European Journal of Organic Chemistry

Supporting Information

Synthesis of Lactams by Reductive Amination of Carbonyl Derivatives with ω -Amino Fatty Acids under Hydrosilylation Conditions

Satawat Tongdee⁺, Duo Wei⁺, Jiajun Wu⁺, Chakkrit Netkaew, and Christophe Darcel*

Supporting Information

Contents

1-	General information	S2
2-	General procedure for reductive amination of carbonyl derivatives with $\boldsymbol{\omega}\text{-amino}$ fatty acids	S2
3-	Characterization data of cyclic amides	S 3
4-	NMR Spectra	S12
5-	References	S42

1) General information

All reagents were obtained from commercial sources and used as received. All reactions were carried out with dried glassware using standard Schlenk techniques under ambient air atmosphere. Technical grade heptane and ethyl acetate were used for column chromatography. Analytical TLC was performed on Merck 60F254 silica gel plates (0.25 mm thickness). Column chromatography was performed on Acros Organics Ultrapure silica gel (mesh size 40-60 µm, 60Å).

Melting points of the new solid compounds were measured using Kofler hot-stage apparatus and are uncorrected.

FTIR-ATR spectra were recorded at room temperature on a Shimadzu IR Affinity-1 apparatus and are reported in cm-1.

¹H NMR spectra were recorded in CDCl₃ at ambient temperature on Bruker AVANCE 400 spectrometers at 400.1 MHz, using the solvent as the internal standard (7.26 ppm,). ¹³C NMR spectra were obtained at 100 MHz and referenced to the internal solvent signals (central peak is 77.16 ppm). ¹⁹F NMR spectra were obtained at 376 MHz in CDCl₃. Chemical shift (δ) and coupling constants (*J*) are given in ppm and in Hz respectively. The peak patterns are indicated as follows: (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and br. for broad).

GC analyses were performed with GC-2014 (Shimadzu) 2010 equipped with a 30-m capillary column (Supelco, SPBTM-20, fused silica capillary column, 30 M×0.25 mm×0.25 mm film thickness), which was used with argon as vector gas. The following GC conditions were used: Initial temperature 80 °C for 2 minutes, then rate 10 °C/min. until 220 °C and 220 °C for 15 minutes.

GC-MS were measured by GCMS-QP2010S (Shimadzu) with GC-2010 equipped with a 30-m capillary column (Supelco, SLBTM-5ms, fused silica capillary column, $30 \text{ M} \times 0.25 \text{ mm} \times 0.25 \text{ mm}$ film thickness), which was used with helium as vector gas. The following GC-MS conditions were used: initial temperature 100 °C, for 2 minutes, then rate 10 °C/min. until 250 °C and 250 °C for 10 minutes.

HR–MS spectra were performed using a time flight Agilent 6510 (Agilent Technologies Santa Clara (CA), USA) in Electrospray positive ionization mode at the Centre Régional de Mesures Physiques de l'Ouest, (CRMPO, ScanMAT, UMS 2001 CNRS - University Rennes 1).

2) General procedure for reductive amination of carbonyl derivatives with ω -amino fatty acids

In a 20 mL Schlenk tube under air, ω -amino fatty acids **2**, **6** or **8** (0.5 mmol), carbonyl derivatives **1** (0.6 mmol), PhSiH₃ (123.4 µL, 2 equiv.) and ethanol (0.5 mL) were stirred at 40 °C for 18 h. After cooling to room temperature, the reaction mixture was dried under reduced pressure, and then the crude mixture was distilled using a bulb-to-bulb distillation apparatus at 200 °C. The distilled residue was then subjected to column chromatography (silica gel; ethyl acetate as the eluent) to afford the desired product.

3) Characterization data of cyclic amides

1-Benzylpyrrolidin-2-one (7a)¹

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), benzaldehyde (63.7 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7a** in 95% yield as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.18 (m, 5H), 4.43 (s, 2H), 3.23 (t, *J* = 6.9 Hz, 2H), 2.42 (t, *J* = 8.1

¹⁴ NMR (300 MHz, CDCl₃) \circ 7.38 – 7.18 (m, 5H), 4.43 (s, 2H), 3.23 (t, J = 6.9 Hz, 2H), 2.42 (t, J = 8.1 Hz, 2H), 2.05 – 1.90 (m, 2H). ¹³C/¹H NMR (75 MHz, CDCl₃) δ 175 1 136 7 128 8 128 3 127 7 46 7 46 7 31 1 17 9

¹³C{¹H} **NMR** (**75 MHz**, **CDCl**₃) δ 175.1, 136.7, 128.8, 128.3, 127.7, 46.7, 46.7, 31.1, 17.9. GC-MS, m/z(%) = 175([M]+, 67), 146(40), 91(100), 77(39).

1-(4-Methoxybenzyl)pyrrolidin-2-one (7b)²

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), *p*-methoxybenzaldehyde (68.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7b** in 83% yield as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 4.34 (s, 2H), 3.74 (s, 3H), 3.20 (t, *J* = 7.1 Hz, 2H), 2.37 (t, *J* = 8.1 Hz, 2H), 2.01 – 1.84 (m, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 174.7, 159.0, 129.4, 128.7, 114.0, 55.2, 46.5, 45.9, 31.0, 17.7. GC-MS, m/z(%) = 205([M]+, 53), 176(28), 121(100), 91(20), 77(35).

1-(4-(Dimethylamino)benzyl)pyrrolidin-2-one (7c)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), *p*-(*N*,*N*-dimethylamino)benzaldehyde (74.6 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7c** in 42% yield as a brown solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.12 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 4.35 (s, 2H), 3.23 (t, J = 7.1 Hz, 2H), 2.93 (s, 6H), 2.41 (t, J = 8.1 Hz, 2H), 1.99 – 1.90 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.8, 150.2, 129.5, 124.4, 112.7, 46.6, 46.2, 40.7, 31.3, 17.8.

GC-MS, m/z(%) = 218([M]+, 65), 189(18), 134(100), 91(10), 77(4).

HR-MS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₃H₁₈N₂ONa⁺ 241.1311, found 241.1311.

IR (**ATR**): $\bar{v} = 2919$ (w), 2890 (w), 2861 (w), 1670 (vs), 1660 (s), 1614 (m), 1523 (m), 1475 (m), 1448 (m), 1430 (m), 1420 (m), 1360 (m), 1258 (s), 1230 (m), 1190 (m), 1164 (s), 1125 (w), 1063 (w), 946 (w), 802 (s), 657 (m) cm⁻¹.

Mp: 63 °C.

1-(2,4,6-Trimethylbenzyl)pyrrolidin-2-one (7d)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 2,4,6-trimethylbenzaldehyde (71.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7d** in 67% yield as a colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 6.85 (s, 2H), 4.50 (s, 2H), 3.06 (t, *J* = 7.0 Hz, 2H), 2.40 (t, *J* = 8.1 Hz, 2H), 2.27 (s, 6H), 2.26 (s, 3H), 1.97 – 1.83 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.4, 137.8, 137.4, 129.3, 129.2, 45.7, 40.3, 31.1, 21.0, 20.0, 17.9. GC-MS, m/z(%) = 217([M]+, 25), 132(100), 117(28), 91(10), 77(4).

HR-MS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₄H₁₉NONa⁺ 240.1357, found 240.1357.

IR (ATR): $\bar{v} = 2950$ (w), 2917 (w), 1678 (vs), 1605 (w), 1480 (w), 1450 (m), 1422 (s), 1285 (m), 1247 (m), 1225 (w), 1060 (w), 1028 (w), 1010 (w), 851 (m), 650 (m) cm⁻¹.

1-(4-Fluorobenzyl)pyrrolidin-2-one (7e)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), *p*-fluorobenzaldehyde (74.4 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7e** in 82% yield as a colorless oil. CAS 60736-96-1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.22 (m, 2H), 7.01 (m, 2H), 4.42 (s, 2H), 3.25 (t, *J* = 7.1 Hz, 2H), 2.44 (t, *J* = 8.1 Hz, 2H), 2.04 – 1.96 (m, 2H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 175.1, 162.4 (d, J = 245.8 Hz), 132.6 (d, J = 3.1 Hz), 130.0 (d, J = 8.1 Hz), 115.7 (d, J = 21.3 Hz), 46.7, 46.1, 31.0, 17.9.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -114.9.

GC-MS, m/z(%) = 193([M]+, 60), 164(38), 109(100), 91(33), 77(5).

1-(4-Chlorobenzyl)pyrrolidin-2-one (7f)³

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), *p*-chlorobenzaldehyde (84.0 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7f** in 89% yield as a colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 4.41 (s, 2H), 3.25 (t, *J* = 7.2 Hz, 2H), 2.44 (t, *J* = 8.1 Hz, 2H), 2.05 – 1.93 (m, 2H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 175.1, 135.3, 133.6, 129.6, 129.0, 46.7, 46.1, 31.0, 17.9. **GC-MS,** m/z(%) = 211([M]+, 30), 209([M]+, 81), 180(10), 125(100), 91(17), 77(7).

1-(4-Bromobenzyl)pyrrolidin-2-one (7g)⁴

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), *p*-bromobenzaldehyde (92.5 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7g** in 84% yield as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 4.33 (s, 2H), 3.19 (t, *J* = 7.2 Hz, 2H), 2.37 (t, *J* = 8.1 Hz, 2H), 2.00 – 1.87 (m, 2H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 174.9, 135.7, 131.7, 129.8, 121.4, 46.5, 45.9, 30.8, 17.7. **GC-MS,** m/z(%) = 255([M]+, 84), 253([M]+, 84), 224(6), 169(48), 91(92) 77(16).

1-(Benzo[d][1,3]dioxol-5-ylmethyl)pyrrolidin-2-one (7h)⁵

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 1,3-benzodioxole-5-carboxaldehyde (75.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7h** in 89% yield as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 6.76 – 6.63 (m, 3H), 5.92 (s, 2H), 4.33 (s, 2H), 3.23 (t, *J* = 7.1 Hz, 2H), 2.40 (t, *J* = 8.1 Hz, 2H), 2.02 – 1.88 (m, 2H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 174.9, 148.0, 147.1, 130.6, 121.6, 108.6, 108.3, 101.1, 46.6, 46.4, 31.1, 17.8.

GC-MS, m/z(%) = 219([M]+, 80), 190(18), 135(100), 106(21), 77(57).

Methyl 4-((2-oxopyrrolidin-1-yl)methyl)benzoate (7i)⁶

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), methyl 4-formylbenzoate (82.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7i** in 60% yield as a white solid. ¹**H NMR (400 MHz, CDCl**₃) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 4.48 (s, 2H), 3.89 (s, 3H), 3.25 (t, *J* = 7.1 Hz, 2H), 2.44 (t, *J* = 8.1 Hz, 2H), 2.07 – 1.94 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 175.2, 166.9, 141.9, 130.1, 129.6, 128.0, 52.2, 46.8, 46.4, 30.9, 17.9. GC-MS, m/z(%) = 233([M]+, 100), 218(44), 174(41), 146(65), 91(40), 77(20).

1-(4-Nitrobenzyl)pyrrolidin-2-one (7j)⁷

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 4-nitrobenzaldehyde (90.7 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7j** in 56% yield as a brown solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 8.7 Hz, 2H), 4.54 (s, 2H), 3.29 (t, *J* = 7.1 Hz, 2H), 2.46 (t, *J* = 8.1 Hz, 2H), 2.16 – 1.89 (m, 2H).

¹³C{¹H} **NMR** (**101 MHz, CDCl**₃) δ 175.4, 147.6, 144.3, 128.8, 124.1, 46.9, 46.2, 30.7, 17.9. **GC-MS,** m/z(%) = 220([M]+, 100), 191(7), 136(18), 106(34), 91(32), 77(32).

4-((2-Oxopyrrolidin-1-yl)methyl)benzonitrile (7k)⁸

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 4-formylbenzonitrile (65.7 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7k** in 40% yield as a brown solid. ¹**H NMR (400 MHz, CDCl**₃) δ 7.60 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 4.47 (s, 2H), 3.26 (t, *J* = 7.1 Hz, 2H), 2.43 (t, *J* = 8.1 Hz, 2H), 2.17 – 1.95 (m, 2H). ¹³C{¹H} **NMR (101 MHz, CDCl**₃) δ 175.3, 142.2, 132.6, 128.6, 118.6, 111.5, 46.8, 46.3, 30.6, 17.8. **GC-MS,** m/z(%) = 200([M]+, 87), 171(42), 116(100), 89(52), 77(5).

1-((5-Methylthiophen-2-yl)methyl)pyrrolidin-2-one (7l)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 2-thiophenecarboxaldehyde (75.7 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 µL, 1.0 mmol, 2 equiv.) gave the title compound **71** in 55% yield as a brown oil. ¹H **NMR (400 MHz, CDCl₃)** δ 6.72 (d, *J* = 3.4 Hz, 1H), 6.58 – 6.55 (m, 1H), 4.51 (s, 2H), 3.32 (t, *J* = 7.1 Hz, 2H), 2.42 (s, 3H), 2.39 (t, *J* = 8.1 Hz, 2H), 2.02 – 1.92 (m, 2H). ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 174.6, 140.1, 136.7, 126.7, 124.9, 46.5, 41.3, 31.0, 17.8, 15.4. **GC-MS,** m/z(%) = 195([M]+, 100), 166(10), 111(96), 97(17). **HR-MS (ESI)** *m*/*z*: [M+Na]⁺ calcd for C₁₀H₁₃NONa⁺S 218.0610, found 218.0608. **IR (ATR)**: $\bar{v} = 2918$ (w), 1671 (vs), 1485 (w), 1450 (w), 1430 (m), 1421 (s), 1355 (w), 1263 (s), 1230 (m), 1130 (w), 1052 (w), 801 (m), 743 (w), 680 (m) cm⁻¹.

1-((1-Methyl-1*H*-pyrrol-2-yl)methyl)pyrrolidin-2-one (7m)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 1-methyl-1*H*-pyrrole-2-carboxaldehyde (65.5 mg, 0.6 mmol, 1.2 equiv.) and and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7m** in 69% yield as a brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 6.62 – 6.56 (m, 1H), 6.06 (dd, *J* = 3.5, 1.8 Hz, 1H), 6.03 (t, *J* = 3.1 Hz, 1H), 4.42 (s, 2H), 3.56 (s, 3H), 3.23 (t, *J* = 7.1 Hz, 2H), 2.39 (t, *J* = 8.1 Hz, 2H), 1.98 – 1.91 (m, 2H).

¹³C- NMR (101 MHz, CDCl₃) δ 174.2, phenylsilane (123.4 µL, 1.0 mmol, 2 equiv.) gave the title compound **7m** in 69% yield as a brown oil.127.0, 123.1, 109.9, 106.8, 46.3, 38.1, 34.0, 31.3, 17.6. **GC-MS**, m/z(%) = 178([M]+, 33), 149(6), 94(100), 80(5).

HR-MS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₀H₁₄N₂ONa⁺ 201.0998, found 201.0998.

IR (**ATR**): $\bar{v} = 2947$ (w), 2925 (w), 2880 (w), 1655 (vs), 1499 (m), 1460 (m), 1421 (s), 1353 (w), 1305 (s), 1264 (s), 1225 (m), 1200 (m), 1149 (w), 1089 (w), 1050 (w), 1021 (w), 1010 (w), 940 (w), 925 (w), 890 (w), 854 (w), 790 (w), 713 (s), 658 (m), 606 (m) cm⁻¹.

1-(Ferrocenylmethyl)pyrrolidine-2-one (7n)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), ferrocenylcarboxaldehyde (107.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7n** in 64% yield as an orange solid.

¹**H** NMR (400 MHz, CDCl₃) δ 4.24 (s, 2H), 4.20 – 4.17 (m, 2H), 4.18 (s, 5H), 4.13 – 4.10 (m, 2H), 3.27 (t, *J* = 7.1 Hz, 2H), 2.37 (t, *J* = 8.1 Hz, 2H), 1.98 – 1.89 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.3, 82.6, 69.4, 68.8, 68.4, 46.6, 42.2, 31.2, 17.7.

GC-MS, m/z(%) = 283([M]+, 92), 218(100), 189(6), 135(27), 121(23), 56(15).

HR-MS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₁₇NONa⁺⁵⁶Fe 306.0552, found 306.0551.

IR (**ATR**): $\bar{v} = 2969$ (w), 2930 (w), 2890 (w), 1666 (vs), 1530 (w), 1508 (m), 1459 (m), 1420 (w), 1390 (w), 1340 (m), 1263 (m), 1230 (w), 1150 (w), 1106 (m), 1042 (w), 1005 (w), 845 (w), 813 (m), 775 (w). Mp: 137 °C

1-Cinnamylpyrrolidin-2-one (7o)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), cinnamaldehyde (79.3 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **70** in 40% yield as a colorless oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.29 (m, 4H), 7.26 – 7.22 (m, 1H), 6.53 (d, *J* = 15.9 Hz, 1H), 6.11 (dt, *J* = 15.9, 6.6 Hz, 1H), 4.05 (d, *J* = 6.6 Hz, 2H), 3.39 (t, *J* = 7.1 Hz, 2H), 2.43 (t, *J* = 8.1 Hz, 2H), 2.09 – 1.94 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.9, 136.6, 133.4, 128.8, 128.0, 126.5, 124.1, 46.9, 44.9, 31.2, 17.9.

GC-MS, m/z(%) = 201([M]+, 30), 172(10), 117(42), 77(14).

HR-MS (**ESI**) *m/z*: [M+Na]⁺ calcd for C₁₃H₁₅NONa⁺ 224.1046, found 224.1048.

IR (ATR): $\bar{v} = 2918$ (w), 2970 (w), 2880 (w), 1651 (vs), 1505 (w), 1494 (m), 1450 (w), 1422 (m), 1287 (m), 1265 (m), 1225 (w), 1175 (w), 1066 (w), 1027 (w), 968 (w), 745 (m), 697 (s) cm⁻¹.

1-Cyclohexylpyrrolidin-2-one (7p)⁹

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), cyclohexanone (58.9 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7p** in 63% yield as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 4.00 – 3.86 (m, 1H), 3.31 (t, J = 7.0 Hz, 2H), 2.35 (t, J = 8.1 Hz, 2H), 2.02 – 1.89 (m, 2H), 1.80 – 1.73 (m, 2H), 1.70 – 1.59 (m, 3H), 1.46 – 1.26 (m, 4H), 1.15 – 0.98 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.3, 50.6, 43.0, 31.7, 30.4, 25.6, 25.6, 18.3.

GC-MS, m/z(%) = 167([M]+, 18), 124(53), 86(100), 56(20).

1-Cycloheptylpyrrolidin-2-one (7q)

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), cycloheptanone (67.3 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7q** in 74% yield as a colorless oil. ¹**H NMR (400 MHz, CDCl₃)** δ 4.17 – 4.07 (m, 1H), 3.34 (t, *J* = 7.0 Hz, 2H), 2.34 (t, *J* = 8.1 Hz, 2H), 2.00 – 1.91 (m, 2H), 1.79 – 1.42 (m, 12H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 173.7, 52.4, 42.9, 32.6, 31.6, 27.9, 24.9, 18.3.

GC-MS, m/z(%) = 181([M]+, 9), 124(59), 86(100), 56(12).

HR-MS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₁H₁₉NONa⁺ 204.1359, found 204.1357.

IR (**ATR**): $\bar{v} = 2921$ (s), 2856 (s), 1661 (vs), 1500 (w), 1470 (w), 1450 (m), 1422 (s), 1370 (w), 1325 (w), 1305 (w), 1285 (s), 1260 (s), 1217 (m), 1162 (m), 640 (w) cm⁻¹.

1-(4-Phenylbutan-2-yl)pyrrolidin-2-one (7r)¹⁰

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 4-phenylbutan-2-one (88.9 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7r** in 68% yield as a colorless oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.31 – 7.26 (m, 2H), 7.21 – 7.15 (m, 3H), 4.38 – 4.22 (m, 1H), 3.37 – 3.19 (m, 2H), 2.68 – 2.48 (m, 2H), 2.42 – 2.33 (m, 2H), 2.05 – 1.64 (m, 4H), 1.16 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} **NMR (101 MHz, CDCl**₃) δ 174.8, 141.8, 128.5, 128.3, 126.0, 46.8, 41.9, 35.8, 33.1, 31.7, 18.4, 18.1.

GC-MS, m/z(%) = 217([M]+, 30), 112(100), 98(33), 69(38).

1-(1-Phenylethyl)pyrrolidin-2-one (7s)¹¹

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), acetophenone (72.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7s** in 22% yield as a colorless oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.24 (m, 5H), 5.50 (q, *J* = 7.2 Hz, 1H), 3.36 – 3.29 (m, 1H), 3.02 – 2.95 (m, 1H), 2.49 – 2.34 (m, 2H), 2.04 – 1.82 (m, 2H), 1.52 (d, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 174.6, 140.4, 128.7, 127.6, 127.2, 49.1, 42.4, 31.6, 18.1, 16.4. GC-MS, m/z(%) = 189([M]+, 86), 160(35), 105(100), 91(34), 77(65).

1-(2,3-Dihydro-1*H*-inden-1-yl)pyrrolidin-2-one (7t)¹²

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 1-indanone (79.3 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7t** in 10% yield as a brown solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.26 – 7.09 (m, 4H), 5.80 (t, *J* = 7.7 Hz, 1H), 3.25 – 3.17 (m, 1H), 3.06 – 3.01 (m, 1H), 3.01 – 2.86 (m, 2H), 2.50 – 2.45 (m, 2H), 2.44 – 2.34 (m, 1H), 2.06 – 1.89 (m, 3H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 175.2, 143.7, 140.9, 128.0, 126.8, 125.0, 124.3, 56.4, 42.8, 31.7, 30.7, 29.3, 18.3.

GC-MS, m/z(%) = 201([M]+, 13), 172(1), 116(70), 77(5).

1-(3-Phenylpropyl)pyrrolidin-2-one (7u)¹³

4-Aminobutanoic acid (51.6 mg, 0.5 mmol), 3-phenylpropanal (80.5 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **7u** in 10% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.24 – 7.13 (m, 3H), 3.34 (t, *J* = 7.0 Hz, 4H), 2.63 (t, *J* = 8.1 Hz, 2H), 2.36 (t, *J* = 8.1 Hz, 2H), 2.01 – 1.93 (m, 2H), 1.89 – 1.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 141.6, 128.5, 128.4, 126.1, 47.2, 42.5, 33.4, 31.1, 29.1, 18.0. GC-MS, m/z(%) = 203([M]+, 30), 99(100), 70(15).

1-Benzylpiperidin-2-one (3a)¹⁴

5-Aminopentanoic acid (58.6 mg, 0.5 mmol), benzaldehyde (63.7mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **3a** in 90% yield as an orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.23 (m, 5H), 4.60 (s, 2H), 3.20 (t, *J* = 5.6 Hz, 2H), 2.47 (t, *J* = 6.2 Hz, 2H), 1.83 – 1.72 (m, 4H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 170.0, 137.5, 128.7, 128.2, 127.4, 50.2, 47.4, 32.6, 23.4, 21.6. **GC-MS,** m/z(%) = 189([M]+, 63), 105(28), 160(7), 91(100), 77(7).

1-(4-Methoxybenzyl)piperidin-2-one (3b)¹⁵

5-Aminopentanoic acid (58.6 mg, 0.5 mmol), *p*-methoxybenzaldehyde (68.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **3b** in 62% yield as a colorless oil. ¹**H NMR (400 MHz, CDCl**₃) δ 7.17 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 4.51 (s, 2H), 3.77 (s, 3H), 3.16 (t, *J* = 5.4 Hz, 2H), 2.42 (t, *J* = 6.3 Hz, 2H), 1.85 – 1.62 (m, 4H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 169.8, 159.0, 129.5, 129.5 114.0, 55.3, 49.5, 47.1, 32.5, 23.3, 21.5. **HR-MS (ESI)** *m*/*z*: [M+Na]⁺ calcd for C₁₃H₁₇NO₂Na⁺ 242.1151, found 242.1152.

1-(4-chlorobenzyl)piperidin-2-one (3c)²

5-Aminopentanoic acid (58.6 mg, 0.5 mmol), *p*-chlorobenzaldehyde (84.0 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **3c** in 65% yield as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 4.53 (s, 2H), 3.16 (t, *J* = 6.2 Hz, 2H), 2.43 (t, *J* = 6.2 Hz, 2H), 1.82 - 1.71 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.0, 136.0, 133.2, 129.6, 128.8, 49.6, 47.4, 32.5, 23.3, 21.4. GC-MS, m/z(%) = 225([M]+, 25), 223([M]+, 65), 139(40), 125(100), 91(13), 77(10).

Methyl 4-((2-oxopiperidin-1-yl)methyl)benzoate (3d)

5-Aminopentanoic acid (58.6 mg, 0.5 mmol), methyl 4-formylbenzoate (82.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **3d** in 51% yield as a white solid. ¹**H NMR (400 MHz, CDCl₃) δ** 7.97 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 4.63 (s, 2H), 3.89 (s, 3H), 3.18 (t, *J* = 5.5 Hz, 2H), 2.47 (t, *J* = 6.3 Hz, 2H), 1.84 – 1.73 (m, 4H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 170.1, 167.0, 142.8, 130.0, 129.4, 128.0, 52.2, 50.1, 47.7, 32.5, 23.3, 21.5.

HR-MS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₈NO₃⁺ 248.1281, found 248.1283.

IR (ATR): $\bar{v} = 2960$ (w), 2939 (w), 2900 (w), 1716 (vs), 1633 (s), 1610 (w), 1508 (m), 1435 (w), 1417 (m), 1339 (w), 1278 (s), 1260 (m), 1250 (m), 1176 (m), 1112 (m), 1090 (w), 1019 (w), 958 (w), 900 (w), 870 (w), 800 (w), 761 (s), 725 (m), 696 (m), 657 (w) cm⁻¹.

Mp: 87 °C

1-Benzylazepan-2-one (9a)¹⁶

6-Aminohexanoic acid (65.6 mg, 0.5 mmol), benzaldehyde (63.7 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **9a** in 43% yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 5H), 4.60 (s, 2H), 3.33 – 3.27 (m, 2H), 2.65 – 2.58 (m, 2H), 1.75 – 1.66 (m, 4H), 1.53 – 1.46 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 176.0, 138.0, 128.6, 128.2, 127.4, 51.2, 49.0, 37.3, 30.1, 28.2, 23.5. GC-MS, m/z(%) = 203([M]+, 40), 106(37), 91(100), 77(14).

1-(4-Methoxybenzyl)azepan-2-one (9b)¹⁷

6-Aminohexanoic acid (65.6 mg, 0.5 mmol), *p*-methoxybenzaldehyde (68.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **9b** in 40% yield as a colorless solid. ¹**H NMR (400 MHz, CDCl**₃) δ 7.18 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 4.51 (s, 2H), 3.78 (s, 3H),

3.35 – 3.18 (m, 2H), 2.60 – 2.51 (m, 2H), 1.71 – 1.64 (m, 4H), 1.49 – 1.42 (m, 2H). ¹³C{¹H} **NMR (101 MHz, CDCl**₃) δ 176.0, 159.0, 130.2, 129.6, 114.0, 55.4, 50.5, 48.8, 37.4, 30.1, 28.3,

23.6.

GC-MS, m/z(%) = 233([M]+, 34), 136(34), 121(100), 91(10), 77(13).

1-(4-Chlorobenzyl)azepan-2-one (9c)

6-Aminohexanoic acid (65.6 mg, 0.5 mmol), *p*-chlorobenzaldehyde (84.0 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **9c** in 35% yield as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 4.54 (s, 2H), 3.46 – 3.16 (m, 2H), 2.80 – 2.46 (m, 2H), 1.75 – 1.64 (m, 4H), 1.57 – 1.41 (m, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 176.1, 136.7, 133.3, 129.7, 128.8, 50.7, 49.2, 37.3, 30.1, 28.3, 23.5. GC-MS, m/z(%) = 239([M]+, 11), 237([M]+, 35), 125(100), 89(32), 77(5).

HR-MS (ESI) m/z: [M+Na]⁺ calcd for C₁₃H₁₆NO³⁵ClNa⁺ 206.0813, found 206.0812.

IR (**ATR**): $\bar{v} = 2970$ (w), 2927 (m), 2856 (w), 1633 (vs), 1489 (s), 1430 (m), 1420 (m), 1406 (s), 1353 (m), 1275 (w), 1260 (m), 1225 (w), 1191 (m), 1142 (w), 1083 (m), 1014 (m), 975 (m), 965 (w), 930 (w), 841 (m), 796 (s), 733 (w), 655 (w) cm⁻¹.

Methyl 4-((2-oxoazepan-1-yl)methyl)benzoate (9d)

6-Aminohexanoic acid (65.6 mg, 0.5 mmol), methyl 4-formylbenzoate (82.1 mg, 0.6 mmol, 1.2 equiv.) and phenylsilane (123.4 μ L, 1.0 mmol, 2 equiv.) gave the title compound **9d** in 48% yield as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.98 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 4.63 (s, 2H), 3.90 (s, 3H), 3.36 - 3.20 (m, 2H), 2.70 - 2.51 (m, 2H), 1.73 - 1.66 (m, 4H), 1.52 - 1.45 (m, 2H).

¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 176.2, 167.0, 143.4, 130.0, 129.4, 128.1, 52.2, 51.1, 49.3, 37.2, 30.0, 28.3, 23.5.

GC-MS, m/z(%) = 261([M]+, 91), 164(43), 149(100), 91(21), 77(15).

HR-MS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₁₉NO₃Na⁺ 284.1257, found 284.1256.

IR (**ATR**): $\bar{v} = 2955$ (w), 2931 (m), 2855 (w), 1713 (vs), 1640 (vs), 1610 (m), 1500 (w), 1486 (w), 1430 (w), 1416 (m), 1272 (m), 1198 (m), 1112 (m), 1090 (w), 1018 (w), 960 (m), 862 (w), 802 (w), 761 (s), 716 (m), 685 (m), 635 (w) cm⁻¹.

Mp: 99 °C.

4) NMR Spectra

S14

S15

Figure S10 - ¹³C{¹H} NMR (101 MHz, CDCl₃) of 7e

S20

S22

S28

S30

S32

S35

5- References

1. J. Mun, M. B. Smith, Synth. Commun. 2007, 37, 813-819.

2. K. Kim, S. H. Hong, J. Org. Chem. 2015, 80, 4152-4156.

3. Y. T. Oh, K. Senda, T. Hata, H. Urabe, *Tetrahedron Lett.* 2011, 52, 2458–2461.

4. A. K. Mahalingam, Y. Wan, A. M. Murugaiah, C. Wallinder, X. Wu, B. Plouffe, M. Botros, F. Nyberg, N. Gallo-Payet, M. Alterman, *Bioorg. Med. Chem.* **2010**, *18*, 4570–4590.

5. G. Wuitschik, M. Rogers-Evans, A. Buckl, M. Bernasconi, M. Märki, T. Godel, H. Fischer, B. Wagner, I. Parrilla, F. Schuler, J. Schneider, A. Alker, W. B. Schweizer, K. Müller, E. M. Carreira, *Angew. Chem. Int. Ed.* **2008**, *47*, 4512–4515.

6. J. Watanabe, Y. Kagoshima, E. Tokumaru, K. Murata, T. Baba, M. Kitagawa, A. Kurimoto, M. Numata, M. Shiroishi, T. Shinozaki, Patent, WO2020116662 A1 2020-06-11.

7. Y. Urade, K. Shigeno, Y. Tanaka, J. Kuze, M. Tsuchikawa, T. Hosoya, Patent JP2007051121 A 2007-03-01.

8. S. Ward, P. Beswick, L. Pennicott, T. Reuillon, I. Chuckowree, C. Villalonga-Barber, R. A. Porter, Patent WO2019166822 A1 2019-09-06.

9. Y. Yang, M. Shi, J. Org. Chem. 2005, 70, 8645-8648.

10. S. Wang, J.-X. Zhang, T.-Y. Zhang, H. Meng, B.-H. Chen, W. Shu, Che. *Nature Commun.* **2021**, *12*, 2771.

11. S. Sugiyama, K. Morishita, M. Chiba, K. Ishii, *Heterocycles* 2006, 70, 599-607.

12. K. M. Orrling, X. Wu, F. Russo, M. Larhed, J. Org. Chem. 2008, 73, 8627-8630.

13. B. Fanté, Y. Soro, S, Siaka, J. Marrot, J. Coustard, Synth. Commun. 2014, 44, 2377-2385

14. A. Nova, D. Balcells, N. D. Schley, G. E. Dobereiner, R. H. Crabtree, O. Eisenstein, *Organometallics* **2010**, *29*, 6548–6558.

15. M. Seto, K. Aikawa, N. Miyamoto, Y. Aramaki, N. Kanzaki, K. Takashima, Y. Kuze, Y. Iizawa, M. Baba, M. Shiraishi, *J. Med. Chem.* **2006**, *49*, 2037-2048.

16. Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama, H. Nagashima Angew. Chem. Int. Ed. 2009, 48, 9511–9514.

17. M. Plaza, C. Jandl, T. Bach, Angew. Chem. Int. Ed. 2020, 59, 12785–12788.