N

N

EPSAAV: An Extensible Platform for Safety Analysis of
Autonomous Vehicles
Joelle Abou Faysal, Nour Zalmai, Ankica Barisic, Frédéric Mallet

» To cite this version:

Joelle Abou Faysal, Nour Zalmai, Ankica Barisic, Frédéric Mallet. EPSAAV: An Extensible Platform
for Safety Analysis of Autonomous Vehicles. MEDI 2021 - 10th International Conference on Model
and Data Engineering, Jun 2021, Tallinn, Estonia. 10.1007/978-3-030-87657-9_8 . hal-03331190

HAL Id: hal-03331190
https://hal.science/hal-03331190

Submitted on 1 Sep 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03331190
https://hal.archives-ouvertes.fr

EPSAAV: An Extensible Platform for Safety
Analysis of Autonomous Vehicles

Joelle Abou Faysal', Nour Zalmai?, Ankica Barisic?®, and Frederic Mallet*

! Renault Software Labs (RSL), Université Cote d’Azur, Cnrs, Inria, I3S
Sophia Antipolis, France
joelle.abou-faysal@etu.univ-cotedazur.fr
2 Renault Software Labs (RSL)
Sophia Antipolis, France
nour.zalmai@renault.com
3 Université Cote d’Azur, Curs, Inria, I3S
Sophia Antipolis, France
ankica.barisicQuniv-cotedazur.fr
4 Université Cote d’Azur, Curs, Inria, 13S
Sophia Antipolis, France
frederic.mallet@univ-cotedazur.fr

Abstract. In this paper, a novel model related to the safety of au-
tonomous vehicles (AVs) is presented. A simulation platform is designed
to analyze the environment and the trajectory of AVs within a given
Operational Design Domain (ODD). This platform relies on model-based
systems and includes the environment model, safety rules and their pri-
orities, and execution scenarios. The goal is to create a simulation envi-
ronment that enables safety experts to detect rule breaches by analyzing
problems at run-time using generated monitors. Therefore, this platform
will help to reevaluate the existing rules in two ways: either by reconsid-
ering rule priorities or by proposing new rules to be integrated into the
existing safety model. The validation and verification of the generated
rules will follow a process based on the history of the executed scenar-
ios. All the aforementioned work is carried out by using the GEMOC
initiative tool to coordinate models using logical time.

Keywords: Autonomous cars - Safety - Model development and verifi-
cation - Testing and simulating - Formal methods - Rule-Based Planner.

1 Introduction

With the advent of autonomous vehicles (AVs), engineers have witnessed several
deaths and accidents that raise troubling questions about the safety of such vehi-
cles and the current limitations of the technology. Automobile manufacturers are
facing an increasing demand for reliable handling of these autonomous vehicles.
It is, therefore, crucial to provide concrete evidence to measure how safe AVs
are. Safety is associated with guarantees that certain conditions must be met
when contingencies arise. If not, the behavior must be adjusted accordingly. In

2 Abou Faysal et al.

dynamic environments, real-time safety checks of the planned trajectories and
the driver are sometimes lacking to ensure that the trajectories obtained from
trip planning are safe. Nowadays, 90% of car accidents are caused by human er-
rors, such as poor judgment due to a failure of human perception or the driver’s
lack of attention [1].

It is important to show that the autonomous vehicle makes better decisions
than a human driver under all circumstances. One proposal to assess opera-
tional safety is to test-drive AVs in real traffic and observe their behavior. As
logical as this may sound, it is not efficient because it poses significant risks to
the environment. We can look at the Uber accident [2] where the driver was
doing mileage tests in Arizona. Several things went wrong while the driver was
not paying attention to the road: there was no real-time driver safety check, and
Uber did not have the resources in the vehicle to assess the driver’s attention.
Mileage testing requires a lot of time and testing to ensure safety, and that
doesn’t make them scalable [3]. The dilemma of how many miles autonomous
vehicles would need to be driven to demonstrate safety leads to an answer of
8 billion miles in 400 years with a fleet of 100 vehicles driving all the time [3].
This is somehow impossible and unachievable as several works argue that AVs
cannot express safety capabilities based on road tests alone [4]-[5]. Therefore,
simulation testing becomes a promising alternative [6]. Moreover, since AVs are
currently tested only in limited Operational Design Domains (ODDs), they are
not exposed to the wide variety of driving conditions and road user behaviors.
Thus, we need rigorous and exhaustive approaches to ensure operational safety.
In the typical software development lifecycle, we try to translate needs into nat-
ural language requirements and produce code that meets them. However, it is
only after the code has been produced and tested that we discover errors between
what was intended and what was built. The same problems occur when testing
scenarios. To avoid these problems, Model-Based System Engineering (MBSE)
approaches offer a promising alternative by enabling domain models as a commu-
nication medium between engineers instead of text documents and supporting
automatic code generation. Many researchers now agree that MBSE approaches
are a solution for security verification and are seen as an answer to these chal-
lenges [7]. MBSE helps to deal with the increasing size and complexity of systems
[8], and allows to reason on the model before deployment, Formal modeling and
verification in automotive systems are essential to provide sufficient guarantees,
especially in the case of dangerous and unforeseen situations.

In this paper, an MBSE approach is proposed based on a simulation environ-
ment where a safety rule monitor is specified and generated. It helps us to define
types of breaches on an AV trajectory. The main goal is to develop a resilient
and safe driver monitoring system that continues to operate safely as long as the
assumptions about the environment are satisfied. To sum up, the proposed ap-
proach brings a light overview of the four goals pursued: (1) formal modeling of
safety rules with their priorities alongside the assumptions and the environment
on which they rely, (2) monitoring the behavior of the AV at run-time according
to these rules and assumptions, (3) triggering alarms to the driver or safety en-

EPSAAV 3

gineer when the behavior of the AV violates some of the safety rules or some of
the assumptions and (4) checking and verifying incoherences between the rules
and producing the output of the functionality blocs in the planned trajectory.

This paper is organized as follows. Section 2 discusses related work. Section
3 presents the technologies used by the approach, the illustrative real-life use
case, and the Extensible Platform for Safety Analysis of Autonomous Vehicles
(EPSAAV) approach to specifying the environment and the prioritized rules. It
also details the approach to generate an execution policy from the behavior spec-
ification. Finally, Section 4 draws conclusions and details some possible future
work.

2 Related Work

Due to the drawbacks of not having safety verification, many existing solutions
have been proposed. Formal verification approaches are considered as candi-
dates to reduce the intractability of empirical validation [9-11]. One of these
approaches is called Respounsibility Sensitive Safety (RSS) [5] and has largely
inspired our proposal. The authors have developed a white-box verification ap-
proach for interpreting safety requirements. They have developed redundant
sensing systems with a complex environment. Their interpretable, mathemat-
ical model does not guarantee that a vehicle will not be involved in an accident.
The limitation of the model also lies in the fact that assumptions and driving
policies are taken explicitly to guarantee the safety of the vehicle. They assume
that the data is reliable and independent of environmental conditions. The real-
ity is different and there are a lot of possible scenarios depending on the weather,
sensor reliability, and many other parameters. Our EPSAAV framework allows
circumventing this difficulty by providing the possibility to add measures for
safety and environmental conditions. Conceptually, we view our framework as
a complementary safety assessment to [5]. The modularity of our simulation
framework easily allows us to include more sophisticated notions of safety, such
as temporal-logical specifications or implementations of RSS distances mathe-
matical formulas.

In [12], the authors proposed a modeling and simulation environment called
STIMULUS in which they developed and tested requirements in real-time, re-
vealing inconsistencies and ambiguities. Even though textual requirements look
simple and reasonable, they contain inconsistencies and ambiguities that lead to
undesirable behavior and contradictions. Our framework will help detect these
inconsistencies and help the experts to improve the system. Moreover, the tool
used in [12] is proprietary and requires a license. However, what the world of
autonomous driving needs is an accessible, open-source standard with formal
semantics. On the other hand, Measurable Scenario Description Language (M-
SDL), created by Foretellix [13], is an open-source solution that unfortunately
does not include support for scenario description. Despite the open release, the

4 Abou Faysal et al.

modeling and simulation tools are proprietary solutions, and there is no way to
specify the environmental properties (sampling rate, accuracy) to be captured.

3 Monitoring Platform Specification

Our approach provides a simulation platform that analyzes the environment and
trajectory of autonomous vehicles within an operational domain design (ODD).
It also aims to help safety designers and experts to verify safety breaches and
problems. The information provided by hardware components represents our
software architecture necessary for driving. The proposed Extensible Platform
for Safety Analysis of Autonomous Vehicles (EPSAAV) is considered as a testing
and verification tool to identify fault types and trigger alerts to the user. It is
divided into three parts: (1) abstract description of EPSAAV (Fig. 4), (2)
the autonomous vehicle environment and formal rules with priorities, and (3)
generation of monitors to analyze rule violations and inconsistencies.

3.1 Technologies used by the approach

Limited expressiveness makes it harder to express wrong things and facilitates
comprehension. Domain-Specific Languages (DSL) can solve some of these prob-
lems by raising the level of abstraction closer to the problem domain, rather than
code [14]. Our framework uses GEMOC, an open-source tool based on Eclipse.
This modeling environment focuses on design and validation problems in com-
plex systems. One of them is enabling the evolution or creation of languages
and models. It also integrates heterogeneous parts for different applications that
work together to deliver a global service. Specification and simulation techniques
aim to model and validate system design and architecture. They are combined
with formal verification tools, in particular model checkers, to describe and sim-
ulate what a system should do.

The use case of this paper is intended to illustrate this. To implement our DSL,
we chose GEMOC Studio [15] to combine several heterogeneous technologies.
It covers all aspects of a DSL, from abstract and concrete syntax to semantic
operations, as shown in Fig.1. We started with the definition of the abstract
syntax and the metamodel, as shown in Fig.4. It is based on Eclipse Modeling
Framework (EMF), which supports Ecore metamodel implementation. It is also
interesting to note that the GEMOC framework generates an IDE with syntax
checking. Once we have the final libraries, this generative approach allows us
to generate various concrete syntaxes by using Xtext artifacts [16]. Once the
concrete syntax was processed, we needed the operational semantics to assign
behavior to each of the declarations in our DSL. To do this, we use Xtend,
a programming language used to implement the execution semantics of Ecore
metamodels. We are generating two types of documents: one for the integration
with the internal system, and the other human-readable that describes rules
specification. This technology allows us to add methods and verify the defined
properties. The next step will be combining the generated code from Xtend with

EPSAAV 5

CCSL/MoCCML Sirius + Xtext
Swdy of temporal Generation of EMF Graphical/Grammatical
inconsistencies or ‘monitors to analyze Metamodel and symactic definition
competing behavior the solution EPSAAV of the metamode/

Model of Concurrency Domain-Specific
and Communication Actions

- rE

—

Fig. 1: Overview of the GEMOC Execution Framework with the used technolo-
gies in our approach.

CCSL that helps to study temporal inconsistencies and concurrent behavior. To
visualize the behavior, Sirius is also available for the graphical display implemen-
tation. Interestingly, the GEMOC framework is open source and easily integrates
with other tools. It features easy code generation and adapts when settings are
changed so that it works properly as development continues. In other words,
the language allows us to express the Operational Design Domain (ODD) in a
common, non-ambiguous language in which we can express the scenarios that
need to be handled safely by a vehicle to achieve ”certification” as discussed by
[17]. To create this type of system, which is too complicated to do by hand, we
use these technologies to shorten the development cycles and have an effective
method of reasoning on these rules. The interesting thing about this approach
is that we can adopt new requirements that we meet or change the existing ones
without changing the language, so it is scalable.

3.2 Illustrative real-life use case

To apply operational safety to the trajectories of autonomous cars, we will need
elementary data necessary for the system that is perception. We also need to
know the rules that need to be defined with their types. Therefore, our use case
relies on Renault’s unsafe scenarios document, which describes the raw data of
the abstract scenarios, their risks, and the actions to be taken. Renault’s safety
requirements are based on the Safety Of The Intended Functionality standard
(SOTIF— ISO/PAS 21448) [18]. This document aims to determine most of the
different use cases for the system based on the verification process. The objective
is to verify that Renault can handle all the identified scenarios. We then need to
manage each use case in the most different conditions that help us estimate that

6 Abou Faysal et al.

the other use cases are managed and validate all the other conditions regarding
the scenario. Tests will be performed to verify and validate the use cases in each
scenario handled by the ego vehicle, while we will focus on specific environmental
conditions to show that the perceptual sensors can avoid any hazard, and to
verify any scenario that was not successfully executed in the simulation. After
that, we will use expert feedback from System, Fusion, and Safety teams.

Fig.2 shows a use-case scenario where a neighboring car in traffic mode enters
the lane of the autonomous vehicle.

CID--— CID---
EV L == PV L == T emms (i
- rE—— EV e
Y (LL)=== T (T E=mev
— - B
- —— E -
(CI=-- (Ci - e
EV 'f:{ﬁ% LA
- . e
(IR

sV T

Fig. 2: Straddling Vehicle (SV) swerving over the Ego Vehicle (EV) to take over
Preceding Vehicle’s (PV) place.

There is a risk of collision with this adjacent vehicle. The measures to be taken
are a regulation of the safe distance, i.e. a stable control, and if this lasts longer
than a certain time, we perform an emergency maneuver, as we called it emer-
gency-operation in our library (Fig.5a). Based on this document, we could de-
scribe these unsafe scenarios more concretely in a specification document, in
terms of rules and priorities, warnings and actions, as seen below in Fig.3:

BEGIN GOALS

when
traffic_jam is yes

then
BEGIN GOALS
when
stable_control is stable AND

straddling_car_tracking is straddling_more_than_t7

D)
then goal:
executing emergency_operation

Fig. 3: Formal rules specification based on the swerving case.

The notion of priority consideration in the model will allow us to determine if
the rules are complete, that is if they cover all situations or not. What will also
be good is to see the gaps that are missing in this document when examining
inconsistencies and rule violations.

EPSAAV 7

3.3 Abstract description of the Extensible Platform for
Autonomous Vehicle Safety Analysis (EPSAAYV)

Our metamodel in Fig.4 is composed of three levels. The first level contains the

i Alert
Ego Vehicle
Following Vehicle N . . .
0k D i 0. alert 8 Condition % Expression = Filter Level 2
N S—
[0..] action
m [1..*] ownedExpressions
£ Action —
[1.] when
-
S -
f Scene [/ RuleBasedPlanner [Goal 0111 filter
., ownedSceneObjectpr. 1] scene | ¢ import:Import [1.1, ownedFunctions Level 1
" SceneObject S—
" ego : SceneObject
[0.*] ownedGoals

—

Fig. 4: Abstract description of EPSAAV metamodel using EMF technology.

Rule-Based Planner RBP, which refers to a described scene and is composed of
goals. The RBP is responsible for formalizing and specifying rules. Each driv-
ing task requires object and Event Detection and Response (OEDR). It helps to
identify objects around the ego car, detect events that occur nearby, and then re-
act to them. There are three crucial parts of perception: (1) Static Objects (e.g.:
road structure, traffic lights, and signs), (2) Dynamic Objects (e.g.: vehicles and
pedestrians), (3) Ego Module. For this reason, we created a scene specification,
which is very important to describe the maximum capacity of perceived objects
around the autonomous vehicle. The scene specifies the roles of these objects and
their types. The goals consist of the conditions we want to apply, which relate to
actions we can associate with the motion planner, and alarms we want to trigger
for the user. This is at the second level of the metamodel. These conditions are
described by logical expressions. The metamodel also can filter the rules either
by library type or by role or even by expression. The third level defines the li-
braries in which we want to describe the properties for the ego and the obstacles.
Creating this metamodel gives us the right to a more concrete description of the
environment and the rules described in 3.4.

3.4 Concrete description of the Autonomous vehicle’s environment

In this part, a concrete description of the environment is presented. The main
feature of EPSAAV is to allow the user or safety expert to create multiple li-
braries to specify the properties. In our use case, the main goal was to have one
library for the ego and another one for the obstacles. For future work, we can

8 Abou Faysal et al.

create properties related to pedestrians, for example, but for now, let us consider
them as obstacles. This use case is edited to be able to insert everything that is
shown in the Renault specification document. In the scene, as we said before, we
specify the roles of the obstacles and their types with reference to the libraries
created. We also created a library for actions and one for alarms in Fig.5.

ActionLibrary Actionsvl

ACt?O" “brake_moderate” AlertLibrary Alertsvl

Action "brake_strong"

Action “"emergency_operation” Alert "longitudinal_report™

Action "emergency_maneuver" Alert "lateral_report"

Action "no_action_needed” Alert "emergency_operation”

Action "acceleration_moderate” Alert "violation_safety_distance"
(a) (b)

Scene scenevl
{
ego “ego
role “"ego" PropertyTypelLibrary EgoPropertyTypelLibrary
role "pedestrian" PropertyTypelLibrary ObstaclePropertyTypeLibrary
role "following_vehicle" PropertyTypelLibrary ObstaclePropertyTypelLibrary
role “"straddling_vehicle" PropertyTypelLibrary ObstaclePropertyTypelLibrary
}

(c)

Fig.5: Concrete description of the version 1: (a)action library Actionsvl.actions
(b)alert library Alertsvl.alerts (c)scene scenevl.scene.

Xtext files were needed too to create semantic forms for rules with priorities.
Rules without priorities just don’t make sense. Take the case of these two rules,
one that applies slight acceleration to escape a crash with the rear vehicle, and
one that says you have to brake because a pedestrian is crossing the road. Hence
the notion of priority must be included in the syntactic part. Our model gives
us the option to prioritize rules in an easy concrete way as seen in Fig.6.

RuleBasedPlanner RBP{
scene "scenevl"
GOAL pedestrian_priority{
filter SelectByRole ego
WHEN{
propertyType "EgoPropertyTypelLibrary.front_pedestrian_tracking” is "EgoPropertyTypelLibrary.front_pedestrian_tracking.exist"
action "Actionsvl.brake_strong"
alert "Alertsvil.violation_safety_distance"

GOAL rear_vehicle_safedistance{
filter SelectByRole ego
WHEN{
propertyType "EgoPropertyTypelLibrary.rear_car_distance" is "EgoPropertyTypelLibrary.rear_car_distance.acc_distance”
action "Actionsvl.acceleration_moderate"
alert "Alertsvl.longitudinal_report”
}
}
+

Fig. 6: Prioritizing rules in the RuleBasedPlanner RBP.rbp.

EPSAAV 9

The user can add new versions of his work and follow this helpful expressive
formal specification to write the rules. If something goes wrong, the Rule-based
Planner is responsible for informing the driver of the problem detected. It ana-
lyzes the event of a subsystem failure, then triggers the alert to the user. The
description of the violation’s type gives the user a hint when a takeover is re-
quested. There is a possibility to link this description to the trajectory planner if
we take it at a higher level in the taxonomy [19]. The verification of the expres-
siveness of all the rules retrieved from the unsafe scenarios Renault’s documents
is done by creating generators described in the following part.

3.5 Generation of monitors to analyze the solution

We want to make sense of the environment and generate behaviors in it. Using
Xtend technology, we created a document generator that describes all the re-
sources and predefined libraries used, as well as the prioritized rules. This text
generation has a documentary goal for a good description of our environment
and the rules with their priorities. It will help safety experts to save their work
whenever a change is made. We also created a code generator that will be used
to check violations in an unsafe case and to test for inconsistencies between the
priority of these rules and with the block functionalities for Renault. To do this,
it is necessary to include in the code generator a function that adapts to the
driving data and the rules, and that can access all the driving data from Fusion
or the simulators. This is an ongoing work while retrieving structures of data
in Renault’s fusion runner. Our safety checker module adapts the rules and the
input data and then returns the warnings and actions that were triggered in the
Rule-Based Planner.

The next phase consists of examining the consistency of the rules. As seen in
Fig.7, we need to compare the output of our safety checker module with the out-
put of a feature block, e.g. the Autonomous Emergency Braking (AEB) block,
to see whether or not there is consistency with our actions in an unsafe case in
the event of braking.

Decision:

1. Strong braking
FUSION Fusion Data 2. Moderate braking _

3. Emergency operation

Sensor

Data and

Vehicle
Data
(CAN)

Coherence?

ejeq uoisng

Actions:
- Emergency operation

« Ac
Safety hY > .
Checker Moderate deceleration

Fig.7: Study of the consistency between the outputs of the AEB functionality
block and the rules described in the safety checker module.

10 Abou Faysal et al.

4 Conclusion and Future Work

In this article, we propose an MBSE approach based on a simulation environ-
ment in which we specify and generate libraries and a set of safety rules. These
rules have different priorities that help us define the types of violations along a
trajectory. We also generated a human-readable document and a code for the in-
ternal system integration. The main contribution of this approach is to develop
a resilient and safe driver monitoring system that continues to operate safely
as long as the assumptions about the environment are met. This is a general
approach that could be used for multiple domains. It is a checker that triggers
alerts when rules are violated and detects inconsistencies between these rules.
It facilitates the description of formal safety rules for experts and gives them
the power to version any modification of the environment. The approach can
also modify/replace decision-making in trajectory planning. This approach will
also be used to find new scenarios to complete the verification of the operational
safety on the databases. This is an ongoing work where we provided concrete
syntax, completed our abstract metamodel, and developed the first generator.
For future work, studying inconsistencies by scheduling analysis with CCSL
based on priorities of the objectives, and adding a graphical interface using Sirius
are the two following steps, along with the integration of other public simulators.
Carla and Webots for automobiles show great promise as they are widely used
by the community. The use of simulation and display tools at Renault is also
possible, such as the running data of the fusion.

References

1. L. Vanbever. (2019) Self-driving networks: Breaking new ground
in network automation. Accessed: = 2020-06-05. [Online]. Avail-
able: http://univ-cotedazur.fr/en/eur/ds4h/research/forum-numerica/forum-
numerica/past-sessions/laurent-vanbever

2. The Free Encyclopedia. Death of elaine herzberg. Accessed: 2021-04-30. [Online].
Available: https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg

3. N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving would
it take to demonstrate autonomous vehicle reliability?” Transportation Research
Part A: Policy and Practice, vol. 94, pp. 182-193, 2016.

4. P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and val-
idation,” SAFE International Journal of Transportation Safety, vol. 4, no. 1, pp.
15-24, 2016.

5. S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and
scalable self-driving cars,” arXiv preprint arXiv:1708.06374, 2017.

6. X. Yan, S. Feng, H. Sun, and H. X. Liu, “Distributionally consistent simulation of
naturalistic driving environment for autonomous vehicle testing,” arXiv preprint
arXiw:2101.02828, 2021.

7. J. D’Ambrosio and G. Soremekun, “Systems engineering challenges and mbse op-
portunities for automotive system design,” in 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 2017, pp. 2075-2080.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

EPSAAV 11

J. Duprez, “An mbse modeling approach to efficiently address complex systems and
scalability,” in INCOSE International Symposium, vol. 28, no. 1. Wiley Online
Library, 2018, pp. 940-954.

S. A. Seshia, D. Sadigh, and S. S. Sastry, “Formal methods for semi-autonomous
driving,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 2015, pp. 1-5.

M. O’Kelly, H. Abbas, S. Gao, S. Shiraishi, S. Kato, and R. Mangharam, “Apex:
Autonomous vehicle plan verification and execution,” SAE World Congress, vol. 1,
Apr 2016.

M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using
reachability analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903-918,
2014.

B. Jeannet and F. Gaucher, “Debugging embedded systems requirements with
stimulus: an automotive case-study,” in 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), 2016.

Foretellix. (2020) Open measurable scenario description language (M-SDL).
Accessed: 2021-04-30. [Online]. Available: https://www.foretellix.com/open-
language/

J. Gray, S. Neema, J.-P. Tolvanen, A. S. Gokhale, S. Kelly, and J. Sprinkle,
“Domain-specific modeling.” Handbook of dynamic system modeling, vol. 7, pp.
7-1, 2007.

B. Combemale, O. Barais, and A. Wortmann, “Language engineering with the
gemoc studio,” in 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW). 1EEE, 2017, pp. 189-191.

L. Bettini, Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd, 2016.

P. Koopman, R. Hierons, S. Khastgir, J. Clark, M. Fisher, R. Alexander, K. Eder,
P. Thomas, G. Barrett, P. Torr et al., “Certification of highly automated vehicles
for use on uk roads: Creating an industry-wide framework for safety,” White Rose
Research Online, 2019.

P. Koopman, U. Ferrell, F. Fratrik, and M. Wagner, “A safety standard approach
for fully autonomous vehicles,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2019, pp. 326-332.

SAE Mobilus. (2018, Jun.) Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles. Accessed: 2021-04-30. [Online].
Available: https://www.sae.org/standards/

