
HAL Id: hal-03331235
https://hal.science/hal-03331235

Submitted on 1 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Approximation of Persistence Diagrams with
Guarantees

Jules Vidal, Julien Tierny

To cite this version:
Jules Vidal, Julien Tierny. Fast Approximation of Persistence Diagrams with Guarantees. IEEE
Symposium on Large Data Analysis and Visualization, Oct 2021, New Orleans, United States. �hal-
03331235�

https://hal.science/hal-03331235
https://hal.archives-ouvertes.fr

Fast Approximation of Persistence Diagrams with Guarantees
Jules Vidal and Julien Tierny *

CNRS – Sorbonne Université

Figure 1: Approximations of persistence diagrams for a CT scan of a backpack, with different Bottleneck approximation errors.
High persistence features correspond to high density objects present in the bag (leftmost, bottom). In this example, our controlled
approximation reduces computation time by 70% for an error tolerance of 10%. Our algorithm also provides an approximation of the
scalar field that is precise around persistent features (top, volume rendering of the approximated fields) and deteriorated elsewhere
(bottom, isocontours capturing the cloth of the bag). For each approximation, the thirty most persistent maxima are represented by
spheres (top views) which correctly capture the features of the data. The uncertainty resulting from our approximation is visualized in
the diagram with (i) colored squares, which bound the correct location of certain features (which are guaranteed to be present in the
exact result). These are located outside a (ii) red band (in the vicinity of the diagonal), which denotes features which might not exist
in the exact diagram. Our approximations precisely capture the high persistence features of the data (out of the red band, black
numbers) and collect significantly less noisy features (red numbers, red band) than the exact result (numbers in parentheses).

ABSTRACT

This paper presents an algorithm for the efficient approximation of
the saddle-extremum persistence diagram of a scalar field. Vidal et al.
introduced recently a fast algorithm for such an approximation (by
interrupting a progressive computation framework [78]). However,
no theoretical guarantee was provided regarding its approximation
quality. In this work, we revisit the progressive framework of Vidal
et al. [78] and we introduce in contrast a novel approximation algo-
rithm, with a user controlled approximation error, specifically, on the
Bottleneck distance to the exact solution. Our approach is based on a
hierarchical representation of the input data, and relies on local sim-
plifications of the scalar field to accelerate the computation, while
maintaining a controlled bound on the output error. The locality of
our approach enables further speedups thanks to shared memory par-
allelism. Experiments conducted on real life datasets show that for a
mild error tolerance (5% relative Bottleneck distance), our approach
improves runtime performance by 18% on average (and up to 48%
on large, noisy datasets) in comparison to standard, exact, publicly
available implementations. In addition to the strong guarantees on
its approximation error, we show that our algorithm also provides
in practice outputs which are on average 5 times more accurate (in
terms of the L2-Wasserstein distance) than a naive approximation
baseline. We illustrate the utility of our approach for interactive data
exploration and we document visualization strategies for conveying
the uncertainty related to our approximations.

*E-mails: {jules.vidal, julien.tierny}@sorbonne-universite.fr

1 INTRODUCTION

Modern datasets, acquired or simulated, are continuously gaining
in geometrical complexity, thanks to the ever-increasing accuracy
of acquisition devices or computing power of high performance
systems. This geometrical complexity makes interactive exploration
and analysis difficult, which challenges the interpretation of large
datasets by end users. This motivates the definition of expressive
data abstractions, capable of capturing the main features present in
large datasets into concise representations, which visually convey
the most important information to the users.

In that context, Topological Data Analysis (TDA) [21] forms
a family of generic, robust, and efficient techniques whose util-
ity has been demonstrated in a number of visualization tasks [42]
for revealing the implicit structural patterns present in complex
datasets. Examples of popular application fields include turbu-
lent combustion [10, 36, 49], material sciences [26, 39, 40], nu-
clear energy [53], fluid dynamics [47], bioimaging [7, 13], quantum
chemistry [3, 30, 56] or astrophysics [68, 71]. These applications
rely on established topological data abstractions, such as contour
trees [8, 11, 34, 70], Reeb graphs [5, 61, 64] or Morse-Smale com-
plexes [19,37,38,65]. In particular, the Persistence diagram [24] is a
concise data representation, which visually summarizes the popula-
tion of features of interest present in large datasets, as a function of
a measure of importance called topological persistence. Its concise-
ness made it increasingly popular in data visualization and analysis,
where it quickly provides visual hints regarding the number and
salience of the structural features present in large datasets.

While topological methods usually have an acceptable time com-
plexity, the construction of the above data representations can still be
time consuming in practice for large, real-life datasets. Thus, when
they are integrated into larger analysis pipelines, TDA algorithms

ar
X

iv
:2

10
8.

05
76

6v
1

 [
cs

.G
R

]
 1

2
A

ug
 2

02
1

can become a serious time bottleneck. Several research directions are
possible to improve the time performance of TDA algorithms. A nat-
ural avenue for performance improvement consists in revisiting these
algorithms for a parallel computation [14,32,34,35,37,52,67], which
is particularly relevant for high-performance hardware. Another di-
rection consists in considering degraded computations, which trade
accuracy for speed. This direction is particularly appealing for
persistence diagrams, as they can contain, for noisy datasets, many
features with low persistence which would gain in being only approx-
imated, as they often have in practice only little relevance (important
features typically have a high persistence, see Fig. 1).

In this work, we introduce an algorithm for the fast approximation
of extremum persistence diagrams of large scalar datasets, with a
user-controlled error bound. In particular, we re-visit the progressive
computation framework of Vidal et al. [78] and derive a multiresolu-
tion strategy for accelerating the computation, based on a controlled
degradation of the input data (hence resulting in a controlled ap-
proximation of the result). Extensive experiments demonstrate the
time performance gain provided by our algorithm (up to 48% on
large, noisy datasets) for mild error tolerance (e.g. 5%), as well as its
superior accuracy in comparison to a naive approximation baseline.
We also document several visualization strategies for our approxi-
mated topological features, to easily enable the visual identification
of certain features (which will be present in the exact diagram) along
with visual clues of their positional uncertainty in the diagram.

1.1 Related Work

The literature related to our work can be classified into two main
groups: (i) topological methods, and (ii) multiresolution methods.
(i) Topological methods have gained a growing interest from the
visualization community for the last two decades [42]. Specifically,
our work is closely related to the construction of topological data
abstractions on scalar data, that provide a generic and robust de-
scription of the features in the data. When considering discretized
data as piecewise-linear (PL) scalar fields defined on PL-manifolds,
many concepts from the original Morse theory [54] can be adapted
to the computational setting. As such, combinatorial algorithms
have been developed to efficiently compute topological abstractions
in the discrete setting. A local, combinatorial characterization of the
critical points of a PL scalar field was introduced by Banchoff [1].
Critical points often correspond to features of interest in the data,
but can be numerous in the presence of noise. Topological persis-
tence [21, 24] addresses this issue by introducing an importance
measure on critical points. It can be visualized in the Persistence
diagram (Sec. 2.3), a visual barcode that can be generally computed
using matrix reduction operations [21, 24]. The Persistence dia-
gram has been shown to be stable [15, 16] under well-established
metrics such as the Bottleneck [15] and Wasserstein [76] distances.
However, some applications call for more discriminative topologi-
cal abstractions. Merge trees and contour trees, for instance, track
the merge and split events of connected components of sub-level
sets and level sets that happen at the critical points. Combinato-
rial algorithms were first designed to compute these trees in low
dimension [8]. An efficient algorithm was later introduced by Carr
et al. [11] for the computation of the contour tree in all dimensions,
with optimal time-complexity. A lot of work also focused on the
parallel computation of these structures [14, 33, 34, 52, 55, 59, 70].
The Reeb graph [64] is the generalization of contour trees to do-
mains that are not simply connected, which motivates its use for
shape analysis applications [5]. In order to track the connected com-
ponents of level sets on such domains, original algorithms resorted
to slicing strategies [4]. Later work optimized the slicing approach
to restrict it to iso-contours at critical points [20, 62]. Algorithms
with optimal time complexity were introduced for the 2D case [17]
and in arbitrary dimension [57]. Other work focused on its parallel
computation [35] or presented efficient algorithms for its computa-

tion in specific settings [61, 74]. An other widely used topological
abstraction is the Morse-Smale complex [19], which encodes the
relations between critical points in terms of unique integral lines
of the gradient field. These integral lines segment the domain into
cells in which the gradient integrates to identical extremities. Algo-
rithms for its computation were designed for PL manifolds [22], or
later [38, 65] for the Discrete Morse Theory [27]. Parallel methods
have been documented [37, 67]. For the case of multivariate scalar
data, recent work [12, 72] investigated efficient algorithms for the
Reeb space [23] computation, a generalization of the Reeb graph.
(ii) Multiresolution hierarchical representations have been
largely used by the visualization community to compute and store
data representations at different levels of details [79, 80]. They have
been notably applied to the efficient and robust extraction of isosur-
faces [28, 29, 58] and isocontours [50]. Such representations have
been also documented for the contour tree [60], the Reeb graph [43]
and the Morse-Smale complex [9, 31, 45]. These representations
allow to adaptively simplify these topological abstractions in a fine-
to-coarse manner. As such, only the output data structures are
processed hierarchically, while the input data are processed with
classical algorithms on the finest level of the hierarchy.

More closely related to our work, Vidal et al. [78] recently intro-
duced novel ideas for the progressive computation of critical points
and saddle-extremum persistence diagrams. In their approach, the
input data is processed in a coarse-to-fine manner with the help of
a multiresolution hierarchy on the model of the classical red subdi-
vision [41, 46, 51, 63, 66] of triangulated regular grids [2, 44]. The
output of the approach is progressively and efficiently updated from
one level of the hierarchy to the next. In practice, their algorithms
are interruptible, which means that the processing of the hierarchy
can be stopped before reaching the finest level and still deliver an
exploitable result in a lower amount of computation time. Although
the authors demonstrated the quality of the interrupted outputs exper-
imentally, there are no theoretical guarantees on their approximation
quality (specifically, no error bound). In contrast, we present in this
work a method for the approximate computation of a persistence
diagram, with strong guarantees on the approximation error.

1.2 Contributions
This paper makes the following new contributions:

1. A fast approximation algorithm for extremum persistence dia-
grams, with controlled error: We introduce a fast algorithm
for the approximated computation of persistence diagrams of
extremum/saddle pairs. Our approach provides strong, user-
controlled guarantees on the Bottleneck distance between the
approximated diagram and the exact result. By construction, our
approximation method processes a smaller number of topological
events than exact methods, which reduces its run time. We observe
an 18% reduction of the run time on average, for a mild tolerance
of 5% on the relative Bottleneck error. Moreover, our approach
provides much more accurate approximations (in terms of the L2
Wasserstein distance) than a naive approximation baseline.

2. An approximated visualization of topological features with uncer-
tainty assessment: We describe several strategies for the visual-
ization of our topological approximations. As a by-product of our
algorithm, we provide an approximated scalar field, for visualiza-
tion purposes, which exactly matches our approximated diagrams
and in which the approximated critical points can be reliably
embedded. We augment the approximated diagrams with visual
glyphs assessing the uncertainty of the approximation. These
glyphs enable the visual identification of certain features (which
will be present in the exact diagram) along with visual clues on
their positional uncertainty in the diagram.

3. A reference implementation (additional material): Finally, we pro-
vide a reference C++ implementation of our algorithms that can
be used to replicate our results as well as for future benchmarks.

Figure 2: Persistence diagrams of a clean (left) and noisy (right) 2D
scalar field. Critical points are represented by spheres (light brown:
minima, cyan: maxima, others: saddles). The persistence diagram
highlights the three main features of the data (high persistence pairs).
On the right, the small pairs near the diagonal indicate the presence
of noisy features with low persistence.

2 PRELIMINARIES

This section presents the theoretical background of our work. It
contains definitions adapted from the Topology ToolKit [73]. We
refer the reader to textbooks [21] for an introduction to topology.

2.1 Input Data
The input data is a piecewise linear (PL) scalar field f : M→ R
defined on a PL d-manifold M, with d ≤ 3 in our applications. The
field f is characterized by its values at the vertices of M, as scalar
values are linearly interpolated on the simplices of M of higher
dimension. f is enforced to be injective on the vertices of M, using
a symbolic perturbation inspired by Simulation of Simplicity [25].

2.2 Critical Points
We define a sub-level set of f as the pre-image of (−∞,w) by f ,
noted f−1

−∞(w) = {p ∈M | f (p)< w}. When continuously increas-
ing w, the number of topological features of f−1

−∞(w) (its connected
components, independant cycles and voids) changes only at specific
vertices, called the critical points of f [54].

A local characterization of critical points, based on their link, was
introduced by Banchoff [1]. For two simplices τ,σ ∈M, we note
τ < σ if τ is a face of σ , i.e. if τ is defined by a non-empty, strict
subset of the vertices of σ . We call star of a vertex v ∈M the set of
its co-faces, noted St(v) = {σ ∈M | v < σ}. The link of v, noted
Lk(v) = {τ ∈M | τ < σ , σ ∈ St(v) , τ ∩ v = /0}, is defined as the
set of all the faces τ of the simplices of St(v) that do not intersect
v. Intuitively, the link of v is the boundary of a small simplicial
neighborhood St(v) of v. The lower link Lk−(v) is the set of sim-
plices of Lk(v) that are lower than v in terms of f values: Lk−(v) =
{σ ∈ Lk(v) | ∀v′ ∈ σ , f (v′)< f (v)}. Symmetrically, the upper link
of v is given by Lk+(v) = {σ ∈ Lk(v) | ∀v′ ∈ σ , f (v′)> f (v)}. If
both Lk−(v) and Lk+(v) are non-empty and simply connected, v is
a regular point. In any other case, v is a critical point, of criticality
or critical index I(v): 0 for a local minimum (Lk−(v) = /0), d for a
local maximum (Lk+(v) = /0), or i for a i-saddle (0 < i < d).

2.3 Persistence Diagrams

As an isovalue w continuously increases, the topology of f−1
−∞(w)

evolves. For a regular point v, the sub-level sets enter St(v) through
Lk−(v) and exit through Lk+(v) without any local change in the
topology, as Lk−(v) and Lk+(v) both have exactly one connected
component. Otherwise, if v is critical, a topological feature (a con-
nected component, a cycle or a void) of f−1

−∞(w) is either created
or destroyed at the value f (v). For instance, the connected com-
ponents of f−1

−∞(w) are created at the local minima of f , said to be
their birth points. When two topological features meet at a criti-
cal point, we use the Elder rule [21] to state that the younger one
(the one created last, in terms of f values) dies at the benefit of the
oldest. In particular, the connected components of f−1

−∞(w) die at
1-saddles. Each topological feature of f−1

−∞(w) is thus characterized
by a unique pair (c0,c1) of critical points, corresponding to its birth
and death, with f (c0)< f (c1) and I(c0) = I(c1)−1. The topolog-
ical persistence [24] of this pair, noted p(c0,c1) = f (c1)− f (c0),

denotes the lifetime of the corresponding feature in f−1
−∞(w) in terms

of its scalar range. The persistence of the connected components
in f−1
−∞(w) is encoded by minimum/1-saddle pairs. In 3D, (d−1)-

saddle/maximum pairs characterize the persistence of the voids of
f−1
−∞(w) while 1-saddle/2-saddle pairs encode the lifetime of its in-

dependent cycles. In practice, the features of interest in the data are
often characterized by the extrema of the field f . Thus we will only
focus on extremum/saddle pairs in the following.

The topological persistence of each critical pair gives a measure
of importance on the corresponding extremum of the field, that has
been shown to be reliable to distinguish between noise and important
features. The Persistence diagram [21] of f , noted D(f), is a visual
representation of the ensemble of features in the data, where each
persistence pair (c0,c1) is embedded as a point in the 2D plane, at
coordinates (f (c0), f (c1)). The persistence of each pair can thus
be read in the diagram as the height of the point to the diagonal.
Consequently, each topological feature of f−1

−∞(w) can be visualized
in the diagram as a bar (Fig. 2), whose height indicates its importance
in the data. Large bars corresponding to high persistence features
stand out visually, while low persistence pairs, likely to be associated
with noisy features, are represented by small bars in the vicinity of
the diagonal. The persistence diagram is a concise visual depiction
of the repartition of features in the data and has been shown to be
a stable [15] and useful tool for data summarization tasks. As seen
in Fig. 2, it encodes the number, ranges and salience of features of
interest, and gives hints about the level of noise in the data.

The Wasserstein distance is a well-established metric between
persistence diagrams. Originally from the field of Transportation
theory, it is defined as the cost of an optimal assignment between
two diagrams D(f) and D(g), where the cost of matching a point
a = (xa,ya) ∈ D(f) to a point b = (xb,yb) ∈ D(b) is given by a
pointwise distance dq in the 2D birth/death space of the diagrams:

dq(a,b) = (|xb− xa|q + |yb− ya|q)1/q = ‖a−b‖q (1)

By convention, dq(a,b) = 0 if both a and b are on the diagonal
(xa = ya and xb = yb). The Lq-Wasserstein distance between D(f)
and D(g) is then given by:

Wq
(
D(f),D(g)

)
= min

φ∈Φ

(
∑

a∈D(f)
dq
(
a,φ(a)

)q
)1/q

(2)

where Φ is the set of all possible maps φ mapping each point a ∈
D(f) to a point b ∈ D(g) or to its projection onto the diagonal.
When q converges to infinity, the Wasserstein distance converges to
the Bottleneck distance, another practical metric that measures the
worst mismatch between D(f) and D(g):

W∞

(
D(f),D(g)

)
= min

φ∈Φ

(
max

a∈D(f)
‖a−φ(a)‖∞

)
(3)

The persistence diagram is stable under these two metrics, which
intuitively means that a small variation in the scalar field entails a
small difference in the resulting distances. In particular, the Bottle-
neck distance between two diagrams is bounded by the L∞ distance
between the corresponding scalar fields [15]:

W∞

(
D(f),D(g)

)
≤ ‖ f −g‖∞ (4)

2.4 Edge-Nested Hierarchical Data Representation
To design progressive algorithms for topological data analysis, Vidal
et al. [78] used a progressive representation of the input data. This
representation is based on an edge-nested multiresolution hierarchy
of the input domain M. The hierarchy H = {M0,M1, . . . ,Mh}
is a growing sequence of PL manifolds, such that all the vertices

Figure 3: Edge-nested triangulation hierarchy of a regular grid. New
vertices are only inserted on existing edges, one per edge, splitting
each old edge in two. Old and new edges are shown (right, M2) in
grey and white respectively; old and new vertices are shown in black
and white respectively. New edges only connect new vertices.

Figure 4: Evolution of the upper link (light green) and the lower link
(dark green) of a vertex v (red sphere) when progressing down the
hierarchy. The topological structure of the link at level i (a) remains
unchanged at level i+1, thanks to the edge-nested property of the
hierarchy. In the example (b), neighbor 5 is non-monotonic: it switches
its polarity (from blue minus to red plus), which modifies the criticality
of v (saddle point in Mi+1). If the link polarity of v is not changed (c), v
is called a Topologically Invariant vertex and it maintains its criticality.

present in one level Mi of H are present in all the following
levels M j, j > i. This naturally yields a hierarchy of PL scalar
fields { f 0, . . . , f h} such as each vertex maintains the same scalar
value from its level of insertion i forward: ∀v ∈Mi, ∀ j | i ≤ j ≤
h, f j(v) = f i(v) = f (v). The edge-nested property states that new
vertices inserted at a level i of the hierarchy are exclusively inserted
on existing edges (connecting old vertices) at level i− 1, one per
edge, and that new edges only connect new vertices (see Fig. 3). We
refer the reader to Vidal et al. [78] for a detailed formalization.

Edge-nested hierarchies can be easily generated from regular
grids. Given a d-dimensional regular grid G0, a valid PL d-manifold
Mh can be obtained from G0 by considering its Kuhn triangulation
[44] (Fig. 3). A sequence {G0,G1, . . . ,Gh} of decimated grids can
be recursively defined from G0, where Gi is obtained for i > 0 by
sub-sampling only vertices with even coordinates in Gi−1. The
edge-nested triangulation hierarchy H = {M0,M1, . . . ,Mh} is
then defined by considering the triangulation Mi of each level Gh−i.
Further implementations details can be found in Vidal et al. [78].

2.5 Topological Invariant Vertices
The advantage of using an edge-nested triangulation hierarchy to
process the data resides in the fact that topological information can
be computed on the vertices of Mi and remain valid throughout the
rest of the hierarchy. In particular, as discussed by Vidal et al. [78],
when progressing from a level of the hierarchy to the next, the
topological structure of the link is invariant for all old vertices: their
number of neighbor vertices remains the same, and the adjacency
relations between neighbors are preserved. This important property
(Fig. 4) enables the efficient identification of vertices that do no
change criticality when progressing to the next hierarchical level.

For each vertex v of Mi, its link polarity (blue +/− glyphs in
Fig. 4) indicates for each one of its neighbors n ∈ Lk(v)i, whether
n∈ Lk+(v)i (positive polarity) or n∈ Lk−(v)i (negative polarity). As
the structure of Lk(v)i is invariant, the criticality of v is characterized
by the polarity of its link. In particular, if the link polarity of v
stays unchanged when progressing a level down the hierarchy, the
criticality of v remains the same and does not need to be recomputed.
Given an edge (v0,v1) of Mi that gets subdivided into two old edges

(v0,vn) and (vn,v1) along the new vertex vn of Mi+1, vn is said to be
monotonic if f (vn) ∈ (f (v0), f (v1)), assuming that f (v0) < f (v1).
Otherwise, vn is called a non-monotonic vertex, and the polarity of
the link of v0 or v1 is necessarily changed, as shown in Fig. 4b. On
the opposite, an old vertex keeps the same link polarity (and thus
the same criticality) if all its new neighbors are monotonic (Fig. 4c).
It is then called a Topologically Invariant old vertex. Potentially,
depending on the regularity of the data, a large part of the old vertices
at level i can be topologically invariant. Similarly, the criticality of a
part of the new vertices can be deduced from the hierarchy with the
identification of non-monotonic vertices. It can be shown [78] that
if a new vertex v of Mi is monotonic and if all its new neighbors are
also monotonic, then v is necessarily a regular point. It is called a
Topologically Invariant new vertex.

It has been shown [78] that Topologically Invariant vertices (TIs)
represent a large part of the data in practice (around 70% on average
on a diverse sample of real-life data sets). Thus, the edge-nested
hierarchical representation of the data enables a highly efficient
detection of these TI vertices. It proved itself useful to carry out
topological data analysis tasks such as the extraction of critical
points or the computation of a persistence diagram, as significant
shortcuts can be made in the computation for TI vertices.

3 OVERVIEW

Fig. 5 provides an overview of our approach, which revisits the
progressive framework of Vidal et al. [78], to derive a fast approx-
imation algorithm with strong guarantees. First, we exploit their
multiresolution hierarchy of the input data (Sec. 2.4) to quickly up-
date, down to the finest hierarchy level, the polarity of each vertex
(a local information used to identify critical points). This step is de-
scribed in Sec. 4.1. During the hierarchy traversal, in contrast to their
original approach, we artificially increase the number of topologi-
cally invariant vertices (Sec. 2.5) in order to significantly speedup
the computation, through a procedure called vertex folding, which
artificially degrades the input data. This step is described in Sec. 4.2.
The data degradation induced by the vertex folding procedure is
precisely controlled in the process, to provide strong guarantees on
the approximation error of the output. This is described in Sec. 4.3.
Finally, we describe in Sec. 4.4 how to handle degenerate configura-
tions such as flat plateaus. Overall, our new approach involves three
major differences to the progressive framework of Vidal et al. [78],
which are detailed in the rest of this section:

1. Our new approximation algorithm is not progressive: it does not
generate a sequence of progressively refined outputs. Instead, our
traversal of the multiresolution hierarchy only updates a minimal
amount of information (the vertex polarity). The criticality of each
vertex is only evaluated after the hierarchy traversal is finished
(while the criticality is updated at each hierarchy level in [78]).

2. Our approximation approach is based on a multiresolution degra-
dation of the input data, which accelerates the overall computation,
while maintaining a controlled output error.

3. Overall, in contrast to the progressively interrupted results of Vidal
et al. [78], our approximated output is provided with strong guar-
antees on its approximation error (in terms of relative Bottleneck
distance) and with a significantly improved practical accuracy (in
terms of the L2 Wasserstein distance).

4 TOPOLOGY APPROXIMATION

This section presents our novel approach for the controlled approx-
imation of an extremum/saddle persistence diagram. In the fol-
lowing, we focus on the case of minimum/1-saddle pairs ((d−1)-
saddle/maximum pairs being treated symmetrically). Our method
is based on folding operations for non-monotonic vertices. As the

Figure 5: Overview of our approach. First, the traversal of the hierarchy (a) enables the efficient detection of the vertices (blue spheres) that are
not topologically invariant (TI), and for which the criticality must be computed. Non-monotonic vertices (red spheres) can be folded (transparent
red spheres) during the traversal, i.e. reinterpolated to artificially increase the number of TI vertices. Second (b), the criticality of all non-TI vertices
detected in the first step is computed, to identify the critical points of the approximated field (spheres, cyan: maxima, green: saddles, beige:
minimum). Third, the saddle points are used to seed integral lines ending at extrema (c), from which the persistence diagram is deduced (d).

hierarchy is processed, non-monotonic vertices are inserted at each
level. When a non-monotonic vertex is inserted in the hierarchy on
a new edge, we can purposely decide to reinterpolate this vertex
to enforce its monotony, and hence accelerate the computation of
its criticality. The resulting error is the difference between the real
scalar value at this vertex and the interpolated value, which bounds
the Bottleneck error on the diagram estimation, as detailed next.

4.1 Hierarchy Processing
This section presents our computation strategy in the case where the
approximation error ε is set to 0 (i.e. exact computations). Given an
input edge-nested triangulation hierarchy H= {M0,M1, . . . ,Mh},
persistence diagrams are evaluated in three steps. First, the hierarchy
is completely traversed, from the coarsest level M0 to the finest
Mh, to efficiently detect topologically invariant vertices, for which
the criticality can be efficiently estimated in a second step, at the last
level of the hierarchy only (Mh). Third, the persistence diagram is
computed from the saddle points identified at the second step.
1) Hierarchy traversal: In order to identify topologically invariant
vertices, we compute the link polarity (Sec. 2.5) of the vertices
for each level of the hierarchy. The link polarity of a vertex v is
encoded in our setting as an array of bits, one per neighbor n of
v, denoting whether n is higher or lower than v. The size of the
link polarity is the same for each level of H (Sec. 2.5): at most 6
bits in 2D and 14 bits in 3D. At each level i, the polarity of new
vertices is initialized, while the polarity of old vertices is updated to
account for the insertion of non-monotonic vertices. The detection
of non-monotonic vertices enables the fast identification of regular
points: new topologically invariant vertices are known to be regular
points of f i, and old topologically invariant vertices keep the same
criticality at level i than at level i−1 (Sec. 2.5). We leverage these
informations to avoid the explicit computation of the criticality for
some of the vertices. As a new topologically invariant vertex v is
identified in Mi, it is flagged as a regular vertex. If its link polarity is
not changed in the remaining levels (e.g. v is topologically invariant
through the rest of the hierarchy), v is guaranteed to be a regular
vertex of Mh and no further computation will be needed for it.
2) Critical points: At Mh, we compute explicitly the criticality of
the vertices which are not yet guaranteed to be regular (as described
above). The criticality of a vertex v is computed by enumerating the
connected components of Lk+(v) and Lk−(v) (Sec. 2.2).
3) Persistence diagram: The minimum/1-saddle persistence dia-
gram is deduced from the critical points. In particular, for each
saddle point s, a backward integral line is launched from each con-
nected component of Lk−(s), if there are more than one. These
integral lines end at a local minimum m. For each integral line, we
back-propagate the vertex index of m back to s. This way, we build
for each saddle s the list {m0,m1, . . . ,m j} of found local minima,
yielding at least a minimum per connected component of sub-level
sets merging at s. A merge event can thus be represented by a triplet
(s,mi,m j). All found triplets are then sorted in ascending values of

s, and the merge events are processed in this order with a UnionFind
(UF) data structure [18]. A persistence pair is created when two
different components are merged. We refer to Vidal et al. [78] for
more details, as this last step of our method is identical to theirs.

4.2 Vertex Folding
This section describes the variations of the above strategy for the case
where ε 6= 0, to decrease the computational cost. Specifically, we
present a strategy to artificially increase the number of topologically
invariant vertices during the hierarchy traversal (step 1), which will
consequently result in skipping the estimation of vertex criticality
(step 2) for a larger number of vertices (hence the overall speedup).

A new vertex n, appearing at a level i of the hierarchy, is inserted
at the center of an old edge (o0,o1) of Mi−1 (Sec. 2.4). Assuming
that f (o0)< f (o1)< f (n), n is a non-monotonic vertex and impacts
the link polarity of o1. The apparition of such vertices reduces the
overall performance as these will trigger explicit criticality compu-
tations in step 2. To reduce the number of non-monotonic vertices
inserted in Mi, we can choose to reinterpolate a non-monotonic
vertex n between its two new neighbors to enforce its monotony.
We note the resulting monotonic vertex n̂ and say that this vertex
is folded. We define its new approximated value f̂ (n̂) as the in-
terpolation of the approximated values of its two old neighbors:
f̂ (n̂) =

(
f̂ (o0)+ f̂ (o1)

)
/2. The values f̂ (o0) and f̂ (o1) are them-

selves either the result of a linear interpolation if o0 or o1 have been
previously folded. Otherwise, they are equal to f (o0) and f (o1).
The linear interpolation is preferred here to alternatives as it provides
a good balance between accuracy and efficiency.

Formally, we build a sequence { f̂ 0, f̂ 1, . . . , f̂ h} of PL scalar fields
defined on each hierarchy level. The sequence is defined recursively:

1. f̂ 0 = f 0

2. For each old vertex o of Mi, f̂ i(o) = f̂ i−1(o)

3. For each new vertex n of Mi that is not folded, f̂ i(n) = f i(n)

4. For each folded new vertex n̂ of Mi on the edge (o0,o1),

f̂ i(n̂) =
f̂ i−1(o0)+ f̂ i−1(o1)

2
We note F i the set of folded vertices at level i (with F i ⊂Mi

0).
By construction, folded new vertices are monotonic. Fig. 6 illustrates
how a higher amount of folded vertices at level i implies a higher
number of topologically invariant vertices identified on Mi. In
particular, if all non-monotonic vertices are folded at level i, all
vertices of Mi are topologically invariant.

4.3 Bottleneck Error Control
Computing persistence diagrams with vertex folding results in
approximations of the exact result D(f), given by D(f̂) (dia-
gram of the approximated field f̂). Then the resulting approxi-
mation error (in terms of Bottleneck distance) is given by [15]:

Figure 6: Traversal of the hierarchy and identification of topological invariants vertices for two different folding threshold (left: ε = 0%, right:
ε = 30%). The numbers denote the values of the approximated scalar field f̂ . Red squares indicate the non-monotonic new vertices, whose folding
error δε is labelled in red. On the left, no vertex is folded and no approximation is made on the scalar field (i.e. f̂ = f). It results in a high number
of non-monotonic vertices and a low number of topologically invariant old and new vertices (respectively blue and green squares). In contrast, a
folding threshold ε = 30% is applied on the right. Every non-monotonic vertex n with a folding error δ (n)≤ 8 gets folded (yellow hats). This reduces
the number of non-monotonic vertices and more than doubles the number of TI vertices (blue and green squares) of the full precision approach.

W∞

(
D(f̂),D(f)

)
≤ ‖ f̂ − f‖∞ , which is rather easy to estimate. For

each new vertex n inserted at level i of the hierarchy on the edge
(o0,o1), we define its folding error δ (n) as the difference between
its original scalar value and its reinterpolation value at its level of
insertion: δ (n) =

∣∣∣(f̂ i(o0)+ f̂ i(o1)
)
/2− f (n)

∣∣∣. Then, we have:

‖ f̂ − f‖∞ = max
n̂∈Fh

δ (n̂) = max
n̂∈Fh

| f̂ (n̂)− f (n̂)|

In the light of these observations, we use the following folding
strategy as we process the hierarchy. Given a target approximation
error ε , the hierarchy is processed as described in Sec. 4.1, except
that vertex polarity is estimated from the approximated field f̂ . For
each level i, we choose to fold non-monotonic vertices n with an
error δ (n)< ε . Monotonic vertices or non-monotonic vertices with
a higher folding error get added into the hierarchy without being rein-
terpolated. Let f̂ε : M→ R be the final field approximation (after
the hierarchy traversal is completed), given the target approximation
error ε . Then it is clear that ∀v ∈M, δ (v)≤ ε . Thus:

W∞

(
D(f̂ε),D(f)

)
≤ ‖ f̂ε − f‖∞ = max

n̂∈Fh
δ (n̂)≤ ε

The computation must reach the last level h, to accurately capture
maxδ (n̂) (required for guarantees), thus it is not progressive. In the
remainder, ε is noted as a percentage of the data range (ε = 0% is
the exact computation, ε = 100% folds all non-monotonic vertices).

4.4 Monotony offsets

We now discuss how to handle degenerate flat plateaus, which be-
come more frequent given our vertex folding strategy. The input
scalar field f is injective on the vertices of M (Sec. 3). This is
enforced in practice with an offset field O : M0 → N, typically
corresponding for each vertex to its offset in memory (Fig. 7a). O is
then used to disambiguate vertices with identical scalar values.

In theory, a folded vertex n̂ is guaranteed to be monotonic. How-
ever in practice, if δ (n̂) falls below the precision of the data type
used to encode the scalar field, a flat plateau emerges. This oc-
curs frequently for instance when the input data is expressed with
integers. Then, given a new folded vertex n̂ inserted on an edge
(o0,o1), we may have: f̂ (n̂) = f̂ (o0), which means n̂ and o0 will be
disambiguated in the algorithm by their offset O. However, this can
introduce undesired monotony changes (Fig. 7b, red squares).

To guarantee the monotony of folded vertices, we introduce a
monotony offset on each vertex v, noted M(v), which is modified
when the vertex gets folded. The purpose of the monotony offset M
is to take over the regular offset O if it contradicts the monotony of
newly folded vertices. Given a new folded vertex n̂ inserted on an
edge (o0,o1) at level i, that is non-monotonic with respect to o0 (i.e.
f̂ (n̂)< f̂ (o0)< f̂ (o1) or f̂ (n̂)> f̂ (o0)> f̂ (o1)), we set:

M(n̂) =

M(o0)−2h−i if f̂ (n̂)< f̂ (o0)< f̂ (o1)

and O(n̂)>O(o0)

M(o0)+2h−i if f̂ (n̂)< f̂ (o0)< f̂ (o1)

and O(n̂)<O(o0)

M(o0) else

The monotony offset is initially set to zero for all new vertices
and modified only in case of vertex folding. Then, the field M
explicitly encodes the monotony of newly folded vertices (Fig. 7).
The monotony offsets are used to disambiguate the comparison of
two vertices of identical approximated scalar value in the rest of the
approach (criticality estimation, integral lines, etc).

4.5 Parallelism
Our approach can be easily parallelized using shared-memory paral-
lelism. The first step of our approach, the traversal of the hierarchy,
can be trivially parallelized on the vertices, as all operations are local
to a vertex (Sec. 4.2). However the hierarchy must be processed in
sequential, which implies synchronization between the different lev-
els. The computation of the criticality for non topologically invariant
vertices is also completely parallel. The computation of the persis-
tence diagram from the critical points can be parallelized on the
saddle points, however locks are necessary for the parallel computa-
tion of integral lines, in order to back-propagate the indices of found
extrema. The saddle points are sorted in parallel, using the GNU im-
plementation [69]. Finally, processing the merge events represented
by the triplets is a sequential task, but represents only a fraction of
the total sequential computation time (less that 1% in practice).

4.6 Uncertainty
By construction, our approach induces a Bottleneck error of ε , which
corresponds to a maximum mismatch of ε between the pairs of D(f̂ε)
and these of D(f). This means that some approximated persistence
pairs (with a persistence below 2ε) may not be present in the exact
diagram (as they may be matched to the diagonal at a cost lower than
ε). We call these pairs uncertain. In contrast, the approximated pairs
with a persistence beyond 2ε will certainly be present in the exact
diagram, and their exact location is bounded within a square of side
2ε . We call these pairs certain. Thus, we can visually convey the
level of uncertainty of our approximations directly in the persistence
diagrams (Fig. 8). For this, we use a red band to indicate uncertain
pairs, and we draw the bounding squares for certain pairs (Sec. 5.3).

5 RESULTS

This section presents experimental results obtained on a variety of
datasets, available on public repositories [48, 75]. We implemented
our approach in C++, as modules for the Topology ToolKit (TTK)
[6, 73]. The experiments were carried out on a desktop computer
with two Xeon CPUs (3.0 GHz, 2×4 cores) and 64 GB of RAM.

Figure 7: Monotony offsets on a toy example of an integer field f (a: black numbers) defined on a 2D grid. The injectivity of f is guaranteed by
the offset field O (a: blue numbers). As the hierarchy is processed (b), some vertices get folded (red and green squares) according to a given error
threshold. Due to the precision of the field (here integer precision), their interpolated value (numbers on the right) might be identical to that of an
old neighbor. In some cases (red squares), the folding actually entails a monotony change as the offset field O (blue numbers) provides the wrong
order relation between neighbor vertices. If such an event occurs, the monotony offset of the folded vertex is updated (red numbers) to enforce
monotony. Green squares denote folding cases where O does not contradict the folding monotony. At the finest resolution (b, rightmost), this
results in plateaus (bottom row of the grid) where the injectivity of f̂ is guaranteed and where the monotony is correctly enforced.

Figure 8: Approximation uncertainty visualization. The diagram at
ε = 10% (a., right) exhibits one uncertain pair within the red band,
which is absent from the exact result (a., left). Squares bound the
correct location of certain pairs (b., transparent: exact pairs).

Table 1: Increase of the number of topologically invariant (TI) vertices
for different levels of approximation. For real-world datasets (MinMax
and Random excluded), the average proportion of TI vertices rises
from 70% for the full precision approach (i.e. ε = 0%) to 94% for a
relative Bottleneck error of 5% (ε = 5%).

Dataset ∑
h
i=0 |Mh

0| % TI
ε = 0% ε = 1% ε = 5% ε = 10%

At 931,102 64.7 95.3 96.1 96.3
SeaSurfaceHeight 1,384,636 61.4 90.8 96.7 98.3
Ethanediol 2,057,380 77.7 97.4 97.6 97.6
Hydrogen 2,413,516 73.5 97.8 97.3 97.4
Isabel 3,605,596 44.5 80.8 91.6 93.5
Combustion 4,378,378 65.5 89.6 96.3 97.3
Boat 4,821,318 88.5 96.9 97.0 97.2
MinMax 18,994,891 99.3 99.5 99.5 99.5
Aneurism 19,240,269 95.6 96.1 97.4 98.2
Foot 19,240,269 64.4 66.6 73.7 86.9
Heptane 31,580,914 82.2 96.4 98.2 98.7
Random 18,117,510 0.9 0.9 1.0 1.1
Backpack 111,929,613 39.1 77.2 94.7 97.7

5.1 Time Performance
The time complexity of our approach is similar to the complexity
of the non-interruped algorithm by Vidal et al. [78]. The first two
steps of our approach, that amount to the hierarchy traversal and
the computation of critical points, have a linear complexity in the
number of vertices: O(∑i=h

i=0 |Mi
0|). The third step, to compute the

saddle-extremum persistence from the critical points, is identical
to the approach by Vidal, except that we compute the persistence
diagram exclusively on the last, finest level of the hierarchy. It has a
practical time complexity [78] of O

(
|Mh

1|+ns logns +nsα(nm)
)
,

where α stands for the inverse of the Ackermann function, and ns
and nm respectively denote the number of saddle points and extrema.

Table 1 reports the number of TI vertices for all datasets, for
various approximation errors. The column ε = 0 corresponds to
the numbers of TI vertices reported by Vidal et al. [78] in the exact
case. For the majority of datasets, we observe a large increase in

Table 2: Sequential computation times (in seconds) of our approach
for the approximation of persistence diagram, for different approxima-
tion errors. The column Default reports the run time of the default
approach in the Topology ToolKit [34]. The last column indicates the
speedup of our approach with an approximation error of 5%, against
the fastest of the two exact methods (left). Bold numbers indicate the
smallest ε providing a speedup over reference approaches.

Dataset Default [34] Progressive [78] Ours
ε = 1% ε = 5% ε = 10% 5% speedup

At 0.27 0.25 0.14 0.15 0.17 38.5%
SeaSurfaceHeight 0.48 0.38 0.29 0.26 0.25 30.9%
EthaneDiol 0.48 0.43 0.28 0.31 0.33 28.7%
Hydrogen 0.99 0.64 0.43 0.48 0.47 24.6%
Isabel 1.29 1.49 0.95 0.89 0.92 30.7%
Combustion 2.55 1.37 0.99 0.90 0.85 34.1%
Boat 1.22 0.82 0.97 1.06 1.02 -28.1%
MinMax 4.01 1.92 2.14 2.28 2.13 -18.4%
Aneurism 4.66 3.43 3.62 3.52 3.00 -2.7%
Foot 9.86 10.42 10.38 8.14 6.14 17.4%
Heptane 8.09 7.41 5.41 5.18 5.16 30.1%
Random 37.29 30.77 28.95 29.04 30.46 5.6%
Backpack 77.28 107.31 62.06 40.11 31.76 48.1%

the number of TI vertices, from a proportion of 70% on average
on the real-life datasets to a proportion of 90% for a small error
of 1%, and 94% for a mild tolerance of 5% on the approximation.
The largest increase in the number of TI vertices is reported for
Backpack (being a large and noisy dataset). This table confirms that
our strategy of vertex folding (Sec. 4.2) indeed implies a sensible
increase in the number of TI vertices, even for mild approximation
errors. Regarding the criticality estimation (step 2, Sec. 4.1), as no
computation is needed for the vertices which remained topologically
invariant throughout the hierarchy (Sec. 4.1), a higher proportion
of TI vertices in the data is thus likely to significantly decrease the
computational workload, resulting in lower computation times.

Table 2 details the sequential computation times of our approach
for different approximation errors. They are compared with public
implementations of exact algorithms, both available in TTK [73]:
the progressive approach by Vidal et al. [78] (run up to the finest res-
olution, hence producing an exact result), and the default algorithm
used in TTK [34] (run at the finest hierarchy level). The last column
of Tab. 2 present the speedups obtained with a Bottleneck error
tolerance of 5%, compared with the fastest of either reference ap-
proaches. We observe an average reduction of the run times of 18%
on real-world datasets, which confirms that our strategy of maximiz-
ing the number of TI vertices effectively reduces the computation
times. The observed speedups are consistent with the increases in
the proportion of TI vertices reported in Tab. 1: a large increase
in the number of TI vertices implies an important reduction of the
computation time. Interestingly, we find our method most beneficial
on datasets that initially present a low amount of TI vertices. This
usually corresponds to a high level of noise, which impedes both

Table 3: Parallel computation times (in seconds, on 8 physical cores)
of our algorithm with different approximation errors. The presented
speedups relate to the sequential run times.

Dataset Default [34] Progressive [78] ε = 1% speedup ε = 5% speedup ε = 10% speedup
At 0.20 0.07 0.05 2.61 0.07 2.24 0.07 2.25
SeaSurfaceHeight 0.21 0.13 0.08 3.65 0.07 3.91 0.07 3.77
EthaneDiol 0.21 0.11 0.08 3.69 0.09 3.60 0.10 3.35
Hydrogen 0.72 0.20 0.13 3.18 0.16 2.95 0.17 2.80
Isabel 0.47 0.46 0.54 1.77 0.28 3.15 0.30 3.05
Combustion 0.34 0.51 0.54 1.83 0.31 2.92 0.25 3.41
Boat 0.29 0.29 0.33 2.94 0.37 2.85 0.34 2.98
MinMax 0.80 0.61 0.69 3.11 0.54 4.23 0.54 3.97
Aneurism 2.03 1.51 1.62 2.23 1.36 2.59 1.33 2.25
Foot 3.12 2.34 2.65 3.91 1.91 4.25 2.04 3.01
Heptane 2.44 2.35 2.08 2.60 1.33 3.88 1.51 3.41
Random 27.04 8.47 7.15 4.05 7.77 3.74 8.89 3.43
Backpack 30.36 24.88 12.63 4.92 8.50 4.72 7.02 4.53

Figure 9: Comparison of our approach to a naive baseline approxima-
tion (staircase field), for the same tolerance of 5% on the Bottleneck
error. Our approach (right) provides an approximated persistence
diagram that resembles the exact result (center), and is around 2
times closer in terms of the Wasserstein distance (W2). The high per-
sistence critical points (spheres, 2D domain) capture more precisely
the features of the data in our case. Our approximated field is also two
times closer (L2 norm) to the exact field than the naive approximation.

reference methods. In particular, the highest speedup is achieved on
Backpack, our largest, noisiest real-world dataset, with a reduction
of computation time of nearly 50%. In contrast, our method fails
to reduce the computation times on smooth datasets such as Min-
Max, Boat or Aneurism, for which the progressive approach really
shines. These datasets exhibit high initial proportions of TI vertices,
which limits the increase in TI vertices enabled by our approach
(Tab. 1). For Random, the interpolation cost of folded vertices seems
to counterbalance the speedup induced by the increase in TI vertices.

Table 3 lists the computation times obtained with the parallel
version of our algorithm. We find an overall average parallel effi-
ciency of 43% with an error level of 5%, which is on par with the
progressive approach [78]. Although the traversal of the hierarchy
can be trivially parallelize over vertices, it is subject to synchroniza-
tion steps between hierarchy levels. The last step of the approach,
deducing the persistence diagram from the critical points, is less
balanced. Indeed, the parallel computation of integral lines between
saddle points and extrema (Sec. 4.1) necessitates locks.

Table 4: Accuracy comparison between our approach and a naive
baseline approximation based on the computation of a staircase func-
tion, for the same relative Bottleneck error of 5%. Our approximations
are more accurate in average, both in terms of the L2 distance of
the approximated field (2 times more accurate) and in terms of the
L2-Wasserstein distance to the exact persistence diagram (5 times).

Dataset Staircase L2 Ours L2 Ratio Staircase W2 Ours W2 Ratio
At 276.66 75.31 3.67 3.31 1.01 3.29
SeaSurfaceHeight 92.3 58.05 1.59 8.75 1.69 5.17
EthaneDiol 337.55 73.2 4.61 1.78 0.61 2.9
Hydrogen 11.0 13.0 0.85 25.69 12.73 2.02
Isabel 3,591.99 1,569.98 2.29 42.26 8.08 5.23
Combustion 38.04 17.59 2.16 0.87 0.21 4.1
Boat 24.18 9.11 2.66 2.14 0.49 4.37
MinMax 117.55 0.37 314.77 0.0 0.0 -
Aneurism 6.0 9.0 0.67 1,198.14 128.61 9.32
Foot 16,006.11 10,784.33 1.48 5,859.67 1,419.51 4.13
Heptane 5.0 12.0 0.42 716.1 61.12 11.72
Random 29,270.73 3,468.14 8.44 23,863.56 1,038.1 22.99
Backpack 142.0 142.0 1.0 17,941.13 1,933.83 9.28

Figure 10: Approximated persistence diagrams on the Foot dataset.
The 3D top views show the ten most persistent maxima (spheres),
corresponding to the bones of the foot (isocontour, computed on the
approximated field f̂ε). Our approximated diagrams correctly capture
the most persistent features at a reduced computational cost.

5.2 Approximation Accuracy
By design, our approach produces approximated persistence dia-
grams with a guaranteed bound on the Bottleneck distance to the
exact result (Sec. 4.3). In the following, we additionally evaluate the
accuracy of our approximation by considering the L2-Wasserstein
distance (Sec. 2.3, computed with the efficient progressive approxi-
mation [77] of TTK [73]) between our approximations and the exact
result. We also evaluate ‖ f̂ − f‖2 to quantify the pointwise error of
the approximated field f̂ . Results are given in Table 4.

For comparison, we perform the same evaluation for a naive
baseline approximation which provides identical guarantees. This
baseline consists in computing, with an exact algorithm, the diagram
of a staircase function f , i.e. a quantized version of the input data
f , with a quantization step of 2ε . By construction, the staircase
function verifies ‖ f − f‖∞ < ε (Fig. 9) and its persistence diagram
is then guaranteed not to exceed a Bottleneck error of ε [15]. Table
4 compares the accuracy of this baseline approximation to our al-
gorithm. In terms of L2 distance, our approximations of the input
scalar fields are around 2 times more accurate on average (on real-
world datasets, Random and MinMax excluded). This difference
could be expected, as our method performs local and adaptive linear
interpolations, while the staircase approach systematically flattens
the data. However, our approach is also significantly more accurate
with regards to the L2-Wasserstein distance to the exact persistence
diagrams: 4 times in average on our real-world datasets.

Figure 9 further illustrates the limitations of the staircase baseline.
For a given approximation error (5%), our method gives an approxi-
mated diagram that is visually more similar to the exact result, and
which better depicts the number of salient features, as well as the
noise in the data. In contrast, the diagram produced by the staircase
approximation is more difficult to interpret, as the positions of per-
sistence pairs are quantized on a grid in the 2D birth/death space,
resulting in several co-located pairs, which cannot be distinguished
visually. Our approximation of the scalar field is also closer to the
exact field, both visually and in terms of the L2 norm, enabling more
accurate critical point approximations in the domain (top).

5.3 Qualitative Analysis
This section discusses the utility of our approximations from a qual-
itative point of view, for data analysis and visualization purposes.
Fig. 1 shows the result of our approach on the Backpack dataset. In
this example, our approximated diagrams correctly capture the high
persistence maxima of the scalar field, which correspond to high
density objects inside the bag (bottles, wires, and metallic parts of
the bag). The approximate field f̂ε resulting from the vertex folding
(Sec. 4.2) is more precise in the vicinity of features of high persis-
tence. Indeed, the volume rendering in the top views of Fig. 1 shows
clearly the objects inside the bag (high persistence maxima), while
isocontours capturing the cloth of the bag (Fig. 1, bottom) illustrate

Figure 11: Approximated diagrams for the Isabel hurricane dataset. The most persistent maxima of the field (the magnitude of the wind velocity)
are represented in the 3D view as spheres (scaled by persistence). The approximation uncertainty is visualized in the diagram: in the red band
indicates uncertain persistence pairs that may not exist in the exact persistence diagram, and colored squares indicate a bound on the location of
the persistence pairs that are certain to exist in the exact diagram. Our approximated persistence diagrams correctly capture these certain pairs in
the order of their persistence, with higher persistence features being detected at higher tolerance on the Bottleneck error.

the deterioration of the field in this region. The same phenomenon
can be noted for the Foot dataset (Fig. 10). More vertices are folded
in the vicinity of low persistence features, typically the skin of the
foot, and the level of deterioration of the field increases with the
approximation error. Conversely, high persistence features (bones
of the toes) are well captured.

The above observation suggests that our method provides a better
approximation for persistent features, and a more degraded evalua-
tion for less persistent structures, which was an original motivation
for our approach (to focus the computational efforts on relevant
structures). This is confirmed in Fig. 1 by the number of noisy pairs
(of low persistence, within the red band) in the approximated dia-
grams, which is significantly lower than the amount of noisy pairs
(of identical persistence) in the exact diagram (Fig. 1, in parenthesis).

Figure 12 compares our approximations to the progressive ap-
proach by Vidal et al. [78]. To generate an approximated result
with the progressive approach, we interrupt its computation at the
penultimate hierarchy level (the computation would become exact
at the final level). As documented by its authors, such intermediate
results can provide useful previews, but however, with no guarantee
on the approximation error. This is illustrated in Fig. 12, where the
progressive approximation fails at correctly capturing the maximum
of largest persistence. In contrast, our method produces persistence
diagrams that correctly convey the salience of the features, and are
five times more accurate, in terms of the Wasserstein distance.

Indications about the approximation uncertainty (Sec. 4.6) can
be displayed in the output diagrams. Figure 11 shows our approx-
imations for the Isabel dataset. For each approximation error, the
red band indicates uncertain pairs, which may not be part of the
exact result. Certain pairs are represented with a square bounding
their correct location. These glyphs give a good sense of the approx-
imation uncertainty, and are useful to assess the reliability of the
diagram. For instance, a large pair in the uncertain zone may indicate
the presence of a medium persistence feature in the data. This can
be confirmed with the computation of a slighlty better estimation, as
illustrated in Fig. 12 for the fourth most persistent feature.

Figure 12: Approximation of persistence diagrams on the hydrogen
dataset. The best interrupted result of Vidal et al. [78] fails at correctly
capturing the global maximum (accurately detected only at the last
level), resulting in a diagram that is 5 times less accurate than our
5% approximation (L2-Wasserstein distance to the exact result). In
contrast, our approximation correctly captures the high persistence
features of the data. On the far right, our 4% approximated diagram
detects as certain the fourth most persistent maxima, which was
marked as uncertain with ε = 5%.

6 LIMITATIONS AND DISCUSSION

Our approximations tend to generate much less low-persistence fea-
tures than exact algorithms (Fig. 1), which can be an issue if features
of interested are hidden among noisy features near the diagonal. On
the upside, this characteristic of our approximations make them well
suited for subsequent analysis and processing (e.g. distances and
clustering), as diagrams are often thresholded in practice prior to
further computations, to remove low persistence pairs anyway.

An important limitation of our approach, compared to the work
of Vidal et al. [78], is its lack of progressivity. Indeed, to provide
strong approximation guarantees, the hierarchy has to be completely
traversed in our work and no intermediate result can be provided.

Another limitation is that our approach only supports saddle-
extremum persistence pairs at the moment. However, from our
experience, these correspond in practice to the key features users
tend to be interested in.

Finally, our approach provides strong guarantees on the Bottle-
neck distance. Future work is needed for the theoretical study of the
impact of our approximations on the L2 Wasserstein metric.

7 CONCLUSION

This paper introduced a method for the approximation of the persis-
tence diagram of a scalar field. Our work revisits the progressive
approach by Vidal et al. [78], that generated preview diagrams upon
interruption of a progressive framework. We addressed the main
drawback of their approach, namely the lack of guaranteed error
bounds on the diagram estimations. In contrast, we presented a
novel algorithm that efficiently computes the approximation of a
persistence diagram within a user controlled approximation error
on the Bottleneck distance to the exact result. We showed that the
approximated persistence diagrams are relevant for visualization and
data analysis tasks, as they correctly describe the high persistence
features in the data (i.e. the number and salience of important fea-
tures), and they are more concise in practice than the exact diagrams.
The uncertainty related to our approximations can be effectively
depicted visually inside the diagrams.

We believe that the development of approximative approaches
(with guarantees) for data analysis and visualization is an important
and exciting research direction. They are especially relevant in the
field of Topological Data Analysis, as most of the computational
workload is typically spent in practice on the capture of small scale
features (Fig. 1), whereas they usually are less relevant in the appli-
cations, and post-process simplification techniques are often applied
to eliminate them anyway. In this context, a logical avenue for future
work would be the development of approximative methods to revisit
existing topological data representations (merge trees, Morse-Smale
complexes, Reeb graphs).

ACKNOWLEDGMENTS

This work is partially supported by the European Commission grant ERC-2019-COG
“TORI” (ref. 863464, https://erc-tori.github.io/).

https://erc-tori.github.io/

REFERENCES

[1] T. F. Banchoff. Critical points and curvature for embedded polyhedral
surfaces. The American Mathematical Monthly, 1970.

[2] J. Bey. Simplicial grid refinement: on Freudenthal’s algorithm and the
optimal number of congruence classes. Numer. Math., 85:1–29, 1998.

[3] H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P.-T.
Bremer. Topoms: Comprehensive topological exploration for molecular
and condensed-matter systems. J. of Computational Chemistry, 2018.

[4] S. Biasotti, B. Falcidieno, and M. Spagnuolo. Extended Reeb Graphs
for Surface Understanding and Description. In Discrete Geometry for
Computer Imagery, 2000.

[5] S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb graphs
for shape analysis and applications. TCS, 2008.

[6] T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet,
P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe,
P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai, M. Soler,
P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An
Overview of the Topology ToolKit. In TopoInVis, 2019.

[7] A. Bock, H. Doraiswamy, A. Summers, and C. T. Silva. TopoAngler:
Interactive Topology-Based Extraction of Fishes. IEEE Transactions
on Visualization and Computer Graphics (Proc. of IEEE VIS), 2018.

[8] R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar
simulation. In Proc. of the IEEE Fall Joint Computer Conference,
1963.

[9] P. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A Multi-
Resolution Data Structure for 2-Dimensional Morse Functions. In Proc.
of IEEE VIS, 2003.

[10] P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell.
Interactive exploration and analysis of large scale simulations using
topology-based data segmentation. IEEE Transactions on Visualization
and Computer Graphics, 2011.

[11] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. In Symp. on Dis. Alg., 2000.

[12] H. A. Carr and D. J. Duke. Joint Contour Nets. IEEE Transactions on
Visualization and Computer Graphics, 2014.

[13] H. A. Carr, J. Snoeyink, and M. van de Panne. Simplifying Flexible
Isosurfaces Using Local Geometric Measures. In IEEE VIS, 2004.

[14] H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel
peak pruning for scalable SMP contour tree computation. In IEEE
Symposium on Large Data Analysis and Visualization, 2016.

[15] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persis-
tence diagrams. In S. o. C. G., 2005.

[16] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko. Lipschitz
functions have lp-stable persistence. Foundations of Computational
Mathematics, 2010.

[17] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in Reeb graphs of 2-manifolds. In S. o. C. G., 2003.

[18] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[19] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse com-
plexes for shape segmentation and homological analysis: discrete
models and algorithms. Comp. Grap. For., 2015.

[20] H. Doraiswamy and V. Natarajan. Output-Sensitive Construction of
Reeb Graphs. IEEE Transactions on Visualization and Computer
Graphics, 2012.

[21] H. Edelsbrunner and J. Harer. Computational Topology: An Introduc-
tion. American Mathematical Society, 2009.

[22] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-smale
complexes for piecewise linear 3-manifolds. In S. o. C. G., 2003.

[23] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb spaces of piecewise
linear mappings. In S. o. C. G., 2008.

[24] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persis-
tence and simplification. Disc. Compu. Geom., 2002.

[25] H. Edelsbrunner and E. P. Mucke. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Trans. on
Graph., 1990.

[26] G. Favelier, C. Gueunet, and J. Tierny. Visualizing ensembles of
viscous fingers. In IEEE SciVis Contest, 2016.

[27] R. Forman. A User’s Guide to Discrete Morse Theory. Advances in
Mathematics, 1998.

[28] T. Gerstner and R. Pajarola. Topology preserving and controlled topol-
ogy simplifying multiresolution isosurface extraction. In Proc. of IEEE
VIS, pp. 259–266, 2000.

[29] B. F. Gregorski, M. A. Duchaineau, P. Lindstrom, V. Pascucci, and K. I.
Joy. Interactive view-dependent rendering of large isosurfaces. In Proc.
of IEEE VIS, pp. 475–482, 2002.

[30] D. Guenther, R. Alvarez-Boto, J. Contreras-Garcia, J.-P. Piquemal, and
J. Tierny. Characterizing molecular interactions in chemical systems.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2014.

[31] D. Guenther, J. Reininghaus, S. Prohaska, T. Weinkauf, and H.-C.
Hege. Efficient computation of a hierarchy of discrete 3d gradient
vector fields. In Proc. of TopoInVis, pp. 15–29, 2012.

[32] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Contour forests: Fast
multi-threaded augmented contour trees. In IEEE Symposium on Large
Data Analysis and Visualization, 2016.

[33] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented
Merge Trees with Fibonacci Heaps,. In IEEE LDAV, 2017.

[34] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented
Contour Trees with Fibonacci Heaps. IEEE Trans. Parallel Distrib.
Syst., 2019.

[35] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented
Reeb Graphs with Dynamic ST-Trees. In Eurographics Symposium on
Parallel Graphics and Visualization, 2019.

[36] A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci.
Stability of dissipation elements: A case study in combustion. Comp.
Graph. For., 2014.

[37] A. Gyulassy, P. Bremer, and V. Pascucci. Shared-Memory Parallel
Computation of Morse-Smale Complexes with Improved Accuracy.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2018.

[38] A. Gyulassy, P. T. Bremer, B. Hamann, and V. Pascucci. A practical
approach to Morse-Smale complex computation: Scalability and gen-
erality. IEEE Transactions on Visualization and Computer Graphics
(Proc. of IEEE VIS), 2008.

[39] A. Gyulassy, M. A. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann. Topologically clean distance fields.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2007.

[40] A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer, M. Papka, L. A.
Curtiss, and V. Pascucci. Interstitial and interlayer ion diffusion ge-
ometry extraction in graphitic nanosphere battery materials. IEEE
Transactions on Visualization and Computer Graphics (Proc. of IEEE
VIS), 2015.

[41] H. Freudenthal. Simplizialzerlegungen von beschrankter Flachheit.
Annals of Mathematics, 43:580–582, 1942.

[42] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based
methods in visualization. Comp. Grap. For., 2016.

[43] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes. In
Proc. of ACM SIGGRAPH, 2001.

[44] H.W. Kuhn. Some combinatorial lemmas in topology. IBM Journal of
Research and Development, 45:518–524, 1960.

[45] F. Iuricich and L. D. Floriani. Hierarchical forman triangulation: A
multiscale model for scalar field analysis. Comput. Graph., 66:113–
123, 2017.

[46] J. Bey. Tetrahedral grid refinement. Computing, 55:355–378, 1995.
[47] J. Kasten, J. Reininghaus, I. Hotz, and H. Hege. Two-dimensional

time-dependent vortex regions based on the acceleration magnitude.
IEEE Transactions on Visualization and Computer Graphics, 2011.

[48] P. Klacansky. Open Scientific Visualization Data Sets.
https://klacansky.com/open-scivis-datasets/, 2020.

[49] D. E. Laney, P. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci.
Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2006.

[50] T. Lewiner, L. Velho, H. Lopes, and V. Mello. Hierarchical isocontours
extraction and compression. In SIBGRAPHI, pp. 234–241, 2004.

[51] C. Loop. Smooth Subdivision Surfaces Based on Triangles. Master’s

https://klacansky.com/open-scivis-datasets/

thesis, University of Utah, 1987.
[52] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel

algorithm for computing and tracking level set topology. In Proc. of
HiPC, 2012.

[53] D. Maljovec, B. Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, and
V. Pascucci. Topology-inspired partition-based sensitivity analysis and
visualization of nuclear simulations. In Proc. of IEEE PacificVis, 2016.

[54] J. Milnor. Morse Theory. Princeton University Press, 1963.
[55] D. Morozov and G. H. Weber. Distributed contour trees. In Topological

Methods in Data Analysis and Visualization III, Theory, Algorithms,
and Applications. 2014.

[56] M. Olejniczak, A. S. P. Gomes, and J. Tierny. A Topological Data
Analysis Perspective on Non-Covalent Interactions in Relativistic Cal-
culations. International Journal of Quantum Chemistry, 2019.

[57] S. Parsa. A deterministic o(m log m) time algorithm for the reeb graph.
In S. o. C. G., 2012.

[58] V. Pascucci and C. L. Bajaj. Time critical isosurface refinement and
smoothing. In Proc. of the Volume Visualization and Graphics Sympo-
sium, pp. 33–42, 2000.

[59] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the
Topology of Level Sets. Algorithmica, 2004.

[60] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution
computation and presentation of contour trees. In Proc. IASTED con-
ference on visualization, imaging, and image processing, 2004.

[61] V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas. Robust
on-line computation of Reeb graphs: simplicity and speed. ACM Trans.
on Graph., 2007.

[62] G. Patanè, M. Spagnuolo, and B. Falcidieno. Reeb graph computation
based on a minimal contouring. In Shape Modeling International,
2008.

[63] R.E. Bank, and A.H. Sherman, and A. Weiser. Refinement algorithms
and data structures for regular local mesh refinement. Scientific Com-
puting, pp. 3–17, 1983.

[64] G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus des séances
de l’Académie des sciences, 222(847-849):76, 1946.

[65] V. Robins, P. J. Wood, and A. P. Sheppard. Theory and Algorithms
for Constructing Discrete Morse Complexes from Grayscale Digital
Images. IEEE Trans. Pattern Anal. Mach. Intell., 2011.

[66] S. Zhang. Successive subdivision of tetrahedra and multigrid methods
on tetrahedral meshes. Houston Journal of Mathematics, 21:541–556,
1995.

[67] N. Shivashankar and V. Natarajan. Parallel Computation of 3D Morse-
Smale Complexes. Comp. Graph. For., 2012.

[68] N. Shivashankar, P. Pranav, V. Natarajan, R. van de Weygaert, E. P.
Bos, and S. Rieder. Felix: A topology based framework for visual
exploration of cosmic filaments. IEEE Transactions on Visualization
and Computer Graphics, 2016. http://vgl.serc.iisc.ernet.
in/felix/index.html.

[69] J. Singler and B. Konsik. The GNU libstdc++ Parallel Mode: Software
Engineering Considerations. In Proc. of International Workshop on
Multicore Software Engineering, 2008.

[70] D. Smirnov and D. Morozov. Triplet Merge Trees. In TopoInVis, 2017.
[71] T. Sousbie. The persistent cosmic web and its filamentary structure:

Theory and implementations. Royal Astronomical Society, 2011. http:
//www2.iap.fr/users/sousbie/web/html/indexd41d.html.

[72] J. Tierny and H. A. Carr. Jacobi Fiber Surfaces for Bivariate Reeb
Space Computation. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2016.

[73] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2017. https://topology-tool-kit.
github.io/.

[74] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery
for volumetric meshes: Reeb graphs reduced to contour trees. IEEE
Transactions on Visualization and Computer Graphics (Proc. of IEEE
VIS), 2009.

[75] TTK Contributors. TTK Data.
https://github.com/topology-tool-kit/ttk-data/tree/

dev, 2020.

[76] K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Fréchet Means for
Distributions of Persistence Diagrams. Disc. Compu. Geom., 2014.

[77] J. Vidal, J. Budin, and J. Tierny. Progressive wasserstein barycenters
of persistence diagrams. IEEE Transactions on Visualization and
Computer Graphics (Proc. of IEEE VIS), 2019.

[78] J. Vidal, P. Guillou, and J. Tierny. A progressive approach to scalar
field topology. IEEE Transactions on Visualization and Computer
Graphics, 2021. doi: 10.1109/TVCG.2021.3060500

[79] K. Weiss and L. D. Floriani. Diamond hierarchies of arbitrary dimen-
sion. Comput. Graph. Forum, 28(5):1289–1300, 2009.

[80] K. Weiss and L. D. Floriani. Supercubes: A high-level primitive
for diamond hierarchies. IEEE Transactions on Visualization and
Computer Graphics (Proc. of IEEE VIS), 15(6):1603–1610, 2009.

http://vgl.serc.iisc.ernet.in/felix/index.html
http://vgl.serc.iisc.ernet.in/felix/index.html
http://www2.iap.fr/users/sousbie/web/html/indexd41d.html
http://www2.iap.fr/users/sousbie/web/html/indexd41d.html
https://topology-tool-kit.github.io/
https://topology-tool-kit.github.io/
https://github.com/topology-tool-kit/ttk-data/tree/dev
https://github.com/topology-tool-kit/ttk-data/tree/dev

	Introduction
	Related Work
	Contributions

	Preliminaries
	Input Data
	Critical Points
	Persistence Diagrams
	Edge-Nested Hierarchical Data Representation
	Topological Invariant Vertices

	Overview
	Topology Approximation
	Hierarchy Processing
	Vertex Folding
	Bottleneck Error Control
	Monotony offsets
	Parallelism
	Uncertainty

	Results
	Time Performance
	Approximation Accuracy
	Qualitative Analysis

	Limitations and Discussion
	Conclusion

