
HAL Id: hal-03331230
https://hal.science/hal-03331230

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Case Study on Formally Validating Motion Rules for
Autonomous Cars

Mario Henrique Cruz Torres, Jean-Pierre Giacalone, Joelle Abou Faysal

To cite this version:
Mario Henrique Cruz Torres, Jean-Pierre Giacalone, Joelle Abou Faysal. A Case Study on Formally
Validating Motion Rules for Autonomous Cars. SEFM 2020 - Collocated Workshops - Software Engi-
neering and Formal Methods, Sep 2020, Amsterdam, Netherlands. pp.233-248. �hal-03331230�

https://hal.science/hal-03331230
https://hal.archives-ouvertes.fr


A Case Study on Formally Validating Motion
Rules for Autonomous Cars

Mario Henrique Cruz Torres1, Jean-Pierre Giacalone2, and Joelle Abou Faysal3

1 IVEX.ai Intelligent Vehicle Technology, Leuven, Belgium
2 Renault SW Labs (RSL), Expert ADAS/AD software architecture, Autonomous

Vehicle Algorithms, Sophia Antipolis, France
3 Renault Software Labs (RSL), Université Cote d’Azur, Cnrs, Inria, I3S, Researcher,

France

Abstract. Car motion control is a key functional stage for providing
advanced assisted or autonomous driving capabilities to vehicles. Car
motion is subject to strict safety rules which are normally expressed
in natural language. As such, these natural language rules are subject
to potential misinterpretation during the implementation phase of the
motion control stage. In this paper, we show a novel approach by which
safety rules are expressed in natural language, then in a formal language
specification which is then validated and used to generate a car motion
checker. We present a case study of using the approach with true road
capture data and its associated imperfections. We also show how the
approach lowers the validation efforts needed to guarantee that the car
motion always respects a desired set of safety rules while other traditional
validation methods would be much heavier to deploy and error prone.

Keywords: Formal Language · Autonomous Drive · Motion Safety

1 Introduction

In the past few years, across most regions in the world, there has been a push
to improve vehicles driving safety through specific regulations. In Europe, for
instance, this has been the case with the issuance of General Safety Regulation
(GSR) phase 2 [6]. These regulations tend to mandate the deployment of Ad-
vanced Driving Assistance systems in cars, like Automatic Emergency Braking
and other car motion control systems such as Autonomous Emergency Steering
or Adaptive Cruise Control [5]. These driving features take control of car motion
on behalf of the driver, even if the driver still has the ability to take back control,
in order to operate within time ranges and with perception reaction time that
allows fast action to protect the car occupants. As such, these systems must
make sure that passengers safety is guaranteed during their operation.

For such systems, a key element to guarantee safety is the car trajectory
control. The trajectory control component is the part that computes the future
trajectory of the vehicle as a function of what is perceived by the car sensors.
The trajectory is transformed into 2D positional objectives to follow on the



2 MHC. Torres et al.

road, from the current position. The problem behind ensuring safety at the
current position and along the trajectory is bounded in terms of the expression
of the safety rules. Important properties behind such bounding are related to
creating priorities (e.g., what is happening at the front of the vehicle versus at
the rear) or having parallel conditions expressed (e.g., checks being performed
simultaneously on different directions, longitudinally and laterally) [15]. Hence,
car motion safety construction is a perfect domain for exploring formal methods
to express safety rules.

In the context of proof that is needed to express safety rules described above,
one can refer to several specification languages providing design by contract ap-
proaches ([1], [12] for instance). Usually, though, these languages are not at the
right level of abstraction to express key aspects regarding car motion. In this
paper, we will explain what that level should be and why. As it will be shown,
there are several challenges expressing safety rules about motion control. As a
result, we will describe the expected flow to be used between the expression of
rules in human language by a car safety engineer and their formalization us-
ing the proposed approach. We will also illustrate the application of the formal
method depicted in this paper through true road captures of difficult scenarios
in traffic jams, with complicated perception situations (at night, for instance).
We will devise the impact of those conditions as constraints in the expression
of safety rules. Finally, we will indicate some trends in the application of this
technique for safe car motion control implementation.

This paper is organized as follows. Section 1.1 briefly discusses related work.
Section 2 presents the challenges in implementing safety rules concerning car
motion control. Section 3 introduces IVEX tools and details IVEX approach to
model safety rules for car motion. Section 4 describes a case study of a Society
of Automotive Engineering (SAE) Level 3 car experiments. It also discusses the
low speed motion control safety rules set. Finally, Section 5 draws conclusions
and details some possible future work.

1.1 Related Work

Reachability analysis is used to propose a safety framework to analyse the motion
of autonomous vehicles by used at [13]. It is used to guarantee that any feasible
future motion of dynamic obstacles around the automated car, also known as
Ego car, is taken into account when assessing a planned trajectory. Similar to our
technique, [13] define a set of assumptions for the future movement of dynamic
obstacles around the Ego car and verifies if the Ego car can reach a future state
where it would have a collision. An interesting aspect of the the work [13] is
to also provide an alternative fail-safe trajectory planning that the autonomous
vehicle (AV) could use to avoid a collision.

The work by [16] proposes a mathematical model, called Responsibility-
Sensitive Safety (RSS), for safety assurance of autonomous vehicles. The RSS
model is explainable and has well defined assumptions. The model tries to for-
malize common sense human behavior concerning the judgment of ”who is re-



A Case Study on Formally Validating Motion Rules for Autonomous Cars 3

sponsible for causing an accident”. The final goal of the model is to guarantee
that an autonomous car never causes an accident, being than considered safe.
The main limitation of the model is not taking variability and uncertainty into
account. This limitation greatly impacts the ability of RSS to guarantee safety
in reality.

2 Challenges in Implementing Safety Rules around Car
Motion Control

When creating safety rules for a car motion control we assume that it is im-
possible to guarantee there is absolutely no collisions involving the controlled
car. The impossibility of zero collisions is due to the fact that the Autonomous
Vehicle/Advanced Driver Assistant Systems (AV/ADAS) car cannot control the
behaviour of other road users. If another road user is actively trying to cause
a collision and has a vehicle capable of very large accelerations/decelerations,
it is easy to understand that even if the AV/ADAS executes evasive maneuvers
or stops on the side of the road, the other road user can still cause a collision.
There is a trade-off between the drive-ability and safety of the controlled car,
since there will always be a risk of a collision. We believe that creating the safety
rules for the car motion control will always incorporate such trade-off.

The first challenge for creating safety rules for car motion control is iden-
tifying the minimum set of assumptions (including hidden assumptions) about
the environment, particularly assumptions about other road users, which are
measurable and represent reality closely enough. The RSS model [16], for in-
stance, defines a small number of assumptions about the environment, such as
the maximum, minimum acceleration/deceleration of other vehicles which leads
to a model that can be easily understood by human beings but which also leads to
lower drive-ability of a controlled car. For instance, one’s assumptions for maxi-
mum deceleration may lead to an extremely conservative driving behaviour, thus
lowering the drive-ability of the controlled car.

We believe the car motion safety rules should be formally verified for sound-
ness and completeness for a certain environment. This brings the second chal-
lenge which is defining the proper abstraction level to formally model the safety
rules. Each formalism requires the system (software + hardware) to be specified
in a certain way, [9] [17]. The modeler has to reduce, simplify, or abstract the
system being modeled to be able to use different model checking tools.

Formally modelling the system and its environment has to be done taking
into account possible issues, such as:

– the model does not represent the system,
– the model does not properly represent the environment (e.g. wrong assump-

tions about the environment),
– the model truly represents the system and its environment, but is intractable.

Finding the correct level of abstraction to represent the AV/ADAS system
and its environment is challenging because it has to be done in a way that the



4 MHC. Torres et al.

model is close enough to the reality, but abstract enough to be solvable [7].
Toolboxes like Tulip [18] help to mitigate the problem of having a model which
does not represent the system, since it synthesizes controllers, but does not help
in defining the proper abstraction level to represent the problem, or mitigating
having wrong assumptions about the environment.

Particular attention has to be given to modeling the input information that
will be used by the motion control rules. The perception systems which provide
information used by the motion controllers may have a great impact into the
safety rules. When modeling the car motion rules, it is extremely important to
clearly model the assumptions concerning the perception systems used in the
car so that limitations of this system can be properly dealt with in the motion
of the car.

The focus of this paper is on car motion control under conditions of low speed
(lower than 60 km/h) and traffic jams. The control context is either Advanced
Driving Assistance where the driver is still under control but is assisted by the
electronic system or Autonomous Driving of Level 3, as defined by the SAE
[14]. Motion control consists in constructing a trajectory to be followed by the
car under control. This trajectory is expressed as 2D positions on the road,
provided with a recurrence of 20 to 100 ms into the future from current time.
The positions are expressed in the car coordinates (see Fig. 1). Car motion
control takes these target positions and transforms them into actions along the
longitudinal direction (along the X axis) and the lateral (along the Y axis through
the yaw angle) one, for the vehicle. Simply put, these actions relate to defining
acceleration or deceleration of the car and steering wheel movement. As a result,
there will be rules for checking longitudinal and lateral safety, and these rules are
going to be valid simultaneously which is another challenge we have to address
with the rules description language.

Fig. 1. Car motion trajectory definition in the car coordinates system.

Car motion control constructs the trajectory based on information reported
by sensors mounted in the vehicle. This information is usually named Percep-
tion and consists in aggregating different details about moving or static objects
around the car, like type, dimensions, position, speed and acceleration. This ag-



A Case Study on Formally Validating Motion Rules for Autonomous Cars 5

gregation is performed by an electronic system called Fusion that materializes
and confirms the various detections provided by individual sensors. Depending
on the number and type of sensors available, the accuracy and reliability of the
information may vary. Challenges regarding obtaining a quality Perception have
been highlighted in publications like [8]. Among other issues related to percep-
tion conditions (night, rain, fog, as examples), problems of persistence are quite
impacting to the definition of safety rules like the ones introduced above. In
essence, potential appearance and disappearance of detected obstacles means
that safety rules must express a dependency in space (longitudinal, lateral) and
time (provided an obstacle is confirmed over a certain time, for instance). And
this becomes a constraint to the description language.

As we will see in section 4, the approach for implementing car motion safety
rules presented in this paper has been exposed to real road data captured with a
car prototype embedding several classes of sensors (cameras, radars, lidars, ultra
sonic) and called TRAJAM. We will see clear examples of perception challenges
that were faced in order to properly express rules given by a human safety
engineer.

3 IVEX Tools Suite and Approach to Model Safety Rules
for Car Motion

The IVEX toolchain can be used to model different systems that need safety
guarantees and which operate in complex environments. IVEX engineers spent
years performing research into the development of safety critical systems for
other domains, such as aerial vehicles and Automated Guided Vehicles (AGVs)
[3] [2] [4]. When doing research, they modelled different systems using varied
approaches, exploring diverse ways to specify safety critical autonomous systems.
IVEX engineers understood that traditional approaches like creating Finite State
Machines (FSM), Behavioral Trees, and traditional formal modeling techniques,
like solvers for LTL, had their own limitations to define safe autonomous systems
[11]. The systems build by IVEX engineers were used and demonstrated, besides
others, in aerial platforms having embedded mission control and autonomous
safe behavior, used to fly around electricity towers in Belgium.

At the core of the IVEX toolchain is an engineering process (Depicted in Fig-
ure: 2) which supports the creation of the safety rules. The process allows one
to automatically transform safety requirements into formally verified software.
The toolchain then generates correct-by-construction software, by performing a
translation between a solved model specification and a C++ execution policy.
The process highlights the limitations of safety requirements (by performing con-
sistency and completeness checks). The process shortens iteration cycles, reuses
existing knowledge and is supported by mature toolchain.

The first step into the process is to identify the safety requirements that
should be always satisfied by the car motion. Normally, such requirements re-
flect a number of safety requirements imposed on the car motion. The safety



6 MHC. Torres et al.

Fig. 2. The IVEX process consists of 3 main steps: 1 - define a behavior specification of
the system and its environment, 2 - generation of a decision making logic, 3 - validation
of the created system using the Safety Assessment Tool.

requirements can even consider what is the expected car behavior in different
operational design domains (ODD).

Based on the requirements gathering on system goals, safety and other (as
gathered together with the various system stakeholders), IVEX engineers specify
the requirements in a behaviour specification. During specification, a concise,
formal model of the system is built, including of the perceivable system states, its
actuation, rules and constraints that must be fulfilled. The behavior specification
is created using a domain specific language (DSL). The DSL has constructs to
represent vehicle system properties, such as pre-conditions for action executions,
and expected outcomes. The behavior specification is written in the DSL using
first-order logic constructs. The specification is declarative (it describes goals,
state, actions - as in a traditional planning model - and constraints), it is not
imperative (describing for every situation exactly which action to take). This
is a fundamental aspect of the approach, which makes it more adaptable and
manageable from the ground up. The exact decision making logic is generated
later on in the process.

The next step is performing an automated analysis on the specification, by
using IVEX verification tool, to check whether the specification is:

– complete (the specification will be able to decide in each possible state)
– consistent (the specification does not contain contradicting requirements)

It could be that (a) the specifications is not covering a combination of states;
or (b) that the model is inconsistent. The verification tool will automatically
detect and report inconsistencies. If a specification is not verifiable, developers
receive clear and punctual feedback on the status of the specification. Through
iterative specification and verification steps, developers are guided to unambigu-



A Case Study on Formally Validating Motion Rules for Autonomous Cars 7

ously and completely model the expected system behavior under all circum-
stances.

Based on the final, verified specification, the toolchain generates the decision
making logic as code. At this step the decision logic is translated into a tree-like
data structure with a known maximum depth, which is critical for guaranteeing
real-time execution deadlines. Besides that, the decision logic is a direct map-
ping of the behavior specification into C++ code, which lowers the chances of
implementation bugs.

The logic implements a mapping for every possible discrete situation - based
on the state representation from the requirements & specification - to one or a set
of actions to be executed by the system. This logic is guaranteed to cover every
possible discrete scenario, and respect all safety requirements and other con-
straints. A typical specification for a SAE Level 3 car generates around 120.000
safety rules in the decision logic, when considering many aspects of the Operating
Design Domain.

The toolchain has a runtime execution environment which is used to perform
the integration of the execution policy with the rest of the system, called the
IVEX safety co-pilot. The runtime includes specific components for integration
in the overall autonomous system. The runtime has well defined inputs and
outputs interfaces, to facilitate its integration into the system. For instance:

– The runtime communicates with the rest of the system via a middleware or
via direct function invocation (loading new threads to execute continuous
controllers).

– Inputs are read by monitors. Monitors are runtime components that ac-
tively read the perception data from the system and convert this perception
data into discrete values. Example of monitor inputs are: static and dy-
namic obstacle location (with corresponding confidence levels), car velocity,
etc. One of the inputs for car motion validation is the planned trajectory
created by a path planner.

– Outputs are given by actions. Actions represent the actuator components
from the autonomous system that should be activated and their parameters.
For instance, an action can represent an emergency operation such as a
strong longitudinal braking controller.

The process has two distinct parts, being an off-line one, used to model the
system, and an on-line one used to verify the behaviour of the system during
execution. In order to validate the full system that uses the decision making logic
the process has a validation step. The first validation step is done by testing the
created system with recorded driving data in the IVEX Safety Assessment Tool
(SAT). The SAT tool performs Software-in-the-loop (SIL) tests, using the system
created.

The SAT tool allows one to replay recorded driving sensor data into the SIL
which will then check its thousands of decision rules to define if a certain car
movement is triggering a safety violation. The SAT tool then collects all safety
violations occurrences and generates statistics highlighting all critical situations
in the driving data. A safety engineer can then proceed to analyse the highlighted



8 MHC. Torres et al.

safety violations and the safety metrics created by the SAT tool. After analysing
thousands of scenarios, the SAT tool indicates how conservative the created
system is, allowing safety engineers to proceed to refine the behavior specification
or its parameters.

4 Case Study of a SAE Level 3, Low Speed Motion
Control Safety Rules Set

In this section, we are entering into real experiments conducted using the tools
and method described in the previous section through information available in a
re-simulation environment. A re-simulation environment is providing data cap-
tured during road trips by a car embedding a set of sensors close to the one
used in production and located where they would be installed. Hence, study
presented here is based on real data. The environment provides data at various
locations in the processing stages through pipes that can be connected to the
system to be tested. In our case, these pipes carried kinematic information from
sensor fusion outputs for objects, infrastructure and Ego (a.k.a. the automated)
car. They also carried the future Ego car trajectory positions as delivered by the
planning stage. The infrastructure data consisted of lanes structure information
as captured by the perception stage. Kinematic information included positions
in 2D as measured in Ego car referential (see Fig. 1) as well as speed and accel-
eration. The re-simulation environment also provides a situational camera view,
towards the front of Ego car, synchronous to the provided data in order to bet-
ter understand visually a given scenario configuration. Table 1 summarizes the
re-simulation data available.

Table 1. Data available through re-simulation.

Type Content Sampling

Objects Position, Speed, Accel., Size 40 ms
Ego car Position, Speed, Accel. 40 ms

Infrastructure Lines types, Shape 40 ms
Trajectory Positions 100 ms

With this re-simulation environment, we constructed and verified car motion
safety rules corresponding to the SAE Level 3 motion control mode. These were
written as a real safety policy, describing longitudinal and lateral situations to
be avoided and corresponding expected behavior. Fig. 3 shows how these rules
are getting exercised with the re-simulation data. The Trajectory Validation
function receives the results of the analysis according to safety rules, and apply
them on the trajectory data proposed by the planner. This valid trajectory will
be passed to the motion control that follows it (as explained earlier). In case
checks report a failure in fulfilling the rules then an emergency maneuver could
be signaled by this function, as an example.



A Case Study on Formally Validating Motion Rules for Autonomous Cars 9

Fig. 3. Safety rules verification high level architecture. Each rectangle represents a
functional component in the system. The safety rules are checked at the Safety rules
Checker component which receives information from the Perception/Fusion and
Trajectory Planner components. The results of the checks performed by the Safety
rules Checker components are sent to the Trajectory Validation component which
is then responsible for deciding on following the planned trajectory or not.

Safety rules considered here were initially structured and expressed in human
text language. Situations covered for L3 control mode were essentially in traffic
jam, at low speed and various weather and light conditions as well as infrastruc-
ture and slopes. Organized in tables, the rules provide information about the
situation being verified, the preconditions, the result being avoided (usually, a
collision) and specific aspects to consider. Their definition is owned by a safety
engineer from Renault and he was supporting requests for understanding situa-
tions to be checked in case there was any ambiguity. An example of longitudinal
safety description is depicted in Fig. 4. There were around 20 rules like this that
composed the L3 set.

By going over this rule, we can first observe that a traffic jam situation must
be the operating case (also known as the Operating Design Domain or ODD).
This means Ego car is surrounded by several moving objects. We can also observe
that it is following a preceding vehicle with which a safety distance of 2 seconds
is defined. The rule sets a situation by which the preceding vehicle is potentially
decelerating with a certain strength (minimal for 1m/s2, nominal for 5m/s2 or
strong for 10m/s2). This covers limits of the environment model as discussed in
section 2. On his side, the Ego car has the capability to regulate its speed with an
Automatic Cruise Control (ACC) deceleration capability up to a strong braking
capability of 10 m/s2. In order to model this rule, we need to start discretizing
space to separate system states with the preceding vehicle. Fig. 5 describes this,
based on the rule content. The blue vehicle is Ego car.

Longitudinal states are so that either Ego car is alone or there is a preceding
vehicle. And, if there is one, then the situation can be that Ego car is at a safe
distance, i.e. 2 seconds from it, or it is within a range of ACC distance where it
should regulate with corresponding deceleration levels or it is within an emer-



10 MHC. Torres et al.

Fig. 4. Longitudinal rule expressed by safety engineering.

gency distance that requires to regulate speed with strong braking capabilities.
The resource that is actionable is longitudinal acceleration. The rules brings up
2 system states that matter for verifying it: The traffic jam state (S traffic jam,
a Boolean, yes/no) and the front car distance state (S front car, an enumerated,
not exist, safe distance, acc distance, emergency distance). Each state values are
provided by monitors that run at the pace of the re-simulation data. For the
front car distance, the state is populated with the equations below, assuming
constant velocities within 100 ms trajectory sampling points and the maximum
deceleration capability of 3m/s2 for ACC:

d is the distance to the front car, as reported by perception,

V ego is Ego car velocity, Aego is 3 m/s2

Dsafe = 2× V ego is the safe distance

if d > Dsafe→ ”safe distance” state

if d ≤ Dsafe and d ≥ Dsafe− 6→ ”acc distance” state

if d < Dsafe− 6→ ”emergency distance” state

Finally, the rule expresses three actions to be fulfilled as shown in table 2.

With these rules elements properly broken down, the following formal de-
scription can be constructed to represent the safety rule goals. The formal code
looks like this:



A Case Study on Formally Validating Motion Rules for Autonomous Cars 11

Fig. 5. Example of a state variable used to discretize the different safety distances taken
into account between ego car and a front car. Depending on the current sensor read-
ings and the assumptions used in the system, the front car distance can be classified as
not exist, meaning there is no visible front car, safe distance meaning that consider-
ing current distance, velocities and assumptions for the front car accelerations there is
no imminent risk of collision, acc distance means that given the current assumptions
and sensor readings, the ego-car would need to reduce its velocity at the ACC rate (3.5
m/s2) to satisfy the 2-seconds distance rule, while the emergency distance value
indicates that given the assumptions and current sensor readings, the ego-car would
need to reduce its velocity at a higher rate than (3.5 m/s2) to avoid a collision.

Table 2. Actions to be fulfilled according to the longitudinal rule.

Type Meaning

A not brake No action
A brake acc ACC braking (0.6m/s2 to 3m/s2

A brake strong 10m/s2 braking

when

S traffic jam is yes

then

goal type: constraint

when S front car is acc distance then goal: executing A brake acc

when S front car is emergency distance then goal: executing A brake strong



12 MHC. Torres et al.

At this point, it must be noted that the formal constructs provided for Ego
and front car are also applicable to the rear car (i.e. if a car follows). So, effec-
tively, we have two sets of concurrent statements like the last 2 in the pseudo
code above. This would be flagged, though, as infeasible by the language solver
as priorities need to be added. Indeed, a priority is linked to responsibility levels
according to the driving code: Ego car can only be held responsible for hitting
the front car via a longitudinal maneuver. Hence, the statements above (related
to the front car) must be indicated as having priority over the ones related to
the rear car and this is done by changing the goal type statement to goal type:
priority for the corresponding statements block.

Another aspect that we highlighted in section 2 is related to perception im-
perfections. It consists in the potential loss of track of objects over time. With
sensors used in cars (cameras, radars, ultra-sound) and existing information fu-
sion technology, the driving assistance system is subject to loss in tracking of
objects due to inaccuracies in location and trajectory parameters estimations,
as time passes. This results in objects IDs to disappear and new ones to be
re-generated, potentially for the same objects.The safety rules have to deal with
such case in order to decide for the validity of issuing an emergency maneu-
ver action, for instance. Here, we talk about discretizing in time, collecting,
via monitors, the disappearing times statistics from the re-simulation data. The
corresponding ”tracking” state values are then expressed with a statement like:

goal type: constraint

when S front car tracking is disappeared more than t1

then goal: executing A emergency operation1

In the statement above, ”t1” is a statistical time value that needs to be
evaluated by a monitor from re-simulation data described in this section. The
disappeared more than t1 state is a Boolean created by a comparison with the
threshold ”t1” in the corresponding monitor.

The whole set of L3 rules, coded with the approach described above, gen-
erated a total number of 13500 checking states. These checks were formally
compiled, without human intervention, into an executable checker code that was
embedded into the Safety Assessment Tool introduced in section 3. This tool
provided a global view over several hours of driving under traffic jam or dense
traffic conditions, under day light or at night conditions. All safety violations
as defined by the formal representation of the rules, i.e. triggering an action as
presented above, were reported into a single view, along the timeline. The pic-
ture in Fig. 6 shows a graphical representation of an example of such report for
a case of ACC braking that was reported as insufficient. The indicators on the
left show the Ego car kinematic parameters (speed, acceleration, longitudinal,
lateral). The situation is showing a merge to the left, into Ego car lane, of object
labeled 14882 (zoom on the upper left), but the lanes structure is not reported
yet in this representation. Object 14882 motion intent is depicted, at current
time, by its kinematic projection trajectory model shown by a yellow color, in



A Case Study on Formally Validating Motion Rules for Autonomous Cars 13

Fig. 6. This trajectory model takes a statistical representation of the longitu-
dinal and lateral speeds evolution over time from the current object position,
based on a combination of its current acceleration parameter as well as worst
case (strong) deceleration. The Ego car future trajectory is depicted in front
of it and consists of 50 points separated by 100 ms. It is colored blue for the
points that do not report safety issues and red for points that do. In the case
shown below, the safety action is an A brake acc action that is required when
the trajectory becomes red. For this situation, the insufficient braking level is
reported due to the 2-second safe distance definition in the rule that is violated
by car 14882 sudden arrival in Ego car lane. This was not anticipated by the
motion planner during the road drive. In the functional system shown in Fig. 3,
this safety error would be reported to the trajectory validation as a warning of
a potential future issue. As we move over time in the Safety Assessment tool
we can, hence, deduce whether that situation becomes real when the red color
reaches the Ego car position (instantaneous violation), potentially highlighting
a critical situation for which an emergency action is required. In the data set
captured for this case, the instantaneous violation appeared roughly a second
later.

Fig. 6. Graphical representation of an ACC braking violation along Ego trajectory.



14 MHC. Torres et al.

4.1 Notes regarding real-time performance

For the study presented in this paper, we did not only want to address the
formal construction of car motion safety rules and their offline validation with
re-simulation data captured on the road. We also wanted to make sure that the
safety checker that is automatically built by the method studied was capable
to be embedded within the car motion control software. And we wanted this to
occur by using a real computing platform as used in the automotive industry.
Such platforms are called ECUs in the automotive industry.

Fig. 7. Motion rules checker performance curves on a single AURIX core.

We chose a processing engine used in those and provided by the Infineon
manufacturer [10], embedding a multi-core AURIXTM system (in this study, a
TCS397 development board), where we have constrained ourselves to operate on
a single core to bound the processing footprint. The checker software code was
generated as a single C++ code for both supporting safety assessment (offline)
and for our performance analysis. The checker code was embedded into the
IVEX Safety Co-Pilot runtime framework, which was responsible for updating
the sensor data flowing into the monitors and for maintaining a memory and
computationally efficient representation of the safety checker policy. The code
was compiled with Infineon tools and run on the platform with re-simulation data
patterns injected through the automotive bus ports available on that platform, at
speed and synchronized (see table 1). The various situations found in the data,
in terms of objects density around Ego car, and the capability to re-sample
in time the trajectory allowed to gather curves like in Fig. 7. Our threshold



A Case Study on Formally Validating Motion Rules for Autonomous Cars 15

for considering that the checker is valid to run in a single care was that its
execution did not exceed 80% loading at maximum frequency (300 MHz). These
curves clearly indicate the fact that the checker can cope with a large number
of surrounding objects for a given choice of trajectory sampling in the system.

5 Conclusion

This paper highlights real experiments, conducted over road captures made in
the context of advanced driving and autonomous control car prototyping, on a
practical approach to formalize the driving rules with an objective of maximal
safety, using novel language and tools available from IVEX. Expressing safety
rules applied to car motion control in a formal way carry challenges linked to
both the imprecise nature of the rules defined by a human as well as the un-
certainties related to the motion control process itself. We have presented, in
previous sections, the needs for improvements from existing formal methods to
address those challenges. And we have shown how a well thought set of language
and tools, associated with a practical usage method, can handle all the above
concerns together.

The method proposed also drives for a way of considering the safety rules
verification in the chain that starts from motion planning and ends in car motion
execution via physical actuators. Indeed, if it makes sense to apply safety prin-
ciple within the various stages of the chain above, this paper has shown that the
motion control safety rules generate a formal verification complexity of several
thousand states. This shows that a safety checker executing this verification is
required, associated with a trajectory validation function in order to cover the
full safety complexity (see Fig. 3, above, for an example of this). So, this poses
the question for the proposed approach of this paper to be compatible with real-
time execution constraints of running within the electronic processing system in
the car.

5.1 Next steps

The motion safety rules used for this study where a preliminary set. Our study
allowed to show that, as a whole, they where performing as expected, captur-
ing driving situations that where below the quality requirements. The analysis
showed that the proposed method could be used to create indicators of bugs in
safety rules coverage and system behavior. This part is worth further studying.
Also, and finally, we have noticed that some rules where too ”static” in their def-
inition and that some parameters would benefit from being specified according
to the driving situation (e.g., the safety distance of 2 seconds). This is another
axis of future study.



16 MHC. Torres et al.

References

1. Bezault, E., Howard, M., Kogtenkov, A., Meyer, B., Stapf, E.: Eiffel analysis, design
and programming language. ECMA International, Tech. Rep. ECMA-367 (2005)

2. De Waen, J., Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Scalable multirotor uav
trajectory planning using mixed integer linear programming. In: 2017 European
Conference on Mobile Robots (ECMR). pp. 1–6 (2017)

3. Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Dancing uavs: Using lin-
ear programming to model movement behavior with safety requirements.
In: International Conference on Unmanned Aircraft Systems. pp. 326–
335. IEEE (2017). https://doi.org/https://doi.org/10.1109/ICUAS.2017.7991352,
https://lirias.kuleuven.be/1571693

4. Dinh, H.T., Cruz Torres, M.H., Holvoet, T.: Combining planning and model check-
ing to get guarantees on the behavior of safety-critical uav systems. In: ICAPS
Workshop on Planning and Robotics. ICAPS Workshop on Planning and Robotics
(2018)

5. Euro, N.: Euro ncap 2025 roadmap: In pursuit of vision zero. Leuven, Belgium
(2017)

6. European Commission: Revision of the EU General
Safety Regulation and Pedestrian Safety Regulation (2018),
https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/GRSP-
63-31e.pdf

7. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Communica-
tions of the ACM 56(9), 84–93 (2013)

8. Giacalone, J., Bourgeois, L., Ancora, A.: Challenges in aggregation of heteroge-
neous sensors for autonomous driving systems. In: 2019 IEEE Sensors Applications
Symposium (SAS). pp. 1–5 (2019)

9. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Towards a two-layer frame-
work for verifying autonomous vehicles. In: Badger, J.M., Rozier, K.Y. (eds.) NASA
Formal Methods. pp. 186–203. Springer International Publishing, Cham (2019)

10. Infineon: AURIXTM 32-bit microcontrollers for
automotive and industrial applications (2020),
https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29grsp/GRSP-
63-31e.pdf

11. Maoz, S., Ringert, J.O.: Gr (1) synthesis for ltl specification patterns. In: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering. pp.
96–106 (2015)

12. Microsoft: AURIXTM 32-bit microcontrollers for automotive and industrial appli-
cations (2004), http://research.microsoft.com/en-us/projects/specsharp

13. Pek, C., Koschi, M., Althoff, M.: An online verification framework for motion
planning of self-driving vehicles with safety guarantees. In: AAET-Automatisiertes
und vernetztes Fahren (2019)

14. SAE International: Automated Driving Levels of Driving Automation are Defined
in New SAE International Standard J3016 (2014), http://www.sae.org/autodrive

15. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for
autonomous vehicles. Annual Review of Control, Robotics, and Autonomous
Systems 1(1), 187–210 (2018). https://doi.org/10.1146/annurev-control-060117-
105157, https://doi.org/10.1146/annurev-control-060117-105157

16. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model
of safe and scalable self-driving cars. CoRR abs/1708.06374 (2017),
http://arxiv.org/abs/1708.06374



A Case Study on Formally Validating Motion Rules for Autonomous Cars 17

17. Wolff, E.M., Murray, R.M.: Optimal control of nonlinear systems with temporal
logic specifications. In: Robotics Research, pp. 21–37. Springer (2016)

18. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: Proceedings of the 14th
international conference on Hybrid systems: computation and control. pp. 313–314
(2011)


