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2Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
3Univ Rennes, Inria, CNRS, IRISA, France

(Dated: 1 September 2021)

In the context of building acoustics and the acoustic diagnosis of an existing room, this paper
introduces and investigates a new approach to estimate mean absorption coefficients solely
from a room impulse response (RIR). This inverse problem is tackled via virtually-supervised
learning, namely, the RIR-to-absorption mapping is implicitly learned by regression on a
simulated dataset using artificial neural networks. We focus on simple models based on
well-understood architectures. The critical choices of geometric, acoustic and simulation pa-
rameters used to train the models are extensively discussed and studied, while keeping in
mind conditions that are representative of the field of building acoustics. Estimation errors
from the learned neural models are compared to those obtained with classical formulas that
require knowledge of the room’s geometry and reverberation times. Extensive comparisons
made on a variety of simulated test sets highlight different conditions under which the learned
models can overcome the well-known limitations of the diffuse sound field hypothesis under-
lying these formulas. Results obtained on real RIRs measured in an acoustically configurable
room show that at 1 kHz and above, the proposed approach performs comparably to classical
models when reverberation times can be reliably estimated, and continues to work even when
they cannot.

©2021 Acoustical Society of America. [https://doi.org(DOI number)]

[XYZ] Pages: 1–14

I. INTRODUCTION

When sound propagates in a room, its reflections
on the walls, ceiling, floor and other surfaces lead to
the well known phenomenon of reverberation. When
the reverberation level is too high, it can be a major
source of nuisance for the room’s users. To alleviate
this, some of the main parameters an acoustician can
act on are the absorption coefficients of the room sur-
faces, namely, the proportion of sound energy that the
surfaces’ materials do not reflect. These are generally
frequency-dependent and are typically expressed within
octave bands, b ∈ F = {.125, .25, .5, 1, 2, 4} kHz in room
acoustics standards. To obtain the acoustic diagnosis of
a room and deduce a renovation plan, acousticians need
to know the absorption coefficients αi(b) of each individ-
ual surface i in the room. This is typically done through
a manual iterative process where acoustic simulators are
tuned to match in situ measurements while taking into
account the room’s geometry and the properties of known
materials, as measured in laboratories.

Among in situ measurements used in practice, room
impulse responses (RIR) are rich signals that capture the
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acoustic signature of the room via the shape of their de-
cay, their echo density over time or the timings of their
early echoes. While the forward physical process from
acoustic parameters to RIRs is well understood, as illus-
trated by the existence of many reasonably accurate and
efficient RIR simulators (Habets, 2006; Scheibler et al.,
2018; Schimmel et al., 2009), the inverse problem of re-
trieving the absorption coefficients of surfaces solely from
a RIR is much more challenging and is the focus of this
article. We consider the simple but common case of a
shoebox (cuboid) room with a different material on each
of the 6 surfaces. Even in this case, recovering the absorp-
tion coefficients of all surfaces from a single RIR without
any knowledge on the source, receiver or wall positions is
out of reach, due to inherent ambiguities of the problem
such as permutations between the different surfaces. To
alleviate this issue, this work focuses on estimating the
area-weighted mean absorption coefficients:

ᾱ(b) =

∑
i αi(b)Si∑

i Si
∈ [0, 1] (1)

where Si denotes the area of surface i in m2. Note that
this quantity is treated here as a purely analytical param-
eter that globally summarizes the acoustic properties of
all surfaces in the room. In acoustics, it is traditionally
used under the hypothesis of a diffuse sound field (DSF)
in which the energy is uniformly distributed in space and
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flows isotropically (Kuttruff, 2009; Nolan et al., 2018).
However, in this work, we will also consider its estima-
tion under more general, non-diffuse settings. Choosing
this particular quantity as a target will notably allow rel-
evant comparisons to methods based on classical rever-
beration theory, i.e., by inverting the well-known Sabine
and Eyring formulas (Kuttruff, 2009), at least under con-
ditions that are close to the DSF regime.

We propose to tackle the inverse problem of estimat-
ing ᾱ = [ᾱ(b)]b∈F ∈ [0, 1]6 from a single RIR without any
other information on the room using supervised machine
learning and in particular non-linear regression.

While artificial neural networks have proven to be a
very powerful family of models for non-linear regression
in the recent years, a well-known bottleneck is their need
for a large number of input-output pairs to be trained.
As of today, since in situ estimation of absorption co-
efficients remains a costly and complex task, sufficiently
large and diverse real RIR databases annotated with sur-
face absorption profiles are not available. Hence we pro-
pose to make use of virtually supervised learning, as in-
troduced in (Gaultier et al., 2017). The idea is to use the
known forward physical model, namely, a room acoustic
simulator, to generate a potentially unlimited amount of
annotated data to learn the inverse mapping from. The
main contributions of this article are (i) a novel approach
to efficiently sample simulated training data that are rep-
resentative of commonly encountered acoustics in cuboid
rooms, which is shown to outperform naive uniform sam-
pling; (ii) an extensive comparative simulation study be-
tween estimates based on classical reverberation theory
and those obtained from various neural network designs,
including their generalizability to unseen data, noise, and
various acoustic conditions; and (iii) a comparative study
between virtually trained models and classical models on
real measured RIRs.

Our simulated experiments reveal that neural mod-
els can successfully estimate mean absorption coefficients
under a wide range of acoustical conditions, with mean
absolute errors below 0.05, while not requiring any geo-
metrical information on the room. As expected, in non-
DSF settings, they are more accurate than classical mod-
els that rely on the DSF hypothesis. On real data that
are close to the DSF regime, errors obtained from the pro-
posed learned model are not satisfying below 1 kHz but
remain under 0.1 in higher octave bands and are compa-
rable to those obtained with classical models. Moreover,
in those higher frequencies, it is shown that the neural
model continues to yield reliable ᾱ(b) estimates even in
conditions where classical models cannot, as reverbera-
tion times cannot be extracted from RIRs due to the lack
of sufficient linear decays in Schroeder curves (Schroeder,
1965).

While the observed limitations of classical formulas
from reverberation theory outside of the DSF regime are
well-known and expected (Nolan et al., 2018), they still
constitute an interesting comparison point as these tools
remain widely used today to obtain initial in situ acous-
tical estimates in practice, e.g. (Prawda et al., 2020).

Further investigation on the real-world applicability of
learned models in lower octave bands and their exten-
sion to the geometrically-informed estimation of individ-
ual absorption profiles are left for future work.

The remainder of this work is organized as follows.
Section II provides an overview of related works. Sec-
tion III details the construction of our simulated RIR
datasets, examining trade-offs between computational
tractability, realism, and representativity. Section IV
presents the neural networks’ design and training. Sec-
tion V and VI contains our extensive comparative exper-
imental study on both simulated and real data. Finally,
section VII concludes and offers leads for future works.

II. RELATED WORKS

A. Absorption coefficient estimation

While this article focuses on the intermediate task
of estimating area-weighted mean absorption coefficients
in a room, the estimation of individual absorption coeffi-
cients or more generally the surface impedance of a ma-
terial is a vast and long-standing research topic, which
is briefly reviewed here. The most commonly used tech-
niques require an isolated sample of the studied mate-
rial in a controlled environment. The impedance tube
method is one of the most widely used ones (ASTM
E1050-98; ISO 10534:2001) and the associated analytical
approach is usually that of Chung and Blaser (Chung and
Blaser, 1980a,b) based on the transfer function between
two microphones. Alternatively, the reverberation room
method (ISO 354:2003) uses the theory of reverberation
and relies on the DSF hypothesis.

In contrast, this article explores in situ estimation.
For a recent exhaustive review of this topic, the reader is
referred to (Brandão et al., 2015). Classically, the goal
is to separate the direct wave from the reflected wave
in an impulse response, with different constraints that
depend on the acoustic environment. Early approaches
include echo-impulse methods, where the reflected wave
is extracted by eliminating the incident wave and para-
site wave using temporal windowing or subtraction. Due
to the time-frequency uncertainty relation ∆t∆f ≥ 1
(Garai, 1993), a compromise must then be found between
the size of the time-domain filters used and the infor-
mation loss at low frequencies. Also, in order to have
a good temporal separation of the waves, the emitted
pulse must be narrow, of flat frequency spectrum and re-
peatable, which is difficult to have in practice (Cramond,
1984; Davies and Mulholland, 1979; Garai, 1993; Yuzawa,
1975).

To overcome these limitations, methods based on sta-
tionary noise have been proposed. While (Barry, 1974;
Hollin and Jones, 1977) use white noise, (Aoshima, 1981)
and (Suzuki et al., 1995) later proposed a flat spectrum
pulse signal stretched in time by filtering. Other excita-
tion signals were then developed to guarantee a better
immunity to background noise, such as MLS (Rife and
Vanderkooy, 1999; Schroeder, 1979; Stan et al., 2002) and
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Sine Sweep signals (Farina, 2000, 2007; Müller and Mas-
sarani, 2001). To date, the advantages and disadvantages
of these signals are still being studied (Guidorzia et al.,
2015; Torras-Rosell and Jacobsen, 2010).

In parallel, other works focus on the development of
analytical models of propagation. In (Ing̊ard and Bolt,
1951), the sound field of an anechoic room is approxi-
mated by a set of plane waves. This was later reiter-
ated in (Ando, 1968) and (Sides and Mulholland, 1971).
(Allard and Sieben, 1985) introduced the microphonic
doublet approach and the specific impedance, which can
be related to surface impedance using the linearized Eu-
ler equation. This approach is only valid if the dis-
tance between the microphones is small compared to
the wavelength (Allard and Aknine, 1985; Champoux
and L’espérance, 1988; Champoux et al., 1988; Minten
et al., 1988). More finely, the sound field can be modeled
by a set of spherical waves, as proposed in (Champoux
et al., 1988) based on the analytical model of (Nobile
and Hayek, 1985) and later in (Li and Hodgson, 1997).
Finally, approaches based on the principle of acoustical
holography, following (Tamura, 1990), have also been re-
cently investigated (Nolan, 2020; Rathsam and Rafaely,
2015; Richard et al., 2017). While simple propagation
models are easily invertible, more realistic ones are gen-
erally not, requiring the use of more complex and ap-
proximate numerical solvers, as well as access to precise
details on the acoustic environment that are not always
available to field acousticians in practice (Brandão et al.,
2015).

In summary, estimating the absorption coefficients
of a material remains a complex task. It hinges on the
choice of a number of parameters that are often corre-
lated with each other and hard to precisely control in
practice, such as the excitation signal, the source and re-
ceiver properties, the environment (free field, anechoic,
reverberant), the experimental setup (number and posi-
tion of sources and microphones, size of the material un-
der study), the chosen propagation model and the post
processing. Developing a generic approach to retrieve ab-
sorption profiles in situ from a unique RIR measurement
at an arbitrary location is hence an attractive research
avenue for building acoustics.

B. Machine-learning in acoustics

Machine learning methodologies have only recently
been applied to acoustics. They are still relatively scarce
in the field, but have received fast growing interest
(Bianco et al., 2019). While the lack of a large amount
of training data is often a limiting factor, this has been
alleviated by the use of massive simulations (Gaultier
et al., 2017; Kim et al., 2017), data augmentation (Gam-
per and Tashev, 2018) or domain adaptation (He et al.,
2019). Early successful applications of machine learn-
ing to acoustics mostly lied in sound source localization
(Chakrabarty and Habets, 2017; Deleforge et al., 2014,
2015; Di Carlo et al., 2019; Gaultier et al., 2017; He et al.,
2019; Lefort et al., 2017; Niu et al., 2017) and in acoustic

scene and event classification (Deecke and Janik, 2006;
Gradǐsek et al., 2017; Mesaros et al., 2017, 2019; Parsons
and Jones, 2000). The concept of acoustic space learning
was introduced in (Deleforge et al., 2014) in the context
of sound source localization. A large dataset of broad-
band audio recordings from different (source, receiver)
locations in a fixed room was gathered using a motor-
ized binaural head. A supervised non-linear regression
model was then trained on this dataset to learn a map-
ping from audio features to source directions. This ap-
proach is however limited by data availability and does
not generalize well to different acoustic environments, as
showed in (Deleforge et al., 2015). To alleviate this is-
sue, the concept was later extended to virtual acoustic
space learning (Gaultier et al., 2017; Kataria et al., 2017),
in which hundreds of thousands of examples are gener-
ated using a room acoustic simulator. In the context of
sound localization, such virtually-learned models showed
some direct albeit limited generalizability to real data in
(Gaultier et al., 2017) and in (Chakrabarty and Habets,
2017). In (He et al., 2019), a domain adaptation tech-
nique was proposed to strengthen this generalizability.

Closer to our application, supervised learning was
recently used to estimate the reverberation time (Gam-
per and Tashev, 2018) or the volume (Genovese et al.,
2019) of a room blindly, i.e., from the single channel
noisy recording of an unknown speech source. Interest-
ingly, these works use a careful combination of real and
simulated data for training. Performances are however
naturally limited in such blind settings. In a preliminary
study (Kataria et al., 2017), virtually-supervised learning
was used to jointly estimate the mean absorption coeffi-
cients of the walls and the 3D position of a broadband
noise source from binaural recordings. The room shape,
the receiver position and the properties of the floor and
ceiling were fixed and known throughout, while the ab-
sorption coefficients of walls were supposed frequency-
independent and only results on simulated data were
reported. Even more recently, a method to estimate
the 6 absorption coefficients of the surfaces of a shoe-
box room in increasing order in a fixed frequency band
from an impulse response was proposed, using a fully-
connected deep neural network (Yu and Kleijn, 2020).
The model was both trained and tested on simulated RIR
datasets using the image source method, without diffu-
sion or noise, and with absorption coefficients uniformly
drawn at random between 0 and 1. Such absorption dis-
tribution is however not representative of commonly en-
countered room acoustics, as will be showed in Section
III B. Reported errors were 30% to 60% lower than ran-
dom guessing, but no comparison to known acoustical
models and no experiments on real data were carried out.

III. SIMULATED DATASETS

The first step of the proposed virtually-supervised
approach is to simulate a large number of room impulse
responses (RIRs) paired with corresponding mean ab-
sorption coefficients ᾱ (1) to train our models. For this,
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two important trade-offs must to be considered. The first
one is between the realism of simulations and their com-
putational demand, and is governed by the choice of a
simulator and the tuning of its internal parameters. The
second one is between the diversity of considered acous-
tic environments and the amount of representative data
needed to train the model. Both trade-offs are discussed
in details in sections III A and III B.

A. Realism trade-off

When simulating RIRs, more realism typically im-
plies higher, sometimes prohibitive computational costs.
Existing room acoustic simulators can be divided into
three categories (Habets, 2006). The first category solves
the wave equation in discretized space, time and/or fre-
quency domains. These notably include finite element
methods (Okuzono et al., 2014), boundary-element meth-
ods (Pietrzyk, 1998) or finite-difference time-domain
methods (Botteldooren, 1995). While they can in prin-
ciple simulate any acoustic conditions and geometry to
arbitrary precision, their computational time depends
on the space discretization steps used, which condi-
tions attainable wavelengths. In the context of build-
ing acoustics, which deals with frequencies as high as 5
kHz within large volumes, accurately generating thou-
sands of RIRs is unfeasible with such methods. A sec-
ond category includes variants of the well-known image
source model, originally proposed in (Allen and Berkley,
1979), many times extended, e.g., (Borish, 1984; Peter-
son, 1986; Samarasinghe et al., 2018), and implemented
in many widely used acoustic simulators, e.g., (Habets,
2006; Scheibler et al., 2018; Schimmel et al., 2009). This
deterministic method allows very efficient implementa-
tions, in particular in cuboid rooms, but only models
ideal specular reflections on surfaces and hence lacks real-
ism. The last category includes energetic methods based
on Monte Carlo sampling, also known as ray-tracing or
particle filtering (Kulowski, 1985; Schimmel et al., 2009;
Schröder, 2011). Like wave-based methods, these ap-
proaches can in principle model arbitrary acoustic con-
ditions, and are particularly well-suited to model surface
scattering. However, their computational time and pre-
cision depends on the number of rays (or equivalently
particles). For such methods to be tractable in the con-
text of room acoustics, the receiver must typically be
approximated by a large receptive field in order to aggre-
gate enough rays. Alternatively, the diffuse-rain method
proposed in (Schröder, 2011) systematically sends a pro-
portion of diffuse energy to a point receiver at each ray
collision, reducing the number of rays needed. In both
cases, the timings of rays reaching the receivers are non-
deterministic and only reflect acoustical effects in a sta-
tistical, energetic sense.

For this study, we choose a hybrid simulator belong-
ing to the last two categories, referred to as Roomsim and
proposed in (Schimmel et al., 2009). Roomsim combines
the image source method to obtain precise timings of
specular reflections dominating the early part of the RIR,

and the diffuse-rain method to account for stochastic dif-
fuse effects dominating the RIR’s tail. The hybrid simu-
lator Roomsim enables frequency-dependent absorption
and scattering coefficients and it uses a minimum-phase
finite-impulse-response representation of rays reaching
the receiver to convert echograms into RIRs. This mini-
mum phase representation is physically motivated by the
causality and the fast-decaying properties of resulting sig-
nals. A software based on Roomsim is showed to yield
remarkably accurate RIRs compared to measured ones in
identical conditions in (Wabnitz et al., 2010). We used
the open-source C++/Matlab implementation from the
original authors (Schimmel et al., 2009). As a compro-
mise between accuracy and computational demand, we
used a frequency of sampling of 48 kHz, 50,000 rays per
simulation for the diffuse-rain method and image sources
up to order 50 for the image-source method. Simulations
were run and aggregated along the following 6 octave
bands: b ∈ F . These match those available in most
absorption coefficient databases and are commonly used
in acoustic regulations. Although its impact is minor,
atmospheric attenuation is taken into account for a tem-
perature of 20 degrees Celsius and a relative humidity of
42% (Roomsim default values).

We must stress that while lower frequency are per-
ceptually relevant in building acoustics, the energy-based
simulation approach used here is unable to accurately
model some of the wave phenomena occurring below
the Shroeder’s frequency (Schroeder, 1996) such as room
modes (Schröder, 2011, Sec. 5.6). This limitation of the
current study will be reflected in our real-data experi-
ments, as discussed in section VI.

B. Representativity trade-off

A large diversity in training data is generally desir-
able to learn a model that generalizes well to many dif-
ferent situations. However, more diversity also implies
more data in order to obtain a representative training
dataset. Indeed, for a fixed sampling density of a pa-
rameterized observation space, the number of required
samples grows exponentially in the number of parame-
ters, an effect known as the curse of dimensionality. As
a mitigating trade-off, we choose in this study to focus
on environments that are representative of the field of
building acoustics, e.g., offices, schools, restaurants or
accommodations. In particular, we exclude very large
volumes such as those encountered in churches, tunnels,
hangars or swimming pools. Our evaluation will also ex-
clude unusual absorption profiles that are only encoun-
tered in highly specialized rooms (e.g., anechoic or semi-
anechoic chambers). Fig. 1 shows the absorption profiles
of the 92 commonly encountered reflective, wall, floor and
ceiling materials that will be considered in this study1.
Since most commonly encountered rooms in buildings are
cuboids, this study focuses on those rather than dealing
with arbitrary complex geometries. This is also moti-
vated by the fact that the image source method is much
faster in this setting, as exploited by Roomsim. Finally,
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we only consider empty rooms. This strong assumption
is partially mitigated by the use of the diffuse-rain model.
The random sound rays stemming from this Monte Carlo
approach can approximate reflections on objects of dif-
ferent sizes, depending on the octave bands/wavelengths
considered.

The relevant parameters impacting RIRs can then
be divided into a reasonably small set of geometric and
acoustic parameters. Geometric parameters include the
3D positions of the source and receiver (both assumed
omnidirectional in this study), and the width Lx, length
Ly and height Lz of the room. The height Lz was drawn
uniformly at random between 2.5 m and 4 m and the
width Lx and length Ly between 1.5 m and 10 m. The
receiver and source positions were drawn uniformly at
random in the room for each RIR, while ensuring a min-
imum distance of 0.5 m to any surface, and 1 m between
the two using rejection sampling (ISO 3382-2:2008).

Acoustic parameters include the absorption αi(b)
and scattering si(b) coefficients of each of the 6 surfaces
i in each of the 6 octave bands b. Two different strate-
gies were explored to sample absorption coefficients. The
first, most straightforward one, is to draw all 36 coeffi-
cients uniformly at random between 0 and 1 for each
RIR. We later refer to this approach as Unif, which is
also the approach employed in the recent paper (Yu and
Kleijn, 2020). The obtained ᾱ(b) distribution (Eq.(1))
over 15,000 simulated RIRs is shown in Fig. 2(a). As
can be observed in Fig. 2(b), the resulting histogram of
RT30(b) values2 is narrowly spread around 150 ms, which
is an unusual value mostly encountered in semi-anechoic
chambers. This is because using this technique, drawing
four or more reflective absorption profiles within a same
room (e.g. ᾱi(b) < 0.15 for all b) is very unlikely. Yet,
highly reflective profiles are frequently encountered in
real buildings. These are characteristics of hard surfaces
made of, e.g., concrete, bricks or tiles. The absorption
profiles of 26 such materials are plotted in Fig. 1(a). As
can be seen, they are all roughly frequency-independent
with absorption coefficients below 0.12. Based on this,
we designed the following new Reflectivity Biased (RB)
sampling strategy:

1. for each surface type (wall, floor, ceiling), toss a
coin;

2. on heads, draw reflective frequency-independent
absorption profiles uniformly at random in
[0.01, 0.12] for these surfaces;

3. on tails, draw non-reflective frequency-dependent
absorption profiles uniformly at random within pre-
defined ranges depending on the surface type (see
Fig. 1).

Note that walls are either all reflective or all non-
reflective, but may still have distinct profiles. The non-
reflective ranges are chosen to encompass typical materi-
als used on walls, floors and ceilings in common buildings,
as shown in Fig. 1(b), 1(c) and 1(d). As can be seen
in Fig. 2(d) and Fig. 2(c), the proposed RB sampling

technique results in more diverse and more representa-
tive distributions for both reverberation times RT30(b)
and mean absorption coefficients ᾱ(b). The peak around
0.06 observed in Fig. 2(c) is consistent with the proposed
bias towards reflective surfaces and the chosen realistic
absorption ranges.

Finally, for both the Unif and the RB sampling
strategies, the same frequency-dependent scattering pro-
file was used for all surfaces. This approach, previously
used in (Gaultier et al., 2017), is based on the interpre-
tation that the diffuse-rain model of Roomsim globally
captures random reflections in the room rather than spe-
cific local effects. While random scattering coefficients in
[0, 1] were used in all octave bands for Unif, we respec-
tively used the ranges [0, 0.3] and [0.2, 1] for octave bands
in {125 Hz, 250 Hz, 500 Hz} and {1 kHz, 2 kHz, 4 kHz}
for RB. This choice is guided by scattering profiles mea-
sured in real rooms as reported in (Vorländer and Mom-
mertz, 2000). Overall, one training set of 15,000 RIRs
and one development set of 5,000 RIRs were generated
for each of the two sampling techniques.

IV. NEURAL NETWORK MODELS AND TRAINING

A. Data pre-processing

A crucial question in supervised learning is that
of finding an appropriate representation for input data,
which is sometimes referred to as the feature extraction
step. Ideally, one seeks a representation that preserves
or enhance features that are relevant for estimating the
output, while removing unnecessary or redundant ones.
In learning-based audio signal processing applications,
phase-less time-frequency representations such as mag-
nitude spectrograms or Mel-Frequency Cepstral Coeffi-
cients have been widely used. Since frequency-dependent
values are sought, such representations seem attractive
at first glance. However, by discarding phase they would
remove fine-grain temporal information such as the tim-
ings of early echoes in RIRs. These timings could be ex-
ploited to infer geometrical properties of the room that
in turn correlate with absorption coefficients condition-
ally on the reverberation time, as showed by (2). Al-
ternatively, one could consider invertible complex time-
frequency representations such as the short-term Fourier
transform (STFT). Our preliminary experiments in that
direction were however not conclusive, possibly due to the
difficulty of handling non-linear complex phase behavior
in the networks, or because any choice of STFT parame-
ters implies a non-obvious compromise between time and
frequency resolution at each frame. Consequently, we
choose to let the network learn its own internal represen-
tation of time-domain RIRs, in an end-to-end fashion.
This approach has recently showed considerable success
in other audio signal processing applications, e.g., (Luo
and Mesgarani, 2018).

RIRs obtained by Roomsim were resampled from 48
to 16 kHz. In fact, the highest octave band considered
does not exceed 5.7 kHz, suggesting that 12 kHz could be

J. Acoust. Soc. Am. / 1 September 2021 JASA/Mean Absorption Estimation 5



(a) (b) (c) (d)

FIG. 1. Absorption profiles of 92 commonly encountered reflective, wall, floor and ceiling materials with lower and upper

bounds. (a) 26 reflective profiles, (b) 19 wall profiles, (c) 12 floor profiles, (d) 35 ceiling profiles.

(a) (b)

(c) (d)

FIG. 2. Histograms of ᾱ(b) [(a),(c)] and RT30(b) [(b),(d)] values in 6 octave bands for 15,000 RIRs using Unif [(a),(b)] vs. RB

[(c),(d)] sampling.

sufficient for our application. However, higher-frequency
features such as the times of arrival of early reflections
may still carry useful information. On the other hand,
overly relying on very high frequencies would be discon-

nected from real applications, as receivers and emitters
used to measure RIRs are always band-limited in prac-
tice. Only the first 500 ms of RIRs were preserved, as
this range is expected to contain the most salient acous-
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FIG. 3. Neural network architectures. (a) Multilayer per-

ceptron (MLP), (b) Convolutional neural network (CNN).

tical information, including both early and late reflec-
tions. This resulted in 8,000-dimensional input vectors.
A random white Gaussian noise with signal-to-noise ra-
tio (SNR) 30 dB was also added to every RIR in the
datasets. This is expected to make learned models more
robust, and to prevent them from relying on vanishingly
small values in the RIRs, which would be inaccessible
in practical applications. Finally, all input vectors were
normalized to have a maximum value of 1. This is done
to facilitate learning, and also to prevent models from
relying on the RIR’s absolute amplitude which is often
inaccessible in practical applications due unknown source
and microphone gains.

B. Network design

Two commonly used neural network architectures
are considered for this study, namely, the multilayer per-
ceptron (MLP) depicted in Fig. 3(a), and the convolu-
tional neural network (CNN), depicted in Fig. 3(b). The
MLP is made of three fully connected hidden layers of
successive dimensions 128, 64 and 32, each followed by
exponential linear units (ELUs). The CNN starts with
three consecutive 1D-convolutional hidden layers with a
stride of 1, respective filter sizes 33, 17, 9 with zero-
padding to preserve dimensionality after each convolu-
tion, and number of filters 64, 32 and 16. Each convo-
lution is followed by a max pooling layer of width 4 and
ELUs. The resulting output of dimension 2000 is then
passed through a fully connected hidden layer of size 32
with ELUs. This particular designs of layers are meant
to define two simple dimensionality-reducing networks of
relatively small and comparable size and depth. For each
network, a final fully-connected output layer is used to
yield the desired output vector, evaluated by a mean-
squared error loss-function. Networks are optimized on
the training set using batches of size of 1000 and ADAM
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FIG. 4. Comparison of 3 output layers, trained on RB,

evaluated on RB development set.

(a) (b)

FIG. 5. Loss evolution on training and development sets. (a)

Unif datasets, (b) RB datasets.

(Kingma and Ba, 2014) with a learning rate of 0.001.
Parameters yielding the lowest average loss on the devel-
opment set over 400 epochs are used in all experiments.
These meta-parameters and choice of ELUs rather than
rectified linear units (RELUs) were guided by prelimi-
nary experiments on the development sets.

Three different output targets were considered: (i)
the 6-dimensional vector of mean absorption coefficients
in all octave bands ᾱ ∈ [0, 1]6, (ii) the vector of inverse
mean absorption coefficient ᾱ−1 ∈ R+6 or (iii) the con-
catenation of the mean absorption and scattering coef-
ficients [ᾱ; s̄] ∈ [0, 1]12. The second idea derives from
the fact that the reverberation of a room is roughly in-
versely proportional to the mean absorption in DSF con-
ditions, e.g., Sabine’s law (Kuttruff, 2009). The third
idea is to test whether annotating the network with scat-
tering coefficients at train time could help the estimation
of absorption, i.e., multi-task learning. Output values
in [0, 1] were constrained using sigmoid gates while posi-
tive values were constrained using a rectified linear units
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(ReLU). A comparison of the distribution of absolute er-
rors on ᾱ obtained on the development set of RB using
these three targets is shown in Fig. 4. In the remainder of
the article, the absolute error is defined as the absolute
difference between target and estimated values. For a
given dataset, reported means or box plots are computed
over all input RIRs, but also over all 6 octave bands,
unless stated otherwise. As can be seen, using inverse
or concatenated vectors yield equivalent or worse results
than simply using ᾱ. Hence, only networks outputting
ᾱ are considered in the remainder of the paper.

Fig. 5(a) and 5(b) show the evolution of the loss func-
tions of the two networks on the training and develop-
ment sets for both Unif and RB. It can be observed that
the MLP is more prone to over-fitting than the CNN.
This suggests that the latter generalizes better to un-
seen RIRs, an effect which will be confirmed in section
VI. This might be explained by the use of temporal con-
volutions, which may more efficiently capture the global
frequency content of RIRs than fully connected layers,
while discarding less relevant local information.

V. EXPERIMENTS AND RESULTS

A. Baseline models

As a comparison point with the proposed neural
models, we use mean absorption estimates obtained using
the well-known Sabine’s law and its more precise variant
from Eyring from reverberation theory (Kuttruff, 2009):

ᾱSabine(b) = 0.163 · V/(S ·RT (b)) (2)

ᾱEyring(b) = − ln (1− ᾱSabine(b)) (3)

where V denotes the room’s volume and S =
∑

i Si

its total surface. Eyring’s and Sabine’s models are al-
ways given the true volume V and total surface S of the
room in all experiments. Obviously, the diffuse sound
field (DSF) hypothesis inherent to these classical models
is not theoretically verified for many of the considered
room configurations. In order to better understand the
impact of this limitation, a preliminary study was car-
ried out on the Unif and RB training databases. The re-
verberation time used in the formulas was calculated on
different dynamics ([−5 dB,−15 dB], [−5 dB,−20 dB],
[−5 dB,−25 dB], [−5 dB,−35 dB], [−5 dB,−65 dB]) of
the Schroeder curves (Schroeder, 1965) and the resulting
distributions of absolute errors were estimated. The dy-
namic [−5 dB,−35 dB], i.e., RT30(b), was retained for
our study as it offered the smallest median values of ab-
solute errors for the Unif and RB training databases, i.e.,
0.07 and 0.03 respectively. Such low errors show that the
exploitation of these DSF-based models in our compar-
ative study, while limited, is not unreasonable for the
selected room configurations.

B. Simulation results

We now compare the different learned models (MLP-
Unif, MLP-RB, CNN-Unif, CNN-RB) to Eyring’s (3) and

Sabine’s (2) models on the task of estimating surface-
weighted mean absorption coefficients (1) from a simu-
lated RIR. A variety of simulated test sets, containing
500 RIRs each and all generated with Roomsim, are con-
sidered.

The first simulated test set, called realistic, only con-
tains surface materials commonly encountered in real
buildings, drawn uniformly at random from the database
presented in Fig. 1. Five fixed geometries representative
of typical rooms were selected for this set with the follow-
ing (Lx, Ly, Lz) dimensions in meters: (4, 5, 3), (10, 2, 3),
(10, 5, 3), (5, 8, 2.5), (10, 10, 5). The scattering of the
walls and the noise level is the same as in RB datasets.
Absolute errors obtained with the 6 methods are pre-
sented in the form of box plots in Fig. 6(a). As can be
seen, networks trained on the naive Unif training set do
not succeed in outperforming classical approaches based
on reverberation theory. However, mean estimation er-
rors twice smaller than Eyring’s method and with much
less variance are obtained using the networks trained on
the RB set. As expected, Sabine’s estimates show to be
slightly less accurate than Eyring’s. Hence, results from
Unif-trained networks and from the Sabine’s model will
no longer be reported in what follows. The absolute er-
ror distribution was also observed per octave band for
this test set (Fig. 7). No major differences in errors were
observed across octave bands for the different methods.
Hence errors will systematically be aggregated over all
octave bands in the remainder of this section.

We then conduct a series of experiments on specially
crafted simulated test sets to further test the efficiency of
the different models against various acoustical conditions.
Unless stated otherwise, acoustic parameters follow RB
sampling (see Section III B) and RIRs have undergone
the same pre-treatment as Section IV A. First, Fig. 6(b)
compares results on three test sets respectively contain-
ing only cube-like rooms (Lx, Ly ∈ [2, 4]; Lz = 2.5), flat
rooms (Lx, Ly ∈ [8, 10]; Lz = 2.5) and elongated rooms
(Lx ∈ [2, 4]; Ly ∈ [8, 10]; Lz = 2.5). Unsurprisingly, with
Eyring’s model, the smallest absolute errors are obtained
on cube-like rooms for which the sound field is closest to
diffuse (Hodgson, 1994, 1996). Logically, both the mean
and variance of this error increases for the two other geo-
metrical configurations. While learned models only pro-
vide minor improvements over Eyring’s formula under
cube-like geometries where the DSF assumption is mostly
met, they offer a clear advantage in non-homogeneous
conditions.

Fig. 6(c) compares the results for three test sets,
each associated with a specific reverberation (slightly
reverberant, semi-reverberant, reverberant). While ob-
tained errors tend to increase as the reverberation time
decreases, learned models remain superior to Eyring’s in
all conditions. For Eyring, this increase is expected as
more reverberant rooms are closer to the DSF hypothe-
sis (Hodgson, 1994, 1996).

Fig. 6(d) reports errors as a function of SNR, when
additive white Gaussian noise is added to RIR signals
(SNR levels are calculated on the first 500ms of RIRs).
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Comparison of ᾱ estimation errors on different simulated test sets of 500 RIRs each. (a) Realistic test set, (b) influence

of geometry, (c) influence of reverberation time, (d) influence of noise, (e) influence of diffusion, (f) influence of absorption.

It can be seen that the Eyring model’s estimations de-
grade abruptly for SNRs of 30 dB or lower. To investigate
this effect, Fig. 8 shows the 1 kHz Schroeder curves of an
example RIR under varying noise levels. As can be seen,
as the noise level increases, a clean, linear, -30 dB log-
energy decay may no longer be available, thus degrading
the RT30 estimation. This is a well known limitation
of reverberation-based techniques, which often require to
manually adapt the decay level used depending on mea-
surements. On the other hand, the learned MLP-RB
and CNN-RB models, trained on a noisy dataset (30 dB
SNR), prove to be much more robust to noise, suggesting
that they adaptively extract relevant cues from RIRs.

Finally, Fig. 6(e) and 6(f) report errors as a func-
tion of ᾱ and mean scattering coefficient s̄, where each
coefficient is fixed to a constant value across all octave
bands and surfaces in each test set. Once again, the
behaviour of Eyring’s model matches the one expected
from reverberation theory, since rooms containing high-
scattering, low-absorption materials tend to feature more
diffuse sound fields (Hodgson, 1994, 1996). On the other
hand, learned models perform similarly or better than
Eyring’s model for s̄ < 0.5 and ᾱ < 0.5, but signifi-

cantly less well otherwise. This is because mean scat-
tering values outside those ranges were not present in
the RB training set (see Fig. 2(c)). While learning-based
methods show remarkable interpolation capabilities, they
are known to have limited extrapolation capabilities.

To get further insight on the influence of scattering
coefficients and diffusion when training neural networks,
we tried retraining the CNN model on a purely spec-
ular RB set, i.e., using only the image-source method
in Roomsim while disabling the diffuse-rain algorithm,
as done in, e.g., the learning-based absorption estima-
tion technique proposed in (Yu and Kleijn, 2020). The
obtained mean absolute error on ᾱ on the realistic test
set was 0.18, which is six times larger than when using
the original RB set with diffusion activated (0.03). This
strongly highlights the importance of taking into account
scattering effects when training learning-based acoustic
estimation techniques.

Overall, this extensive simulated study reveals
that carefully-trained virtually-supervised models can
consistently and significantly outperform conventional
reverberation-based techniques in the task of estimating
the quantity ᾱ, particularly under noisy or non-diffuse
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sound field conditions. This was expected as the use
of Eyring’s model is theoretically inadequate under such
conditions, even if observed absolute errors were reason-
able in practice (see Section V A). In conditions close to
the DSF hypothesis, learned models and reverberaton-
based models become comparable. This suggests that
trained models learned a correction with respect to clas-
sical models under non-DSF conditions, by extracting
richer features from the RIRs than the mere reverber-
ation times.

VI. TEST ON REAL DATA

A. Real dataset

To evaluate the generalizability of the proposed ap-
proach to real measured RIR, we us a subset of the
dEchorate dataset (Di Carlo et al., 2021, paper under
review). The dataset consists of RIR measured in a
6 m × 6 m × 2.4 m acoustic room in the Acoustic Lab
of the Bar-Ilan University. The wall and ceiling absorp-
tion properties can be changed by flipping double-sided
panels with one reflective and one absorbing face.

Ten different room configurations are considered.
They are represented as binary strings of 6 bits in Ta-
ble I, where 1 denotes a reflective surface, 0 an absorbing
surface, and the ordered bits respectively represent the
floor, the ceiling and the West, South, East and North
walls. For each configuration, 90 RIRs from all combina-
tions of 3 sources and 30 receivers spread inside the room
are measured. The sources are Avantone Pro Active
Mixcube loudspeakers (directional) and the receivers are
AKG CK32 omnidirectional microphones. While room
configurations 1 to 9 only contain the sources and re-
ceivers, room configuration 10 also contains some typical
meeting room furnitures, namely, a table, some chairs
and a coat hanger. Each RIR is measured using the
exponential sine sweep technique described in (Farina,
2007). In this experiment, the octave bands centered at
125 Hz and 250 Hz will not be considered, because the
measured RIRs did not exhibit sufficient power in those
bands for reliable RT(b) estimations. This observation is
consistent with the frequency response provided by the
loudspeakers’ manufacturer, which decays exponentially
from 200 Hz downwards.

B. Reference absorption values

A major difficulty in evaluating the considered mod-
els on real in situ measures is the unavailability of ground
truth for the mean absorption coefficients, which would
require to know the true absorption profile of every ma-
terial in the room. While some of them could be in-
ferred from manufacturer’s data, only coarse values of
ᾱ(b) would be obtained in this way. To overcome this
difficulty while ensuring that a single, stable and reliable
mean absorption profile is used as a reference for each
room, we propose a technique based on the aggregation
of multiple RIR measurements.

For each room configuration, the Schroeder curves
of the 90 measured RIRs in 4 octave bands were traced
(Schroeder, 1965). Then, the Schroeder curves were vi-
sually inspected and separated into two sets. Set A con-
tains Schroeder curves featuring a sufficient linear log-
energy decay from -5 dB to -15 dB at least. Set B
contains all the other curves. In practice, 49% of the
3600 Schroeder curves were discarded to the set B in this
way. These mostly corresponded to challenging measure-
ment situations contained in the dEchorate dataset, such
as a receiver near a surface, or a loudspeaker facing to-
wards a surface and away from receivers. Then, for each
room configuration and each octave band b, the refer-
ence mean absorption coefficient ᾱref(b) is taken to be
the median value of Eyring’s model based on the RT10(b)
computed from Schroeder curves in A only, and on the
known room’s volume and total surface. This median
value ᾱref(b) is taken over at least 5 and on average 47
estimates (see Table I), yielding a reliable and robust
value. As can be seen in Table I, a diversity of mean
absorption coefficients ᾱref(b) between 0.12 and 0.52 is
represented. This matches quite well the range of values
considered in this study (see Fig. 1 and 2(c)).

To further validate this choice of reference value, the
left part of Fig. 9 shows the means and standard devi-
ations (stds) of absolute differences between single-RIR
Eyring estimates and the proposed median-based refer-
ence for each room configuration and each octave band,
using RIRs from set A only. Rooms are sorted left-to-
right from the most reverberant one to the least reverber-
ant one. It clearly appears that both the means and stds
of differences between single and median-based estimates
increase as the reverberation time decreases, consistently
with reverberation theory (Hodgson, 1994, 1996). Nev-
ertheless, both these means and stds remain reasonably
low (below 0.1) under all configurations, despite measure-
ments being taken from many different source-receiver
placements in the room. This validates our premise of a
close-to-diffuse sound field in these experiments, at least
when restricting to RIRs inside of the set A for each oc-
tave band.

C. Real data results

On real RIRs, the MLP models appeared to perform
significantly less well than CNN models, yielding errors
up to twice larger. This is consistent with the better
generalization capabilities of the CNN models observed
in Fig. 5 and discussed in section IV B. We hence omit
the MLP results in the remainder of this section, for com-
pactness.

The right part of Fig. 9 reports mean and stds of
absolute errors for the CNN-RB model, using only the
RIRs in A. Encouragingly, for the 1 kHz, 2 kHz and
4 kHz octave bands, the learning-based method yields
errors below or around 0.1 for all rooms, which is a rea-
sonable uncertainty in the context of acoustic diagnosis.
Errors are comparable to Eyring’s formula except in the
three most reverberant ones (R3, R4 and R5) for which
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FIG. 7. Comparison of ᾱ(b) estimation errors on the realistic test set in different octave

bands. The set used for training networks is RB.

FIG. 8. 1 kHz Schroeder curves of a

RIR under varying SNRs.

FIG. 9. Comparison of ᾱ(b) mean estimation errors over measured RIRs in 10 rooms and 4 octave bands with Eyring and

CNN-RB. Only selected RIRs with Schroeder curves in A are included.

TABLE I. Absorption coefficients ᾱref(b) calculated in the 10 room configurations. For each coefficient, the number of

corresponding Schroeder curves in A used to compute the median Eyring’s estimate is given in parentheses. Room 10 contains

furniture.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Room 9 Room 10

Config. 000000 011000 011100 011110 011111 001000 000100 000010 000001 010001

500 Hz 0.42 (11) 0.23 (7) 0.20 (20) 0.17 (51) 0.13 (48) 0.39 (8) 0.38 (5) 0.40 (8) 0.35 (7) 0.23 (12)

1000 Hz 0.52 (62) 0.28 (83) 0.25 (86) 0.17 (89) 0.13 (90) 0.44 (79) 0.41 (74) 0.44 (69) 0.43 (70) 0.33 (72)

2000 Hz 0.50 (65) 0.34 (81) 0.30 (86) 0.19 (82) 0.14 (88) 0.44 (74) 0.42 (64) 0.44 (66) 0.44 (67) 0.37 (69)

4000 Hz 0.37 (15) 0.35 (17) 0.29 (22) 0.16 (16) 0.12 (29) 0.38 (17) 0.33 (12) 0.32 (14) 0.34 (18) 0.32 (14)

the latter performs very well. For the octave band cen-
tered at 4 kz, the CNN-RB errors increase slightly. A
possible explanation could lie in the stronger directivity
of the source at this frequency, as observed in the man-
ufacturer’s data (recall that the neural network has only
been trained on omnidirectional sources). For the octave
band centered at 500 Hz, the CNN-RB errors are much
larger in all rooms except R1 and R8. One of the pre-

ferred hypotheses is the existence of a wave phenomenon
in this band that could not be learned by the neural net-
work trained on Roomsim. These hypotheses will need
to be validated by further research on real data. Fig. 10
shows the same results in the form of bar plots for the
1 kHz octave band, further confirming that the CNN-RB
model yields error distributions comparable to Eyring’s
in this band.
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FIG. 10. Comparison of ᾱ(1000 Hz) estimation errors over measured

RIRs in 10 rooms using Eyring and CNN-RB. Only selected RIRs

with Schroeder curves in A are included.

FIG. 11. Comparison of ᾱ(1000 Hz) CNN-RB es-

timation errors over measured RIRs with 1 kHz

Schroeder curves in A vs. in B.

Finally, Fig. 11 compares errors obtained with the
CNN-RB on measured RIRs whose 1 kHz Schroeder
curves are in A against those whose Schroeder curves
are in B. Note that rooms R3, R4 and R5 are omitted
here because an insufficient number of curves were placed
in B for these rooms. Encouragingly, we observe that the
CNN is largely unaffected by the non-linear or insufficient
log-energy decays of Schroeder curves in B. This suggests
that the network learned to rely on more elaborate and
more robust features than those used by reverberation-
based techniques. In contrast, obtaining reliable absorp-
tion estimates from these curves using Eyring’s model
was fundamentally impossible, due to its reliance on re-
verberation time.

VII. CONCLUSION

In this work, we tackled the inverse problem of es-
timating the area-weighted mean absorption coefficients
of a room from a single RIR using virtually-supervized
learning, in a broad range of acoustical conditions per-
taining to the field of building acoustic diagnosis. Differ-
ent neural network designs and simulated training strate-
gies were proposed, explored and tested. The developed
methods were compared to classical formulas that hinge
on the room’s volume, total surface, reverberation time
and on the diffuse sound field (DSF) hypothesis. In
close-to-DSF conditions, our experiments on both sim-
ulated and real data revealed that the best learned mod-
els yielded estimation errors comparable to classical ones
without needing the room’s geometry. As expected and
predicted by reverberation theory, the performances of
DSF-based models degraded under conditions depart-
ing from DSF. These include rooms featuring less re-
verberation, less diffusion, non-homogenous geometries,
and more generally RIRs featuring insufficient or non-
linear decays of their Schroeder curves. In contrast, the

proposed virtually-trained models showed remarkable ro-
bustness in estimating the target quantity under such
conditions, suggesting that they learned to rely on more
elaborate and more robust features than those used by
reverberation-based techniques.

This first extensive experimental study on virtually-
supervised mean absorption estimation aimed at paving
the way towards simpler and more robust acoustic diag-
nosis techniques. Future works will include further ex-
perimental investigations on the poorer performance of
the learned models at lower frequencies on real data, no-
tably by employing higher-end sound sources. Leads for
improving the learned models include domain adaption,
data augmentation and probabilistic uncertainty model-
ing. We also plan to build on our findings to tackle the
much more difficult problem of estimating the absorp-
tion coefficients of individual surfaces from RIRs. For
this, geometrically-informed models and the aggregation
of RIRs from multiple source-receiver pairs will be lever-
aged.

1The full lists of materials and associated absorption profiles con-
sidered in this study are available here: https://members.loria.
fr/ADeleforge/files/jasa2021_supplementary_material.zip.

2We denote by RTX(b) a reverberation time calculated on a
Schroeder curve’s slope from −5 to −5−X dB (Schroeder, 1965).
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