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We are interested by the controllability of a fluid-structure interaction system where the fluid is viscous and incompressible and where the structure is elastic and located on a part of the boundary of the fluid's domain. In this article, we simplify this system by considering a linearization and by replacing the wave/plate equation for the structure by a heat equation. We show that the corresponding system coupling the Stokes equations with a heat equation at its boundary is null-controllable. The proof is based on Carleman estimates and interpolation inequalities. One of the Carleman estimates corresponds to the case of Ventcel boundary conditions. This work can be seen as a first step to handle the real system where the structure is modeled by the wave or the plate equation.

Introduction

Fluid-structure interaction systems are important systems for many applications such as aerodynamics, medicine (for instance the study of the motion of the blood in veins or in arteries), biology (animal locomotion in a fluid), civil engineering (design of bridges), naval architecture (design of boats and submarines), etc. Moreover, their mathematical studies can be very challenging due to several difficulties: in particular, the complexity of fluid equations such as the Navier-Stokes system, the strong coupling between the fluid system and the structure system and the free-boundary corresponding to the structure displacement.

In this article we consider a simplified fluid-structure interaction system. The corresponding system without simplification has been proposed in [START_REF] Quarteroni | Computational vascular fluid dynamics: problems, models and methods[END_REF] as a model for the blood flow in a vessel. It writes as follows: we denote by I the torus (in order to consider periodic boundary conditions):

I := R/(2πZ),
and for any deformation : I → (-1, ∞), we consider the corresponding fluid domain Ω = {(x 1 , x 2 ) ∈ I × R ; x 2 ∈ (0, 1 + (x 1 ))} .

(1.1)

Then the equations of motion are

           ∂ t w + (w • ∇)w -div T(w, π) = 0 t > 0, x ∈ Ω (t)
, div w = 0 t > 0, x ∈ Ω (t) , w(t, x 1 , 1 + (t, x 1 )) = (∂ t )(t, x 1 )e 2 t > 0, x 1 ∈ I,

w = 0 t > 0, x ∈ Γ 0 , ∂ tt + α 1 ∂ 4 x1 -α 2 ∂ 2 x1 -δ∂ t ∂ 2 x1 = -H (w, π) t > 0, x 1 ∈ I, (1.2) 
where Γ 0 = I × {0}, Γ 1 = I × {1}.

In the above system, we have used the following notations: (e 1 , e 2 ) is the canonical basis of R 2 and T(w, π) = 2D(w) -πI 2 , D(w) = 1 2 (∇w + (∇w) * ) ,

H (w, π)(t, x 1 ) = (1 + |∂ x1 | 2 ) 1/2 [T(w, π)n] (t, x 1 , 1 + (t, x 1 )) • e 2 .

(1.4)

The two first lines of (1.2) correspond to the Navier-Stokes system for the fluid velocity w and the pressure π. The last line of (1.2) is a beam equation satisfied by the deformation . We have used the standard noslip boundary conditions (third and forth equations). To simplify, we assume that the viscosity of the fluid is constant and equal to 1. The vector fields n corresponds to the unit exterior normal to Ω (t) . This system has been studied by many authors: [START_REF] Chambolle | Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate[END_REF] (existence of weak solutions), [START_REF] Veiga | On the existence of strong solutions to a coupled fluid-structure evolution problem[END_REF], [START_REF] Lequeurre | Existence of strong solutions to a fluid-structure system[END_REF], [START_REF] Grandmont | Existence of global strong solutions to a beam-fluid interaction system[END_REF] and [START_REF] Maity | Lp theory for the interaction between the incompressible Navier-Stokes system and a damped plate[END_REF] (existence of strong solutions), [START_REF] Raymond | Feedback stabilization of a fluid-structure model[END_REF] (stabilization of strong solutions), [START_REF] Badra | Feedback boundary stabilization of 2D fluid-structure interaction systems[END_REF] (stabilization of weak solutions around a stationary state). There are also some works in the case δ = 0, that is without damping on the beam equation: the existence of weak solutions is proved in [START_REF] Grandmont | Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate[END_REF] and in [START_REF] Muha | Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls[END_REF] (see also [START_REF] Čanić | Fluid-structure interaction in hemodynamics: modeling, analysis, and numerical simulation[END_REF]). In [START_REF] Grandmont | Existence of local strong solutions to fluidbeam and fluid-rod interaction systems[END_REF], the existence of local strong solutions is obtained for a structure described by either a wave equation (α 1 = δ = 0 and α 2 > 0) or a beam equation with inertia of rotation (α 1 > 0, α 2 = δ = 0 and with an additional term -∂ ttss ). In [START_REF] Badra | Gevrey regularity for a system coupling the Navier-Stokes system with a beam equation[END_REF] and [START_REF] Badra | Gevrey regularity for a system coupling the navier-stokes system with a beam: the non-flat case[END_REF], the authors show the existence and uniqueness of strong solutions in the case α 1 > 0, α 2 0 and δ = 0. Using similar techniques they also analyze the case of the wave equation (α 1 = δ = 0 and α 2 > 0) in [START_REF] Badra | Analyticity of the semigroup associated with a Stokes-wave interaction system and application to the system of interaction between a viscous incompressible fluid and an elastic structure[END_REF] showing in particular that the semigroup of the linearized system is analytic. Let us mention also some results for more complex models: [START_REF] Lengeler | Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell[END_REF][START_REF] Lengeler | Weak solutions for an incompressible, generalized Newtonian fluid interacting with a linearly elastic Koiter type shell[END_REF] (linear elastic Koiter shell), [START_REF] Muha | Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls[END_REF] (dynamic pressure boundary conditions), [START_REF] Muha | A nonlinear, 3D fluid-structure interaction problem driven by the timedependent dynamic pressure data: a constructive existence proof[END_REF][START_REF] Muha | Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy[END_REF] (3D cylindrical domain with nonlinear elastic cylindrical Koiter shell), [START_REF] Trifunović | Existence of a weak solution to the fluid-structure interaction problem in 3D[END_REF] and [START_REF] Trifunović | Weak solution to the incompressible viscous fluid and a thermoelastic plate interaction problem in 3D[END_REF] (nonlinear elastic and thermoelastic plate equations), [START_REF] Maity | Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation[END_REF], [START_REF] Maity | Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation[END_REF] (compressible fluids), etc.

The advantage of the damping in the beam equation is that the term -δ∂ t ∂ 2 x1 is a structural damping so that the corresponding beam equation becomes a parabolic equation (see, for instance, [START_REF] Shu | Proof of extensions of two conjectures on structural damping for elastic systems[END_REF]). In this work,
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we consider a simplified model associated with (1.2). We neglect the deformation of the fluid domain due to the elastic déformation and we also linearized the Navier-Stokes system by only considering the Stokes system. Moreover, we replace the damped beam equation by a heat equation. By setting

Ω = I × (0, 1)
(see Figure 1), we are thus considering the following system

               ∂ t w -∆w + ∇π = 1 ω f in (0, T ) × Ω, div w = 0 in (0, T ) × Ω, w = 0 on (0, T ) × Γ 0 , w = ζe 2 on (0, T ) × Γ 1 , ∂ t ζ -∂ x1x1 ζ = -T(w, π)n • e 2 in (0, T ) × I, w(0, •) = w 0 in Ω, ζ(t, 0) = ζ 0 in I.
(1.5)

In the above system, ζ corresponds to the displacement velocity ∂ t in (1.2) and we do not consider anymore the displacement position . We have added a control f localized in the fluid domain, in an arbitrary small nonempty open set ω of Ω. Our goal is to show the null-controllability of this simplified system and to do this, as it is standard (see, for instance, [51, Theorem 11.2.1, p.357]), we prove an observability inequality on the adjoint system:

               ∂ t u -∆u + ∇p = 0 in (0, T ) × Ω, div u = 0 in (0, T ) × Ω, u = 0 on (0, T ) × Γ 0 , u = ηe 2 on (0, T ) × Γ 1 , ∂ t η -∂ x1x1 η = -T(u, p)n |Γ1 • e 2 in (0, T ) × I, u(0, •) = u 0 in Ω, η(0, •) = η 0 in I. (1.6)
We set

L 2 0 (I) := f ∈ L 2 (I) ; 2π 0 f (x 1 ) dx 1 = 0
and we define the space

H := [u, η] ∈ L 2 (Ω) × L 2 0 (I) ; u 2 = 0 on Γ 0 , u 2 = η on Γ 1 , div u = 0 in Ω . (1.7)
Then, our main result states as follows:

Theorem 1.1. Let γ > 1 and let ω be a nonempty open set of Ω. Then, there exists C 0 > 0 such that for any T ∈ (0, 1) and for any u 0 , η 0 ∈ H, the solution [u, η] of (1.6) satisfies

[u(T, •), η(T, •)] 2 H C 0 exp C 0 T γ (0,T )×ω |u| 2 dtdx.
In particular, for any w 0 , ζ 0 ∈ H and for any T > 0, there exists a control f ∈ L 2 ((0,

T ) × ω) such that the solution [w, ζ] of (1.5) satisfies w(T, •) = 0, ζ(T, •) = 0.
Remark 1.2. As explained above, Theorem 1.1 can be seen as a first control result on a simplified model. We expect to extend some of the tools developed here to handle the control properties of the system (1.2) in future works. The controllability properties of fluid-structure interaction systems have been tackled mainly in the case where the structure is a rigid body (see, [START_REF] Ramaswamy | Remark on the global null controllability for a viscous Burgers-particle system with particle supported control[END_REF], [START_REF] Doubova | Some control results for simplified one-dimensional models of fluid-solid interaction[END_REF], [START_REF] Liu | Single input controllability of a simplified fluid-structure interaction model[END_REF], [START_REF] Imanuvilov | Exact controllability of a fluid-rigid body system[END_REF], [START_REF] Boulakia | Local null controllability of a two-dimensional fluid-structure interaction problem[END_REF], [START_REF] Boulakia | Local null controllability of a fluid-solid interaction problem in dimension 3[END_REF], [START_REF] Roy | Local null controllability of a rigid body moving into a Boussinesq flow[END_REF], [START_REF] Imene | Local null controllability of a fluid-rigid body interaction problem with Navier slip boundary conditions[END_REF], [START_REF] Cîndea | Particle supported control of a fluidparticle system[END_REF], etc.). In [START_REF] Sourav | Observability and unique continuation of the adjoint of a linearized simplified compressible fluid-structure model in a 2D channel[END_REF], the author shows an observability inequality for the adjoint of a linearized and simplified fluid-structure interaction system in the case of a compressible viscous fluid and of a damped beam. Note that the corresponding control problem involves two controls, one for the fluid and one for the structure.

For the stabilization of fluid-structure interaction systems, one can quote some results: [START_REF] Raymond | Feedback stabilization of a fluid-structure model[END_REF], [START_REF] Badra | Feedback boundary stabilization of 2D fluid-structure interaction systems[END_REF] (for the case of a damped beam), [START_REF] Takahashi | Stabilization of a fluid-rigid body system[END_REF], [START_REF] Roy | Stabilization of a rigid body moving in a compressible viscous fluid[END_REF], [START_REF] Badra | Feedback stabilization of a simplified 1d fluid-particle system[END_REF], [START_REF] Badra | Feedback stabilization of a fluid-rigid body interaction system[END_REF] (for the case of a rigid body).

Remark 1.3. The method proposed here to control a system involving the Stokes equations is quite different from the method used in a large part of the literature for the controllability of fluid systems. In general, the method is based on "global Carleman inequalities" (see, for instance [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF][START_REF] Yu | On exact controllability for the Navier-Stokes equations[END_REF]). Here, we follow another strategy as in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Chaves-Silva | Spectral inequality and optimal cost of controllability for the Stokes system[END_REF]. Such a method is based on local Carleman inequalities for an "augmented" elliptic operator, from which one deduces a spectral inequality, in the spirit of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF]. However, as it is pointed out in [START_REF] Chaves-Silva | Spectral inequality and optimal cost of controllability for the Stokes system[END_REF], unique continuation property does not hold for the augmented operator in the direction of the additional variable, due to the pressure. We then use an adaptation of the original strategy of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Léautaud | Spectral inequalities for non-selfadjoint elliptic operators and application to the nullcontrollability of parabolic systems[END_REF] in our context. This type of spectral inequality has already been used in the context of fluids in [START_REF] Buffe | Spectral inequality for an Oseen operator in a two dimensional channel[END_REF]. We also recall that one can use Theorem 1.1 to handle nonlinear controllability issues by applying the general method proposed in [START_REF] Liu | Single input controllability of a simplified fluid-structure interaction model[END_REF].

Remark 1.4. Using the particular geometry considered here, we can simplify the adjoint system. First on Γ 1 , n = e 2 and using (1.3), we deduce

-T(u, p)n • e 2 = -2∂ x2 u 2 + p = 2∂ x1 u 1 + p = p, (1.8) 
since u 1 (x 1 , 1) = 0 for x 1 ∈ I. Moreover, using the incompressibility of the fluid and the boundary conditions, we deduce that

0 = Ω div u dx = I η dx 1 .
Using this condition on the heat equation on the boundary and (1.8) yields

I p(x 1 , 1) dx 1 = 0. (1.9)
In particular, in contrast with the standard Stokes system, the pressure is not determined up to a constant.

The outline of the article is as follows: in Section 2, we show how to obtain the observability inequality stated in Theorem 1.1 from a spectral inequality. Such a result is quite standard, but here we show that for a self-adjoint operator, we do not need the usual assumption that is made on the eigenvalues of the main operator. Then using this general result, we are reduced to show a spectral inequality that we state in Section 3 along with the functional framework. The spectral inequality is itself the consequence of an interpolation inequality that we obtain in Section 5. One of the main difficulties to obtain such an inequality comes from the fact that we need to estimate the pressure. Section 4 is devoted to such an estimate which is one of the main parts of this article. The proof of the spectral inequality and thus of Theorem 1.1 is obtained at the end of Section 5. In the appendix, we show an interpolation estimate for the Ventcel boundary condition that is mainly a consequence of a Carleman estimate obtained in [START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF]. Notation 1.5. In the whole paper, we use C as a generic positive constant that does not depend on the other terms of the inequality. The value of the constant C may change from one appearance to another. We also use the notation X Y if there exists a constant C > 0 such that we have the inequality X CY .

From a spectral inequality to the null-controllability

This section is devoted to a "classical" result showing that a spectral inequality implies the final-state observability and thus the null-controllability. The proof follows closely the proof in [START_REF] Léautaud | Spectral inequalities for non-selfadjoint elliptic operators and application to the nullcontrollability of parabolic systems[END_REF][START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and we only prove it here for sake of completeness and also to show that we do not need any assumption on the asymptotic behavior of the spectrum of the operator (which is used in the above references).

More precisely, we assume here that A : D(A) → H is a positive self-adjoint operator with compact resolvents in an Hilbert space H. We denote by (λ j ) the nondecreasing sequence of eigenvalues and by (w j ) an orthonormal basis of H composed by eigenvectors of A: Aw j = λ j w j for j 1. We also consider a control operator B ∈ L(U, H).

Theorem 2.1. Assume the above hypotheses. Assume moreover the existence of S 0 > 0, C > 0 and κ ∈ C ∞ 0 (0, S 0 ) such that that for any Λ > 0, and for any

(a j ) j ∈ C N , λj Λ |a j | 2 Ce C √ Λ S0 0 κ 2 (s) λj Λ a j cosh(s √ λ j )B * w (j) 2 U ds. (2.1)
Then for all γ > 1, there exists C 0 > 0 such that for any T ∈ (0, 1) and for any z 0 ∈ H,

e -T A z 0 2 H C 0 exp C 0 T γ T 0 B * e -tA z 0 2 U dt. (2.2)
We recall that relation (2.2) implies the null-controllability of the system

   dθ dt + Aθ = Bg in (0, T ), θ(0) = θ 0 ∈ H. (2.3) 

Controllability of the first modes

We define H Λ = span {w j , λ j Λ} , Π Λ : H → H Λ the orthogonal projection.

We are interested here by the control problem

   dθ dt + Aθ = Π Λ Bg in (0, τ ), θ(0) = θ 0 ∈ H Λ , (2.4) 
for some τ > 0. We consider the linear operator

G Λ := S0 0 κ 2 (s) cosh(s √ A)Π Λ BB * cosh(s √ A)Π Λ ds. From (2.1), G Λ ∈ L(H Λ ) is symmetric, positive and invertible with G -1 Λ L(HΛ) Ce C √ Λ .
We set

σ := 2 - 1 γ ∈ (1, 2).
From [26, Lemma A.1], there exists e ∈ C ∞ (R) such that for some constants c j

supp e = [0, 1], (2.5 
)

| e(z)| c 1 e -c2|z| 1/σ if Im(z) 0, (2.6 
)

| e(z)| c 3 e -c4|z| 1/σ if z ∈ iR -. (2.7)
From (2.7), we have that e(-iτ A) ∈ L(H Λ ) is invertible and

e(-iτ A) -1 L(HΛ) 1 c 3 e c4(Λτ ) 1/σ . (2.8) Then we define h Λ (s) := - 1 2 κ 2 (s)B * cosh(s √ A)G -1 Λ e(-iτ A) -1 e -τ A θ 0 (s ∈ R). We have that h Λ ∈ C ∞ 0 (R, U) with supp h Λ ⊂ (0, S 0 ) and h Λ L ∞ (R,U ) Ce C √ Λ+c4(Λτ ) 1/σ θ 0 H . (2.9)
Thus, h Λ ∈ Hol(C; U) and

h Λ (z) U Ce C √ Λ+c4(Λτ ) 1/σ e S0|Im(z)| θ 0 H . (2.10)
As in [START_REF] Russell | A unified boundary controllability theory for hyperbolic and parabolic partial differential equations[END_REF], we introduce

Q Λ ∈ Hol(C; U) such that Q Λ (-iz 2 ) = h Λ (iz) + h Λ (-iz) (z ∈ C).
We deduce from the above relation and (2.10) that

Q Λ (z) U Ce C √ Λ+c4(Λτ ) 1/σ e S0 √ |z| θ 0 H . (2.11) We define g Λ ∈ Hol(C; U) by g Λ (z) := e(τ z)Q Λ (z).
From (2.5), (2.6) and (2.11), we have

g Λ (z) U Ce C √ Λ+c4(Λτ ) 1/σ e S0 √ |z| e τ | Im z| θ 0 H (z ∈ C) (2.12) and g Λ (z) U Ce C √ Λ+c4(Λτ ) 1/σ e S0 √ |z| e -c2τ 1/σ |z| 1/σ θ 0 H if Im z 0. (2.13)
Since σ < 2, we can use a Paley-Wiener type theorem (see [START_REF] Léautaud | Spectral inequalities for non-selfadjoint elliptic operators and application to the nullcontrollability of parabolic systems[END_REF]Proposition A.3]) and deduce the existence of

g Λ ∈ C ∞ 0 ((0, τ ); U) such that g Λ (z) = g Λ (z).
In particular, from (2.13) and the Laplace method, for all t ∈ (0, τ ),

|g Λ (t)| g Λ L 1 (R;U ) Ce C √ Λ+c4(Λτ ) 1/σ + C τ 1/(2-σ) θ 0 H . (2.14) 
Now, for any j such that λ j Λ,

τ 0 e -(τ -t)A Bg Λ (τ -t) dt, w j H = (B g Λ (-iλ j ), w j ) H = e(-iτ A)B h Λ (i λ j ) + h Λ (-i λ j ) , w j H = e(-iτ A)B S0 0 h Λ (s)2 cosh(s λ j ) ds, w j H = -e -τ A θ 0 , w j H
so that the solution θ of (2.4) with the control g(t) = g Λ (τ -t) satisfies θ(τ ) = 0. By a duality argument and (2.14), this implies that

Π Λ e -τ A z 0 2 C 1 exp C 1 1 τ γ + √ Λ + (Λτ ) γ/(2γ-1) τ 0 B * Π Λ e -tA z 0 2 U dt. (2.15)

Proof of Theorem 2.1

We are now in a position to prove Theorem 2.1, adapting the method of [START_REF] Miller | A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups[END_REF].

Proof of Theorem 2.1. We set z(t) = e -tA z 0 .

Assume T (1) > 0, τ > 0, and T (2) = T (1) + τ.

From (2.15)

Π Λ z T (2) 2 C 1 exp C 1 1 (ετ ) γ + √ Λ + (Λετ ) γ/(2γ-1) T (2)
T (2) -ετ

B * Π Λ z(t) 2 U dt. (2.16) We set Λ = 1 (ετ ) 1+γ
(2.17) so that for τ, ε ∈ (0, 1),

(2.16) becomes 2ρ(τ ) Π Λ z T (2) 2 T (2)
T (2) -ετ

B * Π Λ z(t) 2 U dt (2.18) with ρ(τ ) := 1 2C 1 exp - 3C 1 (ετ ) γ . (2.19) 
Then from (2.18), we deduce

ρ(τ ) z T (2) 2 T (2) 
T (2) -ετ

B * z(t) 2 U dt + C z T (1) 2 H ετ e -2Λτ (1-ε) + ρ(τ ) z T (1) 2 H e -2Λτ (2.20) 
For ε > 0 small enough, the above relation yields

ρ(τ ) z T (2) 2 H T (2) 
T

B * z(t)

2 U dt + ρ(τ /2) z T (1) 2 H (2.21) Assume T ∈ (0, 1).
Then for all k 0, (2.21) implies

ρ T 2 k+1 z T 2 k 2 H T 2 k T 2 k+1 B * z(t) 2 U dt + ρ T 2 k+2 z T 2 k+1 2 H (2.22)
and thus

ρ T 2 z (T ) 2 H T 0 B * z(t) 2 U dt. (2.23)
Thus for some constant C 2 > 0,

z (T ) 2 H C 2 exp C 2 T γ T 0 B * z(t) 2 U dt. (2.24)
3 Functional framework and spectral inequality

In order to prove Theorem 1.1, we are going to apply Theorem 2.1. In this section, we first give the functional framework associated with (1.6). Then we write the spectral inequality that will be proven in the remaining part of the article.

Functional framework

We recall that H is defined by (1.7). We also define

V := [u, η] ∈ H 1 (Ω) × H 1 (I) ∩ H ; u 1 = 0 on ∂Ω .
We denote by P 0 the orthogonal projection from L 2 (Ω) × L 2 0 (I) onto H. We now define the linear operator

A 0 : D(A 0 ) ⊂ H → H by D(A 0 ) := V ∩ H 2 (Ω) × H 2 (I) , (3.1) 
and for u, η ∈ D(A 0 ), we set

A 0 u η := P 0   ∆u ∂ 2 x1 η   . (3.2)
Then one can check that (1.6) writes

dz dt = A 0 z in (0, T ), z(0) = z 0 . with z = [u, η], z 0 = [u 0 , η 0 ].
In the next proposition, we show in particular that A 0 is the infinitesimal generator of a semigroup so that z(t) = e tA0 z 0 for t 0. Proof. By definition of A 0 , we have for any

[u, η], [v, ζ] ∈ D(A 0 ), A 0 u η , v ζ H = Ω ∆u • v dx + 2π 0 ∂ 2 x1 η ζ dx 1 = - Ω ∇u : ∇v dx - 2π 0 (∂ x1 η) (∂ x1 ζ) dx 1 .
Thus A 0 is symmetric and negative (by using the Poincaré inequalities).

In order to show that A 0 is self-adjoint it is sufficient to show that it is onto. Assume [f, g] ∈ H and let us solve the equation

-A 0 u η = [f, g]. (3.3) 
Multiplying the above equation by [v, ζ] ∈ V leads to the weak formulation

Ω ∇u : ∇v dx + 2π 0 (∂ x1 η) (∂ x1 ζ) dx 1 = Ω f • v dx + 2π 0 gζ dx 1 ([v, ζ] ∈ V). (3.4)
Using the Poincaré inequalities, we see that we can apply the Riesz theorem and deduce the existence and uniqueness of

[u, η] ∈ V solution of (3.4). Then if v ∈ C ∞ c (Ω) with div v = 0 and ζ = 0 in (3.4), we obtain that ∇u : ∇v dx = Ω f • v dx (v ∈ C ∞ c (Ω), div v = 0). (3.5)
Using the De Rham theorem, we deduce the existence of p such that

         -∆u + ∇p = f in Ω, div u = 0 in Ω, u = 0 on Γ 0 u = ηe 2 on Γ 1 . (3.6)
Using the elliptic regularity of the Stokes system, we deduce that (u, p)

∈ H 3/2 (Ω) × H 1/2 (Ω). Multiplying the first above equation by v, with [v, ζ] ∈ V, we deduce that for any ζ ∈ H 1 (I) ∩ L 2 0 (I), 2π 0 (∂ x1 η) (∂ x1 ζ) dx 1 = -p |Γ1 , ζ + 2π 0 gζ dx 1 . (3.7) Since p |Γ1 = ([pI 3 -∇u] n) |Γ1 ∈ H -1/2 (I), we deduce that η ∈ H 3/2 (I) and from (3.6) that (u, p) ∈ H 2 (Ω) × H 1 (Ω). Thus p |Γ1 ∈ H 1/2 (I)
, and from (3.7), we deduce that η ∈ H 2 (I). We conclude that [u, η] ∈ D(A 0 ) and satisfies (3.3). The fact that A 0 has compact resolvents is coming from the compact embedding of H 2 into L 2 for bounded domains.

In particular, the eigenvalues λ j > 0 of -A 0 satisfy λ j → ∞ and there exists

u (j) η (j) j orthonormal basis of H (3.8)
composed by eigenvectors of A 0 :

-A 0 u (j) η (j) = λ j u (j) η (j) (3.9) 
The above system can be written as

               -∆u (j) + ∇p (j) = λ j u (j) div u (j) = 0 u (j) = 0 on Γ 0 u (j) = η (j) e 2 on Γ 1 -∂ 2 x1 η (j) -p (j) = λ j η (j) in I (3.10)
and more precisely as

                   -λ j u (j) 1 -(∂ 2 x1 + ∂ 2 x2 )u (j) 1 + ∂ x1 p (j) = 0 -λ j u (j) 2 -(∂ 2 x1 + ∂ 2 x2 )u (j) 2 + ∂ x2 p (j) = 0 ∂ x1 u (j) 1 + ∂ x2 u (j) 2 = 0 u (j) 1 = 0 on ∂Ω u (j) 2 = 0 on Γ 0 -λ j u (j) 2 -∂ 2 x1 u (j) 2 = p (j) on Γ 1 .
(3.11)

Spectral inequality

We are now in a position to state the spectral inequality for the operator A 0 defined in the previous section.

Theorem 3.2. Let ω 0 be a nonempty open subset of Ω and S 0 > 0. There exist C > 0 and κ ∈ C ∞ 0 (0, S 0 ) such that for any Λ > 0, and for any

(a j ) j ∈ C N , λj Λ |a j | 2 Ce C √ Λ S0 0 κ 2 (s) λj Λ a j cosh(s √ λ j )u (j) 2 L 2 (ω)
ds.

(3.12)

In order to prove Theorem 3.2, we define for s ∈ (0, S 0 ) and x ∈ Ω,

U (s, x) := λj Λ a j cosh( √ λ j s)u (j) (x), P (s, x) := λj Λ a j cosh( √ λ j s)p (j) (x) + c P (s) (3.13)
and the domains Z := (0, S 0 ) × Ω = (0, S 0 ) × I × (0, 1), J i := (0, S 0 ) × Γ i = (0, S 0 ) × I × {i} (i = 0, 1).

(3.14)

From (3.11), we deduce that

               -∂ 2 s U 1 -(∂ 2 x1 + ∂ 2 x2 )U 1 + ∂ x1 P = 0 in Z, -∂ 2 s U 2 -(∂ 2 x1 + ∂ 2 x2 )U 2 + ∂ x2 P = 0 in Z, ∂ x1 U 1 + ∂ x2 U 2 = 0 in Z, U 1 = 0 on J 0 ∪ J 1 U 2 = 0 on J 0 , -∂ 2 s U 2 -∂ 2 x1 U 2 = P -m I (P ) on J 1 .
(3.15)

In the above system, we write

m I (P ) := 1 2π 2π 0 P (x 1 , 1) dx 1
and by using this notation in the last equation of (3.15), we can replace the pressure that should satisfies a relation of the form (1.9) by the pressure P defined up to a function c P of s. In that way, we can, in what follows, impose another condition on P (typically that its mean on an open set is zero).

To show Theorem 3.2, we first truncate U and P in a neighborhood of {s = s 0 }, with

s 0 := S 0 2 .
We thus consider χ ∈ C ∞ 0 ((0, S 0 )), satisfying 0 χ 1 and

χ(s) = 1 if |s -s 0 | S 0 /8, 0 if |s -s 0 | S 0 /6. (3.16) 
We work with the following localized solutions u(s, x 1 , x 2 ) := χ(s)U (s, x 1 , x 2 ), p(s, x 1 , x 2 ) := χ(s)P (s,

x 1 , x 2 ) (3.17) that satisfy                -∂ 2 s u 1 -(∂ 2 x1 + ∂ 2 x2 )u 1 + ∂ x1 p = f 1 in Z -∂ 2 s u 2 -(∂ 2 x1 + ∂ 2 x2 )u 2 + ∂ x2 p = f 2 in Z ∂ x1 u 1 + ∂ x2 u 2 = 0 in Z u 1 = 0 on J 0 ∪ J 1 u 2 = 0 on J 0 -∂ 2 s u 2 -∂ 2 x1 u 2 = f 3 + p -m I (p) on J 1 , (3.18) 
where

f 1 := -χ U 1 -2χ ∂ s U 1 , f 2 := -χ U 2 -2χ ∂ s U 2 , f 3 := -χ (U 2 ) | J 1 -2χ (∂ s U 2 ) | J 1 . (3.19) 
We also have that

u = 0 and p = 0 if s / ∈ 1 3 S 0 , 2 3 S 0 . (3.20)
As usual, we can use the three first equations to obtain the following equation for the pressure:

-∆p = -(∂ 2 x1 + ∂ 2 x2 )p = ∂ x1 f 1 + ∂ x2 f 2 = 0. (3.21)

A global observability estimate on the pressure

In this section, we prove a global estimate on the pressure. We first introduce our weight and the corresponding conjugated operators. We then state our main result, that is Theorem 4.1. Then we show a first estimate on the pressure involving high frequency pressure terms at the boundary. Such terms are then estimated by showing some a priori estimates and this allows us to prove Theorem 4.1.

Choice of the weight and conjugated operators

Let us consider a nonempty open set ω 0 such that ω 0 ⊂ ω. Let λ > 0, τ > 0.

Then we consider ψ ∈ C ∞ (Ω; R + ), such that

ψ(x 1 , x 2 ) = 1 -x 2 in a neighborhood of {x 2 = 1}, and ψ(x 1 , x 2 ) = x 2 in a neighborhood of {x 2 = 0} (4.1)
and such that all its critical points belong to ω 0 :

∇ ψ(x) = 0 =⇒ x ∈ ω 0 . (4.2)
We set ϕ(s, x) := e λ ψ(x)-(s-s0) 2 , ϕ 0 (s) := e -(s-s0) 2 . (4.3)

Note that with our above choices,

ϕ 0 (s) = ϕ(s, •, 0) = ϕ(s, •, 1) = min x∈Ω ϕ(s, x).
We recall that we define (u, p) from (U, P ) by (3.17) (truncation in s) and that the source f i are defined by (3.19). We then define v := e τ ϕ u, q := e τ ϕ p, g i := e τ ϕ f i (i ∈ {1, . . . , 3}).

In order to take into account the dependence in s, we write

z = (s, x) = (s, x 1 , x 2 ) ∈ Z, ∇ z =   ∂ s ∂ x1 ∂ x2   , ∆ z = ∂ 2 s + ∂ 2 x1 + ∂ 2 x2 ,
and their tangential counterparts

∇ s,x1 = ∂ s ∂ x1 , ∆ s,x1 = ∂ 2 s + ∂ 2 x1 .
We keep our previous notation

∇ = ∂ x1 ∂ x2 , ∆ = ∂ 2 x1 + ∂ 2 x2 .
The equations satisfied by v and q can be written with the introduction of the following conjugated operators:

Q ϕ := -e τ ϕ ∆ z e -τ ϕ = -∆ z + 2τ ∇ z ϕ • ∇ z -τ 2 |∇ z ϕ| 2 + τ (∆ z ϕ), (4.5) 
D ϕ := -e τ ϕ ∆e -τ ϕ = -∆ + 2τ (∇ϕ) • ∇ -τ 2 |∇ϕ| 2 + τ (∆ϕ), (4.6) 
S ϕ := -e τ ϕ0 ∆ s,x1 e -τ ϕ0 = -∆ s,x1 + 2τ (∂ s ϕ 0 )∂ s -τ 2 (∂ s ϕ 0 ) 2 + τ (∂ 2 s ϕ 0 ). (4.7) 
Then we deduce from (3.18) and (3.21) the following conjugated system:

               Q ϕ v 1 + e τ ϕ ∂ x1 p = g 1 in Z, Q ϕ v 2 + e τ ϕ ∂ x2 p = g 2 in Z, D ϕ q = 0 in Z, v 1 = 0 on J 0 ∪ J 1 , v 2 = 0 on J 0 , S ϕ v 2 = g 3 + q -m I (q) on J 1 . (4.8) 
We define h i by

h i := e τ ϕ0 f i (i = 1, 2, 3). (4.9)
The main result of this section is the following result.

Theorem 4.1. There exist λ 0 = λ 0 ( ψ, S 0 ) > 0 and τ 0 = τ 0 ( ψ, S 0 ) > 0 such that for any λ λ 0 and τ τ 0 , there exists C = C(λ, ψ, S 0 ) > 0 such that for any Λ > 0 and for any (a j ) j ∈ C N , the function q defined by (3.13), (3.17) and (4.4) satisfies

τ 3 q 2 L 2 (Z) + τ ∇q 2 L 2 (Z) + τ 3 |q -m I (q)| 2 L 2 (J1) + τ |∇q| 2 L 2 ((0,S0)×∂Ω) C τ 3 q 2 L 2 ((0,S0)×ω0) + τ ∇q 2 L 2 ((0,S0)×ω0) + τ ∂ x1 h 1 2 L 2 (Z) + ∂ x1 h 2 2 L 2 (Z) + |∂ x1 h 3 | 2 L 2 (J1)
. (4.10)

We prove this theorem in the remainder of this section.

A first estimate on the pressure

In order to prove Theorem 4.1, we exploit that q satisfies the third equation of (4.8), where D ϕ is defined by (4.6). Since we do not have any boundary condition, we need to split the boundary value of q into high and low frequencies. More precisely, for Q ∈ H 2 (Ω), we introduce the Fourier coefficients of the trace of Q :

a k (Q) :=     1 2π 2π 0 Q(x 1 , 0)e -ikx1 dx 1 1 2π 2π 0 Q(x 1 , 1)e -ikx1 dx 1     (k ∈ Z). (4.11) 
We then define the sets of low tangential frequencies and high tangential frequencies:

LF τ := {k ∈ Z, k 2 τ 2 2 inf |∂ x2 ϕ| 2 }, HF τ := {k ∈ Z, k 2 > τ 2 2 inf |∂ x2 ϕ| 2 }.
In the above definition, the infimum of ∂ x2 ϕ is taken for x ∈ ∂Ω and s ∈ [0, S 0 ]. Due to (4.1) and (4.3), we have inf |∂ x2 ϕ| = λe -s 2 0 .

Proposition 4.2. There exist λ 0 = λ 0 ( ψ, S 0 ) > 0 and τ 0 = τ 0 ( ψ, S 0 ) > 0 such that for any λ λ 0 and τ τ 0 , there exists C = C(λ, ψ, S 0 ) > 0 such that for any s ∈ [0, S 0 ], and any Q ∈ H 2 (Ω),

τ 3 Q 2 L 2 (Ω) + τ ∇Q 2 L 2 (Ω) + τ |∂ x2 Q| 2 L 2 (∂Ω) + k∈LFτ τ (τ 2 + k 2 )|a k (Q)| 2 C D ϕ Q 2 L 2 (Ω) + τ 3 Q 2 L 2 (ω0) + τ ∇Q 2 L 2 (ω0) + k∈HFτ τ (τ 2 + k 2 )|a k (Q)| 2 . (4.12)
Proof. We can decompose the operator D ϕ (see (4.6)) as follows D ϕ = S + A + R, where

S = -∆ -τ 2 |∇ϕ| 2 , A = 2τ ∇ϕ • ∇ + 2τ (∆ϕ), R = -τ (∆ϕ).
Then, after some standard computation, we can obtain that

Ω (SQ)(AQ)dx = τ Ω 2∇ 2 ϕ(∇Q, ∇Q) + ∆ϕ|∇Q| 2 dx + τ 3 Ω 2∇ 2 ϕ(∇ϕ, ∇ϕ) -|∇ϕ| 2 ∆ϕ |Q| 2 dx -τ Ω (∆ 2 ϕ)|Q| 2 dx + B, (4.13)
where

∇ 2 ϕ = ∂ 2 ϕ ∂x i ∂x j i,j
and where B corresponds to the boundary terms:

B = -2τ ∂Ω ∂ n Q(∇ϕ • ∇Q)dΓ + τ ∂Ω (∂ n ϕ)|∇Q| 2 dΓ -2τ ∂Ω (∆ϕ)(∂ n Q)QdΓ + τ ∂Ω (∂ n ∆ϕ)Q 2 dΓ -τ 3 ∂Ω |∇ϕ| 2 (∂ n ϕ)Q 2 dΓ.
Using (4.1), we have that ∂ n ϕ < 0 and we can simplify the above quantity:

B = τ ∂Ω |∂ x2 ϕ| (∂ x2 Q) 2 dΓ -τ ∂Ω |∂ x2 ϕ| (∂ x1 Q) 2 dΓ -2τ ∂Ω (∂ 2 x2 ϕ)(n • e 2 )(∂ x2 Q)QdΓ + τ ∂Ω (∂ 3 x2 ϕ)(n • e 2 )Q 2 dΓ + τ 3 ∂Ω |∂ x2 ϕ| 3 Q 2 dΓ.
Combining the above relation with (4.3), there exists τ 1 = τ 1 (S 0 ) > 0 such that for any τ τ 1 , we have

B 1 2 τ λϕ 0 ∂Ω (∂ x2 Q) 2 dΓ -τ λϕ 0 ∂Ω (∂ x1 Q) 2 dΓ + 3 4 τ 3 λ 3 ϕ 3 0 ∂Ω Q 2 dΓ 1 2 τ λϕ 0 ∂Ω (∂ x2 Q) 2 dΓ + 2πτ λϕ 0 k∈Z 3 4 τ 2 λ 2 ϕ 2 0 -k 2 |a k (Q)| 2 . (4.14)
Using (4.3) and (4.2), there exist

C 1 = C 1 ( ψ), C 2 = C 2 ( ψ), τ 2 = τ 2 (S 0 , ψ) and λ 1 = λ 1 ( ψ) such that for λ λ 1 and τ τ 2 , τ Ω 2∇ 2 ϕ(∇Q, ∇Q) + ∆ϕ|∇Q| 2 dx + τ 3 Ω 2∇ 2 ϕ(∇ϕ, ∇ϕ) -|∇ϕ| 2 ∆ϕ |Q| 2 dx -τ Ω (∆ 2 ϕ)|Q| 2 dx C 1 Ω τ λ 2 ϕ |∇Q| 2 + τ 3 λ 4 ϕ 3 |Q| 2 dx -C 2 ω0 τ λ 2 ϕ |∇Q| 2 + τ 3 λ 4 ϕ 3 |Q| 2 dx. (4.15)
Finally, combining (4.13), (4.14) and (4.15), we deduce the existence of λ 0 > 0 and τ 0 > 0 such that for any λ λ 0 and τ τ 0 , there exist C 3 = C 3 (λ, ψ, S 0 ) > 0 and C 4 = C 4 (λ, ψ, S 0 ) > 0 such that

D ϕ Q 2 L 2 (Ω) 1 2 (S + A)Q 2 L 2 (Ω) -RQ 2 L 2 (Ω) Re (SQ, AQ) L 2 (Ω) -RQ 2 L 2 (0,1) C 3 Ω τ |∇Q| 2 + τ 3 |Q| 2 dx + τ ∂Ω (∂ x2 Q) 2 dΓ + τ k∈LFτ (τ 2 + k 2 )|a k (Q)| 2 -C 4 ω0 τ |∇Q| 2 + τ 3 |Q| 2 dx + τ k∈HFτ k 2 |a k (Q)| 2 .
Applying the above result to Q = q solution of (4.8) and integrating into (0, S 0 ), we deduce that

τ 3 q 2 L 2 (Z) + τ ∇q 2 L 2 (Z) + τ |∂ x2 q| 2 L 2 ((0,S0)×∂Ω) + k∈LFτ τ (τ 2 + k 2 )|a k (q)| 2 L 2 (0,S0) C τ 3 q 2 L 2 ((0,S0)×ω0) + τ ∇q 2 L 2 ((0,S0)×ω0) + k∈HFτ τ (τ 2 + k 2 )|a k (q)| 2 L 2 (0,S0) . (4.16)
We recall that q(s, •) ≡ 0 if |s -s 0 | S 0 /6 due to the support of χ (see (3.16)). Next, we will estimate the high tangential frequencies of the pressure.

Estimates in the high frequency regime

We define Y := (0, S 0 ) × (0, 1), I i := (0, S 0 ) × {i}, i = 0, 1.

We recall that (u, p) is defined by (3.17) and (f 1 , f 2 , f 3 ) is defined by (3.19). We define

(u k , p k , f k 1 , f k 2 , f k 3 ) the Fourier coefficients of (u, p, f 1 , f 2 , f 3 ) in the x 1 direction. For instance u k (s, x 2 ) := 1 2π 2π 0 u(s, x 1 , x 2 )e -ikx1 dx 1 ((s, x 2 ) ∈ Y ).
Finally, with τ > 0 and ϕ 0 defined by (4.3), we set

w k = e τ ϕ0 u k , π k = e τ ϕ0 p k , h k i = e τ ϕ0 f k i (i = 1, 2, 3). ( 4 

.17)

Note that h k i are the Fourier coefficients of the functions h i defined by (4.9). Since ϕ 0 only depends on s, and using (4.3), (4.4), we have

a k (q) = (π k ) |I0 (π k ) |I1 . (4.18)
Let us define the following conjugated operators:

Q k,ϕ0 := e τ ϕ0 (-∂ 2 s -∂ 2 x2 + k 2 )e -τ ϕ0 = -∂ 2 s -∂ 2 x2 + k 2 + 2τ ϕ 0 ∂ s -τ 2 (ϕ 0 ) 2 + τ ϕ 0 , S k,ϕ0 := e τ ϕ0 (-∂ 2 s + k 2 )e -τ ϕ0 = -∂ 2 s + k 2 + 2τ ϕ 0 ∂ s -τ 2 (ϕ 0 ) 2 + τ ϕ 0 .
Then, for k ∈ Z, (3.18) transforms into

               Q k,ϕ0 w k 1 + ikπ k = h k 1 in Y, Q k,ϕ0 w k 2 + ∂ x2 π k = h k 2 in Y, div k w k = 0 in Y, w k 1 = 0 on I 0 ∪ I 1 , w k 2 = 0 on I 0 , S k,ϕ w k 2 = h k 3 + π k on I 1 , (4.19) 
where

div k f 1 f 2 = ikf 1 + ∂ x2 f 2 .
The relation (3.20) yields

w k = 0 and π k = 0 if s / ∈ 1 3 S 0 , 2 3 S 0 . (4.20) 
Proposition 4.3. If the solution of (4.19) satisfies (4.20), then there exist λ 3 = λ 3 (S 0 ) > 0 and C(S 0 ) > 0 such that for any λ λ 3 and k ∈ HF τ ,

π k L 2 (I0∪I1) C (k 2 + τ 2 ) 1/4 h k 1 L 2 (Y ) + h k 2 L 2 (Y ) + h k 3 L 2 (I1) .
Proof. We multiply the first line (4. 

Y |∂ s w k | 2 dy + Y |∂ x2 w k | 2 dy + k 2 Y |w k | 2 dy -τ 2 Y (ϕ 0 ) 2 |w k | 2 dy + I1 |∂ s w k 2 | 2 ds + k 2 I1 |w k 2 | 2 ds -τ 2 I1 (ϕ 0 ) 2 |w k 2 | 2 ds = Re Y h k 1 w k 1 dy + Re Y h k 2 w k 2 dy + Re I1 h k 3 w k 2 ds. (4.21)
Now, since k ∈ HF τ , we have

k 2 > τ 2 2 inf |∂ x2 ϕ| 2 = τ 2 2 λ 2 e -2s 2 0 .
On the other hand, sup

[0,S0] |ϕ 0 | S 0 .
From the two previous relations, we deduce the existence of λ 3 = λ 3 (S 0 ) > 0 such that for λ λ 3 and for

k ∈ HF τ k 2 -τ 2 |ϕ 0 | 2 1 2 (τ 2 + k 2 ).
Combining the above relation and (4.21) yields

(τ 2 + k 2 ) ∂ s w k , ∂ x2 w k 2 L 2 (Y ) + (τ 2 + k 2 ) 2 w k 2 L 2 (Y ) + (τ 2 + k 2 ) ∂ s w k 2 2 L 2 (I1) + (τ 2 + k 2 ) 2 w k 2 2 L 2 (I1) h k 1 2 L 2 (Y ) + h k 2 2 L 2 (Y ) + h k 3 2 L 2 (I1) . (4.22)
Now, we write (4.19) under the form

               -∂ 2 s -∂ 2 x2 + k 2 w k 1 + ikπ k = H k 1 in Y, -∂ 2 s -∂ 2 x2 + k 2 w k 2 + ∂ x2 π k = H k 2 in Y, div k w k = 0 in Y, w k 1 = 0 on I 0 ∪ I 1 , w k 2 = 0 on I 0 , -∂ 2 s + k 2 w k 2 = H k 3 + π k on I 1 , (4.23) 
where

H k 1 := -2τ ϕ 0 ∂ s w k 1 + τ 2 (ϕ 0 ) 2 w k 1 -τ ϕ 0 w k 1 + h k 1 , H k 2 := -2τ ϕ 0 ∂ s w k 2 + τ 2 (ϕ 0 ) 2 w k 2 -τ ϕ 0 w k 2 + h k 2 , H k 3 := -2τ ϕ 0 ∂ s w k 2 + τ 2 (ϕ 0 ) 2 w k 2 -τ ϕ 0 w k 2 + +h k 3 .
From (4.22), we deduce

H k 1 L 2 (Y ) + H k 2 L 2 (Y ) + H k 3 L 2 (I1) h k 1 L 2 (Y ) + h k 2 L 2 (Y ) + h k 3 L 2 (I1) . (4.24) 
We multiply the first line (4.23) by -∂ 2 s w k 1 , the second line (4.23) by -∂ 2 s w k 2 , and the last line (4.23) by -∂ 2 s w k 2 . Integrating by parts, summing up and using (4.24) yield

∂ 2 s w k 2 L 2 (Y ) + ∂ s ∂ x2 w k 2 L 2 (Y ) + k 2 ∂ s w k 2 L 2 (Y ) + ∂ 2 s w k 2 2 L 2 (I1) + k 2 ∂ s w k 2 2 L 2 (I1) h k 1 2 L 2 (Y ) + h k 2 2 L 2 (Y ) + h k 3 2 L 2 (I1) . (4.25)
Next, we write (4.23) under the form

                 -∂ 2 x2 + k 2 w k 1 + ikπ k = H k 1 in Y, -∂ 2 x2 + k 2 w k 2 + ∂ x2 π k = H k 2 in Y, div k w k = 0 in Y, w k 1 = 0 on I 0 ∪ I 1 , w k 2 = 0 on I 0 , k 2 w k 2 = H k 3 + π k on I 1 , (4.26) 
where

H k 1 := H k 1 + ∂ 2 s w k 1 , H k 2 := H k 2 + ∂ 2 s w k 2 , H k 3 := H k 3 + ∂ 2 s w k 1 .
From (4.24) and (4.25), we deduce

H k 1 L 2 (Y ) + H k 2 L 2 (Y ) + H k 3 L 2 (I1) h k 1 L 2 (Y ) + h k 2 L 2 (Y ) + h k 3 L 2 (I1) . (4.27) 
The first two lines of (4.26) can be written as

∇ e ikx1 π k = e ikx1 H k 1 H k 2 + ∆ e ikx1 w k (4.28) 
and thus

∇ e ikx1 π k H -1 (Ω) e ikx1 H k 1 H k 2 H -1 (Ω) + ∇ e ikx1 w k L 2 (Ω) (4.29) 
and using that k = 0, we deduce from the above estimate that 

e ikx1 π k H -1 (Ω) e ikx1 H k 1 H k 2 H -1 (Ω) + ∇ e ikx1 w k L 2 (Ω) . ( 4 
H k 1 L 2 (0,1) + H k 2 L 2 (0,1) + k ∇ e ikx1 w k L 2 (Ω) (4.31) 
and thus, with (4.27) and (4.22),

k π k L 2 (Y ) h k 1 L 2 (Y ) + h k 2 L 2 (Y ) + h k 3 L 2 (I1) . (4.32) 
On the other hand, differentiating the divergence equation of system (4.26) with respect to x 2 and using (4.22), (4.27) yield

∂ 2 x2 w k 2 L 2 (Y ) + ∂ x2 π k L 2 (Y ) h k 1 L 2 (Y ) + h k 2 L 2 (Y ) + h k 3 L 2 (I1) .
Then, combining the above relation with (4.32) and with a trace inequality, we deduce

π k L 2 (I0∪I1) 1 k 1/2 h k 1 L 2 (Y ) + h k 2 L 2 (Y ) + h k 3 L 2 (I1) .
Using that k ∈ HF τ , we deduce the result.

Proof of Theorem 4.1

From Proposition 4.3 and from (4.18), for k ∈ HF τ

(τ 2 + k 2 ) a k (q) 2 L 2 (0,S0) k 2 h k 1 2 L 2 (Y ) + h k 2 2 L 2 (Y ) + h k 3 2 L 2 (I1)
and thus, with the Parceval formula,

k∈HFτ (τ 2 + k 2 )|a k (q)| 2 L 2 (0,S0) ∂ x1 h 1 2 L 2 (Z) + ∂ x1 h 2 2 L 2 (Z) + |∂ x1 h 3 | 2 L 2 (J1) ,
where we have used (4.17) and (4.9). Combining this estimate with (4.16) we finally obtain the sought result.

Proof of the spectral inequality

The proof of the spectral inequality, that is (3.12) is based on interpolation estimates. More precisely, it will be a consequence of Theorem 5.3 stated below. In order to show such a result, we first recall some interpolation inequalities available in the literature and then we combine them with the global pressure estimates, that is Theorem 4.1 to show Theorem 5.3. The last part of this section is devoted to the proof of the spectral inequality from the interpolation inequality. First, we need the following notation for this section:

O 0 := s 0 - S 0 6 , s 0 + S 0 6 × ω 0 , O := s 0 - S 0 5 , s 0 + S 0 5 × ω, (5.1) 
Z := s 0 - S 0 10 , s 0 + S 0 10 × Ω, J 1 := s 0 - S 0 10 , s 0 + S 0 10 × Γ 1 , (5.2) 
Z := s 0 - S 0 9 , s 0 + S 0 9 × Ω, J 1 := s 0 - S 0 9 , s 0 + S 0 9 × Γ 1 . (5.3) 
Note that Z ⊂ Z and J 1 ⊂ J 1 .

Estimates on the velocity

The two components of the velocity satisfy different boundary conditions (see (3.15)). We start by an estimate on the first component U 1 that satisfies homogeneous Dirichlet boundary conditions. For the proof of this result, we refer to relation (1) in Section 3 of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

Theorem 5.1. There exist C 1 > 0 and µ 1 ∈ (0, 1) such that for all w ∈ H 2 (Z) such that w

| J 0 ∪J 1 = 0, w H 1 ( Z) C 1 w 1-µ1 H 1 ( Z) ∆ z w L 2 ( Z) + w L 2 (O0) µ1 . (5.4) 
Note that Theorem 5.1 is stated with an H 1 observation in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], but we can transform it into an L 2 observation as in (5.4) by using a cut-off function and integrations by parts.

For the estimate of U 2 , we note that it satisfies a Ventcel boundary condition on J 1 and the Dirichlet boundary condition on J 0 . Hence, we use the following result, which is basically a consequence of a Carleman estimate obtained in [START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF]. However for the sake of completeness, we prove the next result in Appendix A.

Theorem 5.2. There exist C 2 > 0 and µ 2 ∈ (0, 1) such that

w H 1 ( Z) + |w| H 1 ( J1) C 2 w H 1 ( Z) + |w| H 1 ( J1) 1-µ2 × ∆ z w L 2 ( Z) + (∂ x2 w) | J 1 -∆ x1,s w | J 1 L 2 ( J1) + w L 2 (O0) µ2 . (5.5) 
for all w ∈ H 2 (Z) such that w | J 0 = 0 and w | J 1 ∈ H 2 (J 1 ).

Note that both Theorem 5.1 and Theorem 5.2 hold for µ 3 ∈ (0, 1) such that µ 3 µ 1 and µ 3 µ 2 (with a modification of the constants C 1 and C 2 ). Thus, with µ 3 = min(µ 1 , µ 2 ) and an adequate constant C 3 , we can apply Theorem 5.1 with w = U 1 and Theorem 5.2 with w = U 2 , where U satisfies (3.15) and we deduce

U H 1 ( Z) + |U 2 | H 1 ( J1) C 3 U H 1 ( Z) + |U 2 | H 1 ( J1) 1-µ3 × ∇P L 2 ( Z) + P |J1 -m I (P ) L 2 ( J1) + U L 2 (O0) µ3 . (5.6)
We have used here the fact that on J 1 ,

∂ x2 U 2 = -∂ x1 U 1 = 0.
We are going now to combine the above estimate with the estimates of the pressure terms obtained in Section 4.

Patching the estimates together

Combining the previous estimates, we can now prove the following result.

Theorem 5.3. There exist C > 0 and µ ∈ (0, 1) such that for any Λ > 0 and for any (a j ) j ∈ C N , the function U defined by (3.13) satisfies

U H 1 ( Z) + |U 2 | H 1 ( J1) C U H 2 (Z) + |U 2 | H 2 (J1) 1-µ U µ H 2 (O0) .
Proof. We start with the estimate (4.10), where we recall that q is given by (3.17), (4.4) and h i , i = 1, 2, 3 by (4.9):

τ 3 e τ ϕ χP 2 L 2 (Z) + τ e τ ϕ χ∇P 2 L 2 (Z) + τ 3 |e τ ϕ0 χ(P -m I (P ))| 2 L 2 (J1) + τ |e τ ϕ0 χ∂ x1 P | 2 L 2 (J1) + τ |e τ ϕ0 χ∂ x2 P | 2 L 2 (J1) C τ 3 e τ ϕ P 2 L 2 (O0) + τ e τ ϕ ∇P 2 L 2 (O0) + τ e τ ϕ0 ∂ x1 f 1 2 L 2 (Z) + τ e τ ϕ0 ∂ x1 f 2 2 L 2 (Z) + τ |e τ ϕ0 ∂ x1 f 3 | 2 L 2 (J1) . (5.7)
Note that f 1 , f 2 (respectively f 3 ) are supported in 

e τ ϕ0 ∂ x1 f 1 L 2 (Z) + e τ ϕ0 ∂ x1 f 2 L 2 (Z) + |e τ ϕ0 ∂ x1 f 3 | L 2 (J1) Ce τ e -S 2 0 36 U H 2 (Z) + |U 2 | H 2 (J1) .
(5.9)

In Z (respectively in J 1 ), χ(s) ≡ 1, and

inf Z ϕ = inf Z ϕ 0 = inf J1 ϕ 0 = e -S 2 0 
81 .

(5.10)

Combining (5.7), (5.9) and (5.10), there exist τ 4 , c 1 , c 2 > 0 such that for all τ τ 4 , we have

∇P 2 L 2 ( Z) + |(P -m I (P ))| 2 L 2 ( J1) e c1τ P 2 L 2 (O0) + ∇P 2 L 2 (O0) + e -c2τ U H 2 (Z) + |U 2 | H 2 (J1) . (5.11)
On the other hand, we deduce from (5.6) and a Young inequality that

U H 1 ( Z) + |U 2 | H 1 ( J1) C 4 e - µ 3 c 2 2(1-µ 3 ) τ U H 1 ( Z) + |U 2 | H 1 ( J1) + e c 2 2 τ ∇P L 2 ( Z) + P |J1 -m I (P ) L 2 ( J1) + U L 2 (O0)
and combining this relation with (5.11), we deduce the existence of c 3 , c 4 > 0 such that for all τ τ 4

U H 1 ( Z) + |U 2 | H 1 ( J1) e -c3τ U H 2 (Z) + |U 2 | H 2 (J1) + e c4τ P 2 L 2 (O0) + ∇P 2 L 2 (O0) + U L 2 (O0)
Now, we can use c P in (3.13) so that for all s ∈ [0, S 0 ], ω0 P (s, x) dx = 0 and using the Poincaré-Wirtinger inequality, we deduce that

P 2 L 2 (O0) ∇P 2 L 2 (O0) ∆ z U L 2 (O0) .
We deduce that for some constants c 5 , c 6 > 0, for all τ τ 4 ,

U H 1 ( Z) + |U 2 | H 1 ( J1) e -c5τ U H 2 (Z) + |U 2 | H 2 (J1) + e c6τ U H 2 (O0) .
Optimizing this inequality with respect to τ τ 4 (see, for instance, [START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF]Lemma 8.4]) allows us to conclude the proof of Theorem 5.3.

From the interpolation inequality to the spectral inequality

Using Theorem 5.3, we are now in a position to prove Theorem 3.2. This inequality combined with Theorem 2.1 yields the main result of the article (Theorem 1.1).

Proof of Theorem 3.2. From (3.8) and (3.1), we deduce that

U 2 H 1 ( Z) + |U 2 | 2 H 1 ( J1) U 2 L 2 ( Z) + |U 2 | 2 L 2 ( J1) s0+ S 0 10 s0- S 0 10 λj Λ |a j | 2 cosh( √ λ j s) 2 ds λj Λ |a j | 2 and U 2 H 2 (Z) + |U 2 | 2 H 2 (J1) e C √ Λ λj Λ |a j | 2
Combining Theorem 5.3 with the previous relations, we deduce that A Proof of Theorem 5.2

A.1 A Carleman estimate

The proof of Theorem 5.2 is mainly based on a Carleman estimate obtained in [START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF] that we recall here. We recall that Z, J 1 , J 0 are defined by (3.14) whereas Z and J 1 are defined by (5.2). In what follows, we consider z 0 ∈ J 1 , an open neighborhood V of z 0 in Z and a weight function ϕ ∈ C ∞ (V ). For any σ ∈ R, we define

p ϕ,σ (z, ξ, τ ) = |ξ| 2 -τ 2 |∇ z ϕ(z)| 2 -σ 2 + 2iτ ξ • ∇ z ϕ(z), (z ∈ V, ξ ∈ R 3 , τ ∈ R).
It is the principal symbol of the conjugated operator associated with -∆ z -σ 2 , that is, of the operator

P ϕ,σ = -e τ ϕ ∆ z + σ 2 e -τ ϕ = -∆ z + 2τ ∇ z ϕ • ∇ z -τ 2 |∇ z ϕ| 2 + τ (∆ z ϕ) -σ 2 .
We assume the following hypotheses on ϕ: sub-ellipticity on V , that is the existence of τ 0 > 0 such that for any z ∈ V , ξ ∈ R 3 , |σ| 1 and τ τ 0 |σ|, p ϕ,σ (z, ξ, τ ) = 0 =⇒ 1 2i {p ϕ,σ , p ϕ,σ } (z, ξ, τ ) > 0.

(A.1)

and the two following conditions to handle Ventcel boundary conditions (see [11, conditions (23) and ( 24)]):

∇ z ϕ = 0 in V , and sup

V ∩ J1 |∇ s,x1 ϕ| ν 0 inf V |∂ x2 ϕ| , (A.2)
for ν 0 > 0 small enough. We recall that the Poisson bracket is defined by p (1) , p (2) = 3 j=1 p (1) ∂ξ j p (2) ∂z j -p (2) ∂ξ j p (1) ∂z j

where we set here z 1 = s, z 2 = x 1 and z 3 = x 2 to simplify. Then we have the following result proved in [START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF]:

Theorem A.1. Assume z 0 ∈ J 1 and V is an open neighborhood of z 0 in Z. Assume also that ϕ ∈ C ∞ (V ) satisfies the conditions (A.1)) and (A.2) for ν 0 small enough. Then, there exist τ 0 > 0 and C > 0 such that for all |σ| 1, for all τ τ 0 |σ| and for all w ∈ C ∞ 0 (V ), First to precise the above statement, by w ∈ C ∞ 0 (V ) we mean that w is the restriction of a C ∞ function with compact support in V 0 where V 0 is an open set of R × I × R such that V 0 ∩ Z = V . Second, we use the above result in the case σ = 1, so that by taking τ 0 large enough, we obtain that for all τ τ 0 and for all w ∈ C ∞ 0 (V ), .

We consider z 0 = (s * , x * 1 , 1) ∈ J 1 ,

V := (s * -δ, s * + δ) × (x * 1 -δ, x * 1 + δ) × (1 -δ, 1] ,
with δ ∈ (0, 1) small enough such that (s * -δ, s * + δ) ⊂ s 0 -S 0 9 , s 0 + S 0 9

(see (5.3)). We also define z * = (s * , x * 1 , 0). Then we define ψ(z) := |z -z * | λ , ϕ = e -λψ .

Lemma A.2. There exists λ 0 > 0 such that for any λ λ 0 , the weight function ϕ satisfies (A.1) and (A.2) on V for some τ 0 = τ 0 (λ).

Proposition 3 . 1 .

 31 The operator A 0 defined by (3.1)-(3.2) has compact resolvents, and is self-adjoint negative on H.

Z 8 :

 8 = (supp χ ) × I × (0, 1) (respectively in J 8 := (supp χ ) × I × {1}), and since supp χ ⊂ [s 0 -S 0 /6, s 0 + S 0/6] 

2 H 2 (U 2 L 2 (

 2222 O0) . Using a cut-off function and integrations by parts, we deduce λj Λ |a j | 2 e C √ Λ O) . and thus Theorem 3.2.

τ 3 e τ ϕ w 2 L 2 2 L 2 2 L 2 2 L 2 2 L 2 2 L 2 2 L 2

 22222222222222 (V ) + τ e τ ϕ ∇ z w (V ) + τ 3 e τ ϕ w |J1 (V ∩ J1) + τ e τ ϕ ∇ s,x1 w |J1 (V ∩ J1) + τ e τ ϕ ∂ x2 w |J1 (V ∩ J1) C e τ ϕ (-∆ z -σ 2 )w (V ) + τ e τ ϕ (∂ x2 w |J1 -∆ s,x1 w |J1 (V ∩ J1) .

τ 3 e τ ϕ w 2 L 2 (V ) + τ e τ ϕ ∇ z w 2 L 2 (V ) + τ 3 e τ ϕ w |J1 2 L 2 ( 2 L 2 ( 2 L 2 ( 2 L 2 ( 2 L 2 (

 22222222222222 V ∩ J1) + τ e τ ϕ ∇ s,x1 w |J1 V ∩ J1) + τ e τ ϕ ∂ x2 w |J1 V ∩ J1) C e τ ϕ ∆ z w V ) + τ e τ ϕ ∂ x2 w |J1 -∆ s,x1 w |J1 V ∩ J1) . (A.3)A.2 Interpolation estimates for the Ventcel boundary conditionUsing the Carleman inequality of the previous section, one can deduce, in a classical way, an interpolation inequality. First let us define the weight function that we are going to use.We consider the following norms on R × I × R:s, x 1 , x 2 λ := s 2

  19) by w k 1 , the second line (4.19) by w k 2 , and the last line (4.19) by w k 2 . Integrating by parts and summing up yield

Proof. We assume that λ 1 in all what follows. First, since ∇ z ψ = 0 in V , we deduce the first point of (A.2). For the second point of (A.2), we first notice that inf

We thus deduce

|∇ s,x1 ϕ| sup

ϕ = e -λ and inf

.

Consequently there exists λ 1 such that the second point of (A.2) holds for λ λ 1 . For (A.1), we compute the Poisson bracket:

From (A.4), there exist positive constants independent of λ such that

In particular there exist C > 0 and λ 0 λ 1 , such that for λ λ 0 ,

and there exists τ 0 = τ 0 (λ) such that for τ τ 0 |σ|,

From now on, the value of λ shall be kept fixed. We define, for β > 0,

Proof. Standard computation shows the existence of r 3 > 1 such that

We consider r 2 ∈ (1, r 3 ). We can also check the existence of r 1 ∈ (0, δ) such that

We consider two cut-off functions χ

Let us consider v ∈ C ∞ (Z) and let us apply the Carleman estimate (A.3) to w = χ 0 χ 1 v ∈ C ∞ 0 (V ). In the right-hand side of this estimate, we have

Note that in supp χ 0 χ 1 , ϕ C 3 := e -λ (1-r1) . The two last terms in the above relation are included in

and on this set, ϕ C 3 or in

and on this set, ϕ C 1 := e -λr2 . Therefore,

and similarly,

There exists r 4 > 0 such that

Then on the set

we have χ 0 χ 1 = 1 and ϕ C 2 := e -λ sup V ψ , with C 2 ∈ (C 1 , C 3 ). Combining this with (A.3), (A.6) and (A.7), we deduce that for all τ τ 0 ,

Optimizing this inequality with respect to τ yields the interpolation inequality for v smooth. A density argument permits to conclude the proof of Lemma A.3.

Proof of Theorem 5.2. By a compactness argument, one can deduce from Lemma A.3 an interpolation result on a neighborhood of J 1 . Then we combine this with classical interpolation estimates (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]) in the interior and at the boundary J 0 where Dirichlet boundary condition hold to conclude. A similar proof is done in [START_REF] Buffe | Stabilization of the wave equation with Ventcel boundary condition[END_REF] (see Lemma 8.3).

.