscoplastic
rheology recently proposed by Saramito [54], based on a Drucker-Prager yield
criterion, could also be used to represent the effects of plasticity in these zones.
Finally, the development of anisotropic micro-structures in both jammed and
sheared regions could also be considered through specific tensorial constitutive
relations [13]. Future work will also consider the generalisation of the numerical
algorithm in order to efficiently address more complex geometries such as flows
around obstacles [55, 56] or re-suspension experiments [57].
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Appendix A. Poiseuille flow in a long tube

We consider the circular tube geometry represented on figure 1, with (r, θ, z)
the associated cylindrical coordinate system. This appendix shows how prob-
lem (2a)-(2i) reduces asymptotically to problem (6a)-(6k) when tube length L
becomes large with respect to its radius R. The flow is assumed to be axisym-
metric, i.e. independent upon θ. No-slip conditions are assumed at tube wall
i.e. uΓ = 0 in (2g). Moreover, we assume that the initial conditions u0 and w0

satisfies u0,θ = w0,θ = 0.

Let U be a characteristic velocity of the mixture and W be a characteristic mi-
gration velocity; R/U is then a characteristic time and η0U/R is a characteristic
stress. Dimensionless variables are denoted by tildes, e.g. t̃ = (U/R)t, r̃ = r/R,
z̃ = z/L and ũ = (ũr, ũθ, ũz) = u/U. Finally, let ξ = R/L denote the tube as-
pect ratio, ε = rp/R denote the dimensionless particle radius, and ζ = W/U .
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Appendix A.1. Mixture subsystem

Let us first consider the mixture subsystem associated to the unknowns ũ and p̃.
Mixture momentum and mass conservations (2a) and (2c) become:

Re
ũθ
r̃2
− ∂r̃

r̃
(r̃ τ̃p,rr) +

τ̃p,θθ
r̃
− ξ∂z̃ τ̃p,rz + ∂r̃p̃ = 0

Re (∂t̃ũθ + ξũz∂zũθ)−
∂r̃
r̃2

(
r̃2 (τ̃p,rθ + ∂r̃ũθ))− r̃ ũθ

)
− ξ ∂z (τ̃p,θz + ξ ∂z̃ũθ) = 0

Re (∂t̃ũz + ξ ũz∂z̃ũz)−
∂r̃
r̃

(r̃ (∂r̃ũz + τ̃p,rz))− ξ ∂z̃ τ̃p,zz + ξ ∂z̃ p̃ = 0

∂r̃
r̃

(r̃ ũr) + ξ ∂z̃ũz = 0

(A.1a)

(A.1b)

(A.1c)

(A.1d)

where the Reynolds number is defined by Re = ρUR/η0. For ξ → 0, rela-
tion (A.1d) reduces to ∂r̃ (r̃ũr) = 0. Hence, the boundary condition (2g) yields
ũr(t, r=0) = ũr(t, r=1) = 0 at any time t ∈ ]0, T [. Thus, ũr = 0 at any time.
Moreover, since we assume ũθ = 0 at t = 0, from (A.1b), this identity remains
true at any time. Thus ũ = (0, 0, ũz).

Observe in (A.1a) that the term ∂r̃ τ̃p,rr, responsible for the migration, appears
at the same order in ξ as the pressure derivative ∂r̃p̃. Conversely, in (A.1c), the
term ξ ∂z̃ p̃ should be at zeroth order in ξ; otherwise the suspension would not
move in a long tube when ξ → 0. Finally, the pressure is assumed to admit the
following expansion in ξ:

p̃(t̃, r̃, z̃) = ξ−1f̃z(t̃) z̃ + p̃0(t̃, r̃) + O(ξ)

where f̃z depends only upon t̃, and p̃0 depends upon t̃ and r̃ but is independent
of z̃, as inferred from (A.1a). Then, for ξ → 0, momentum conservation (A.1a)
and (A.1c) reduce to

−∂r̃
r̃

(r̃ τ̃p,rr) +
τp,θθ
r̃

+ ∂r̃p̃0 = 0 (A.2a)

Re∂t̃ũz −
∂r̃
r̃

(r̃ (∂r̃ũz + τ̃p,rz)) + f̃z = 0 (A.2b)

Two types of controls can be considered for the flow of the mixture: either the
pressure drop f̃z or the flow rate can be imposed. Here, we choose to impose
the flow rate, denoted by q. The characteristic mixture velocity is then defined
as U = 2q/(πR2), which is equal to twice the average velocity, such that the
dimensionless flow rate expresses as∫ 1

0

ũz(t̃, r̃) r̃ dr̃ =
1

4
(A.2c)

and f̃z in (A.2b) interprets as a Lagrange multiplier for the imposition of the
flow rate constraint (A.2c). Note that when ψ = 0, from (2f), the particle
stress τ p vanishes, the fluid is Newtonian and U coincides with the maximal
value of the mixture velocity.
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Appendix A.2. Congested subsystem

Let us now turn to the congested subsystem associated to the unknowns w̃, p̃c
and ψ. Since w̃θ = 0 at t=0, we assume that w̃ = (w̃r, 0, w̃z) at any time. Note
that w̃r 6= 0 in general, since the particles are expected to migrate in the tube.

Let us express that the total mass of particle in the tube is constant:

∂

∂t

(
2π

∫ R

0

∫ L

0

ψ(t, r, z) r dr dz

)
= 0

From particle mass conservation (2d) and Stokes formula, we then get, for
any z ∈ [0, L]: [∫ 1

0

(uz + wz)ψ rdr
]z=L
z=0

= 0

We are looking for uniform flows, for which the flow rate is independent of the
longitudinal position z. Hence, we impose the particle flow rate to be constant,
which writes: ∫ 1

0

(ũz + w̃z)ψ r̃ dr̃ =
ψ0

4
(A.3a)

where ψ0 denotes the average reduced particle volume fraction.

The momentum and mass conservations of the particle phase (2b) and (2d)
become:



Reφmψ
(
ζ ∂t̃w̃r + ζ2 (w̃r∂r̃w̃r + ξw̃z∂z̃w̃r) + ξζũz∂z̃w̃r

)
+ ε−2ζs(ψ) w̃r − ζ

∂r̃
r̃

(2r̃ s(ψ) ∂r̃w̃r)− ξζ ∂z̃ (s(ψ) (∂r̃w̃z + ξ∂z̃w̃r)) + ∂r̃p̃c

=
∂r̃
r̃

(r̃ τ̃p,rr)−
τ̃p,θθ
r̃

+ ξ ∂z̃ τ̃p,rz

Reφmψ
(
∂t̃ũz + ζ ∂t̃w̃z + ζ2 (w̃r∂r̃w̃z + ξw̃z∂z̃w̃z) + ξζ ũz∂z̃w̃z

)
+ ε−2ζ s(ψ) w̃z − ζ

∂r̃
r̃

(r̃ s(ψ) (∂r̃w̃z + ξ∂z̃w̃r))− ξ2ζ ∂z̃ (2s(ψ)∂z̃w̃z) + ξ∂z̃ p̃c

=
∂r̃
r̃

(r̃ τ̃p,rz) + ξ∂z̃ τ̃p,zz

∂t̃ψ + ζ
∂r̃
r̃

(r̃w̃rψ) + ξ ũz∂z̃ψ + ξζ ∂z̃ (w̃zψ) = 0

As done previously for the mixture pressure p̃, we consider the following asymp-
totic expansion for the particle contact pressure p̃c:

p̃c(t̃, r̃, z̃) = ξ−1fc,z(t̃) z̃ + p̃c,0(t̃, r̃) + O(ξ)

where both f̃c,z and p̃c,0 are independent of z̃. Observe that f̃c,z is independent
of r̃ while p̃c,0 is expect to depend on r̃ due to migration and congestion effects.
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By passing to the limit ξ → 0 and neglecting second-order terms in ζ, which are
associated to the inertia effects, the previous system becomes:

Re ζφmψ ∂t̃w̃r + ε−2ζ s(ψ)w̃r − ζ
∂r̃
r̃

(2r̃ s(ψ) ∂r̃w̃r)

+ ∂r̃p̃c,0 =
∂r̃
r̃

(r̃ τ̃p,rr)−
τ̃p,θθ
r̃

Re φmψ (∂t̃ũz + ζ∂t̃w̃z) + ε−2ζ s(ψ)w̃z

− ζ ∂r̃
r̃

(r̃ s(ψ) ∂r̃w̃z) + f̃c,z =
∂r̃
r̃

(r̃ τ̃p,rz)

∂t̃ψ + ζ
∂r̃
r̃

(r̃ w̃r ψ) = 0

(A.3b)

(A.3c)

(A.3d)

Observe that f̃c,z in (A.3c) interprets as a Lagrange multiplier associated to the
linear constraint (A.3a).

Appendix A.3. System closure

Finally, let us turn to the expression of particle stress tensor τp given by (2f).
Since ũ(t̃, r̃) = (0, 0, ũz(t̃, r̃)), the norm of the strain rate writes |2D̃(ũ)| = |∂r̃ũz|
and the components of τp express as explicit relations involving ũz and ψ, as
shown by (7).

Final system involves eight equations, namely (A.2a)-(A.2c), (A.3a)-(A.3d),
and (1), and eight unknowns: ũz, p̃0, f̃z, w̃r, w̃z, p̃c,0, f̃c,z and ψ. All these
unknowns depend both upon time and r̃, except for f̃z and f̃c,z that depend
only upon time. Observe that Equation (A.2a) leads to an explicit computation
of p̃0, and is used in post-treatment to obtain a first order approximation in ξ
of mixture pressure p̃. Hence, only seven relations and seven unknowns remain.
The system is closed by suitable initial and boundary conditions, and is sum-
marised in (6). Note that, for convenience, tilde notations are dropped in the
main text (section 2.3), and the two-velocities u and w are normalised with the
same characteristic velocity U .

Appendix B. Uzawa algorithm

Problem (O), as defined in subsection 3.2, is solved by minimising the cost
function J defined by equation (15). Let us introduce the dual function J∗

defined for all q ∈ L2 by:

J∗(q) = − min
(v,ξ)∈H1

0×L2
L(v, ξ ; q)

The problem writes equivalently as a minimisation problem for this dual func-
tion:

pc,0 = arg min
q∈L2

J∗(q)
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The numerical procedure used to solve this problem, based on Uzawa method, is
described in subsection B.1, with two technical lemmas gathered in subsection
B.2.

Appendix B.1. Numerical algorithm

The Uzawa algorithm for the augmented Lagrangian method expresses as a
constant-step descent algorithm for the dual function J∗:

• m = 0: let p(0)
c,0 be given.

• m > 1: let p
(m−1)
c,0 be known. Then compute:

p
(m)
c,0 = p

(m−1)
c,0 − µ∇J∗

(
p

(m−1)
c,0

)
.

Here, m ∈ N denotes the descent loop index, which is implemented as an inner
loop inside the fixed point loop with index k introduced in subsection 3.1. A
numerical parameter mmax is introduced, such that the stopping criterion for
this inner loop is defined as m > mmax. Note that the constant-descent step has
been chosen equal to the augmentation parameter µ. Note also that J∗ is dif-
ferentiable. Then, expanding its gradient, we obtain an equivalent formulation
of the descent algorithm:

• m = 0: let p(0)
c,0 be given.

• m > 1: let p(m−1)
c,0 be known. Then compute successively:(
w(m)
r , δ(m)

)
= arg min

(v,ξ)∈H1
0×L2

L
(
v, ξ ; p

(m−1)
c,0

)
p

(m)
c,0 = p

(m−1)
c,0 + µ

(
δ(m) −Bw(m)

r

)
To simplify the simultaneous minimisation versus (v, ξ) of the Lagrangian, the
algorithm is modified by decoupling the first step as:

• m = 0: let p(0)
c,0 and δ(0) be given.

• m > 1: let p(m−1)
c,0 and δ(m−1) be known. Then compute successively:

w(m)
r = arg min

v∈H1
0

L
(
v, δ(m−1) ; p

(m−1)
c,0

)
δ(m) = arg min

ξ∈L2

L
(
w(m)
r , ξ ; p

(m−1)
c,0

)
p

(m)
c,0 = p

(m−1)
c,0 + µ

(
δ(m) −Bw(m)

r

)
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From (15), the Lagrangian L is quadratic and differentiable versus v. Thus,
the first step of the above algorithm reduces to a linear sub-problem, namely,
find w(m)

r ∈ H1
0 such that, for all v ∈ H1

0 , we have

∂L

∂v

(
w(m)
r , δ(m−1), p

(m−1)
c,0

)
= 0

The Lagrangian L is both nonlinear and non-differentiable versus ξ, but in-
volves a sub-differential with respect to ξ. Hence, the optimal value δ(m) verifies
0 ∈ ∂ξL(w

(m)
r , δ(m), p

(m−1)
c,0 ), where ∂ξL(w

(m)
r , δ(m), p

(m−1)
c,0 ) is the sub-differential

of L with respect to the variable ξ. The second step of the descent algorithm
is then solved locally. The sub-gradient of the indicator of [g(r),∞[, denoted
∇I[g(r),∞[, verifies, for all ξ ∈ R:

∂I[g(r),∞[(ξ) =

 ∅ when ξ < g(r)
[0,∞[ when ξ = g(r)
{0} otherwise

For all r ∈ [0, 1], the second step then expresses:
find δ(m)(r) ∈ R such that:

0 ∈ ∂I[g(r),∞[

(
δ(m)(r)

)
+ p

(m−1)
c,0 (r) + µδ(m)(r)− µBw(m)

r (r)

⇐⇒


δ(m)(r) > g(r) and δ(m)(r) = Bw

(m)
r (r)−

p
(m−1)
c,0 (r)

µ
or

δ(m)(r) = g(r) and δ(m)(r) > Bw
(m)
r (r)−

p
(m−1)
c,0 (r)

µ

Finally, the computation of δ(m) reduces to an explicit relation, as shown in
Appendix B.2 (lemma 1), and the practical Uzawa algorithm writes:

• m = 0: let p(0)
c,0 and δ(0) be given.

• m > 1: let p(m−1)
c,0 and δ(m−1) be known. Then successively:

i) find w(m)
r ∈ H1

0 such that, for all v ∈ H1
0 , we have

a
(
w(m)
r , v

)
+ µ

∫ 1

0

Bw(m)
r Bv r dr = `(v) +

∫ 1

0

(
p

(m−1)
c,0 + µδ(m−1)

)
Bv r dr

(B.1a)

ii) compute explicitly:

δ(m) = max

(
g, Bw(m)

r −
p

(m−1)
c,0

µ

)
p

(m)
c,0 = p

(m−1)
c,0 + µ

(
δ(m) −Bw(m)

r

) (B.1b)

(B.1c)
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This algorithm has been shown to converge for any µ > 0 [50, theorem 5.1]).
Recall that the solution is independent upon µ. At convergence, (B.1c) leads to
δ = Bwr and then (B.1a) is exactly a weak formulation of (14a). Since wr ∈ H1

0

in (B.1a), we also obtain (14c). Replacing δ = Bwr in (B.1b), we obtain

Bwr = max

(
g, Bwr −

pc,0
µ

)
which leads to (14b), as shown in Appendix B.2 (lemma 2). Thus, the previous
algorithm effectively provides a solution of (14a)-(14c).

Appendix B.2. Technical lemmas

Lemma 1. With the notations defined in section 3, we state the following equiv-
alence relation:

δ(m) = max

(
g,Bw(m)

r −
p

(m−1)
c,0

µ

)
⇐⇒


δ(m) > g and δ(m) = Bw

(m)
r −

p
(m−1)
c,0

µ
or

δ(m) = g and δ(m) > Bw
(m)
r −

p
(m−1)
c,0

µ

Proof. The maximum condition is split between two cases that are equivalent
to the right hand side disjunctive relation in lemma 1:

δ(m) = g

g > Bw
(m)
r −

p
(m−1)
c,0

µ

⇐⇒


δ(m) = g

δ(m) > Bw
(m)
r −

p
(m−1)
c,0

µ
δ > g

δ = Bw
(m)
r −

p
(m−1)
c,0

µ

⇐⇒


δ = Bw

(m)
r −

p
(m−1)
c,0

µ

g < Bw
(m)
r −

p
(m−1)
c,0

µ

Lemma 2. With the notations defined in section 3, we state

Bwr = max(g,Bwr −
pc,0
µ

) =⇒ g 6 Bwr ⊥ pc,0 > 0

Proof.

Bwr = max

(
g,Bwr −

pc,0
µ

)
=⇒

{
Bwr > g

Bwr > Bwr −
pc,0
µ

• The condition Bwr > g is evidently ensured.
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Figure C.7: Steady-state normal stress ratio N2/ηapp|2D(u)| as a function of reduced volume
fraction ψ: comparison between the predictions the rheological model (with values indicated
in table 2) and experimental data of Dbouk et al. [58] and Couturier et al. [59].

• Recalling µ > 0, the positivity of pc,0 is deduced :

Bwr > Bwr −
pc,0
µ

=⇒ pc,0 > 0

• The condition pc,0 (Bwr − g) = 0 is finally stated:

pc,0 > 0 =⇒ Bwr −
pc,0
µ

< Bwr =⇒ Bwr = g

Bwr > g =⇒ Bwr −
pc,0
µ

= Bwr =⇒ pc,0 = 0

Hence the unilateral condition g 6 Bwr ⊥ pc,0 > 0 is stated.

Appendix C. Identification of the rheological parameters

Steady state flow profiles computed with our model show a very low sensitivity
to the values of rheological parameters Kn, λ2, λ3 and α. Hence, only the value
of Ks was adjusted to fit with the migration data of Oh et al. [18] (figure 6).
Values of λ2 and λ3 define the relative magnitude of the normal stress differ-
ences N1 = τp,zz − τp,rr and N2 = τp,rr − τp,θ,θ. The values chosen for these
parameters (see table 2) ensure that |N2| > 3|N1|, in agreement with experi-
mental observations [60]. The value of Kn controls the magnitude of the ratio
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N2/ηapp|2D(u)|, and was set to fit with experimental data from Dbouk et al.
[58] and Couturier et al. [59], as shown on figure C.7. Finally, the parameter
α should verify α ∈ [2, 5] [25]. The lower bound α = 2 was chosen here for
numerical reasons: when α increases, the decrease of ‖wr‖2 with time is slower,
and more time steps are required to reach a fully developed steady state.
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