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Abstract
We are interested by the controllability of a fluid-structure interaction system where the fluid is viscous

and incompressible and where the structure is elastic and located on a part of the boundary of the fluid’s
domain. In this article, we simplify this system by considering a linearization and by replacing the wave/plate
equation for the structure by a heat equation. We show that the corresponding system coupling the Stokes
equations with a heat equation at its boundary is null-controllable. The proof is based on Carleman estimates
and interpolation inequalities. One of the Carleman estimates corresponds to the case of Ventcel boundary
conditions. This work can be seen as a first step to handle the real system where the structure is modeled
by the wave or the plate equation.
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1 Introduction
Fluid-structure interaction systems are important systems for many applications such as aerodynamics, medicine
(for instance the study of the motion of the blood in veins or in arteries), biology (animal locomotion in a fluid),
civil engineering (design of bridges), naval architecture (design of boats and submarines), etc. Moreover, their
mathematical studies can be very challenging due to several difficulties: in particular, the complexity of fluid
equations such as the Navier-Stokes system, the strong coupling between the fluid system and the structure
system and the free-boundary corresponding to the structure displacement.

In this article we consider a simplified fluid-structure interaction system. The corresponding system without
simplification has been proposed in [41] as a model for the blood flow in a vessel. It writes as follows: we denote
by I the torus (in order to consider periodic boundary conditions):

I := R/(2πZ),

and for any deformation ` : I → (−1,∞), we consider the corresponding fluid domain

Ω` = {(x1, x2) ∈ I × R ; x2 ∈ (0, 1 + `(x1))} . (1.1)

Then the equations of motion are
∂tw + (w · ∇)w − divT(w, π) = 0 t > 0, x ∈ Ω`(t),

divw = 0 t > 0, x ∈ Ω`(t),
w(t, x1, 1 + `(t, x1)) = (∂t`)(t, x1)e2 t > 0, x1 ∈ I,

w = 0 t > 0, x ∈ Γ0,

∂tt`+ α1∂
4
x1
`− α2∂

2
x1
`− δ∂t∂2

x1
` = −H̃`(w, π) t > 0, x1 ∈ I,

(1.2)

where
Γ0 = I × {0}, Γ1 = I × {1}.

In the above system, we have used the following notations: (e1, e2) is the canonical basis of R2 and

T(w, π) = 2D(w)− πI2, D(w) =
1

2
(∇w + (∇w)∗) , (1.3)

H̃`(w, π)(t, x1) =
[
(1 + |∂x1

`|2)1/2 [T(w, π)n] (t, x1, 1 + `(t, x1)) · e2

]
. (1.4)

The two first lines of (1.2) correspond to the Navier-Stokes system for the fluid velocity w and the pressure
π. The last line of (1.2) is a beam equation satisfied by the deformation `. We have used the standard no-
slip boundary conditions (third and forth equations). To simplify, we assume that the viscosity of the fluid is
constant and equal to 1. The vector fields n corresponds to the unit exterior normal to Ω`(t).

This system has been studied by many authors: [13] (existence of weak solutions), [7], [30], [21] and [33]
(existence of strong solutions), [43] (stabilization of strong solutions), [4] (stabilization of weak solutions around
a stationary state). There are also some works in the case δ = 0, that is without damping on the beam equation:
the existence of weak solutions is proved in [20] and in [37] (see also [52]). In [22], the existence of local strong
solutions is obtained for a structure described by either a wave equation (α1 = δ = 0 and α2 > 0) or a beam
equation with inertia of rotation (α1 > 0, α2 = δ = 0 and with an additional term −∂ttss`). In [5] and [6],
the authors show the existence and uniqueness of strong solutions in the case α1 > 0, α2 > 0 and δ = 0.
Using similar techniques they also analyze the case of the wave equation (α1 = δ = 0 and α2 > 0) in [1]
showing in particular that the semigroup of the linearized system is analytic. Let us mention also some results
for more complex models: [29, 28] (linear elastic Koiter shell), [38] (dynamic pressure boundary conditions),
[39, 40] (3D cylindrical domain with nonlinear elastic cylindrical Koiter shell), [49] and [50] (nonlinear elastic
and thermoelastic plate equations), [32], [34] (compressible fluids), etc.

The advantage of the damping in the beam equation is that the term −δ∂t∂2
x1
` is a structural damping

so that the corresponding beam equation becomes a parabolic equation (see, for instance, [15]). In this work,
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Figure 1: Our geometry

we consider a simplified model associated with (1.2). We neglect the deformation of the fluid domain due to
the elastic déformation and we also linearized the Navier-Stokes system by only considering the Stokes system.
Moreover, we replace the damped beam equation by a heat equation. By setting

Ω = I × (0, 1)

(see Figure 1), we are thus considering the following system

∂tw −∆w +∇π = 1ωf in (0, T )× Ω,
divw = 0 in (0, T )× Ω,

w = 0 on (0, T )× Γ0,
w = ζe2 on (0, T )× Γ1,

∂tζ − ∂x1x1
ζ = −T(w, π)n · e2 in (0, T )× I,
w(0, ·) = w0 in Ω, ζ(t, 0) = ζ0 in I.

(1.5)

In the above system, ζ corresponds to the displacement velocity ∂t` in (1.2) and we do not consider anymore
the displacement position `. We have added a control f localized in the fluid domain, in an arbitrary small
nonempty open set ω of Ω. Our goal is to show the null-controllability of this simplified system and to do this,
as it is standard (see, for instance, [51, Theorem 11.2.1, p.357]), we prove an observability inequality on the
adjoint system: 

∂tu−∆u+∇p = 0 in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ0,
u = ηe2 on (0, T )× Γ1,

∂tη − ∂x1x1
η = −T(u, p)n|Γ1

· e2 in (0, T )× I,
u(0, ·) = u0 in Ω, η(0, ·) = η0 in I.

(1.6)

We set

L2
0(I) :=

{
f ∈ L2(I) ;

∫ 2π

0

f(x1) dx1 = 0

}
and we define the space

H :=
{

[u, η] ∈ L2(Ω)× L2
0(I) ; u2 = 0 on Γ0, u2 = η on Γ1, div u = 0 in Ω

}
. (1.7)

Then, our main result states as follows:

Theorem 1.1. Let γ > 1 and let ω be a nonempty open set of Ω. Then, there exists C0 > 0 such that for any
T ∈ (0, 1) and for any

[
u0, η0

]
∈ H, the solution [u, η] of (1.6) satisfies

‖[u(T, ·), η(T, ·)]‖2H 6 C0 exp

(
C0

T γ

)∫∫
(0,T )×ω

|u|2 dtdx.

3



In particular, for any
[
w0, ζ0

]
∈ H and for any T > 0, there exists a control f ∈ L2((0, T ) × ω) such that the

solution [w, ζ] of (1.5) satisfies
w(T, ·) = 0, ζ(T, ·) = 0.

Remark 1.2. As explained above, Theorem 1.1 can be seen as a first control result on a simplified model. We
expect to extend some of the tools developed here to handle the control properties of the system (1.2) in future
works. The controllability properties of fluid-structure interaction systems have been tackled mainly in the case
where the structure is a rigid body (see, [42], [18], [31], [23], [9], [8], [45], [17], [16], etc.). In [36], the author
shows an observability inequality for the adjoint of a linearized and simplified fluid-structure interaction system
in the case of a compressible viscous fluid and of a damped beam. Note that the corresponding control problem
involves two controls, one for the fluid and one for the structure.

For the stabilization of fluid-structure interaction systems, one can quote some results: [44], [4] (for the case
of a damped beam), [48], [46], [3], [2] (for the case of a rigid body).

Remark 1.3. The method proposed here to control a system involving the Stokes equations is quite different
from the method used in a large part of the literature for the controllability of fluid systems. In general, the
method is based on “global Carleman inequalities” (see, for instance [19, 24]). Here, we follow another strategy
as in [27, 14]. Such a method is based on local Carleman inequalities for an ”augmented” elliptic operator, from
which one deduces a spectral inequality, in the spirit of [27, 25]. However, as it is pointed out in [14], unique
continuation property does not hold for the augmented operator in the direction of the additional variable, due to
the pressure. We then use an adaptation of the original strategy of [27, 26] in our context. This type of spectral
inequality has already been used in the context of fluids in [12]. We also recall that one can use Theorem 1.1 to
handle nonlinear controllability issues by applying the general method proposed in [31].

Remark 1.4. Using the particular geometry considered here, we can simplify the adjoint system. First on Γ1,
n = e2 and using (1.3), we deduce

− T(u, p)n · e2 = −2∂x2u2 + p = 2∂x1u1 + p = p, (1.8)

since u1(x1, 1) = 0 for x1 ∈ I.
Moreover, using the incompressibility of the fluid and the boundary conditions, we deduce that

0 =

∫
Ω

div u dx =

∫
I
η dx1.

Using this condition on the heat equation on the boundary and (1.8) yields∫
I
p(x1, 1) dx1 = 0. (1.9)

In particular, in contrast with the standard Stokes system, the pressure is not determined up to a constant.

The outline of the article is as follows: in Section 2, we show how to obtain the observability inequality
stated in Theorem 1.1 from a spectral inequality. Such a result is quite standard, but here we show that for a
self-adjoint operator, we do not need the usual assumption that is made on the eigenvalues of the main operator.
Then using this general result, we are reduced to show a spectral inequality that we state in Section 3 along
with the functional framework. The spectral inequality is itself the consequence of an interpolation inequality
that we obtain in Section 5. One of the main difficulties to obtain such an inequality comes from the fact that
we need to estimate the pressure. Section 4 is devoted to such an estimate which is one of the main parts of this
article. The proof of the spectral inequality and thus of Theorem 1.1 is obtained at the end of Section 5. In the
appendix, we show an interpolation estimate for the Ventcel boundary condition that is mainly a consequence
of a Carleman estimate obtained in [11].

Notation 1.5. In the whole paper, we use C as a generic positive constant that does not depend on the other
terms of the inequality. The value of the constant C may change from one appearance to another. We also use
the notation X . Y if there exists a constant C > 0 such that we have the inequality X 6 CY .
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2 From a spectral inequality to the null-controllability
This section is devoted to a “classical” result showing that a spectral inequality implies the final-state observ-
ability and thus the null-controllability. The proof follows closely the proof in [26, 27] and we only prove it here
for sake of completeness and also to show that we do not need any assumption on the asymptotic behavior of
the spectrum of the operator (which is used in the above references).

More precisely, we assume here that A : D(A)→ H is a positive self-adjoint operator with compact resolvents
in an Hilbert space H. We denote by (λj) the nondecreasing sequence of eigenvalues and by (wj) an orthonormal
basis of H composed by eigenvectors of A: Awj = λjwj for j > 1. We also consider a control operator
B ∈ L(U ,H).

Theorem 2.1. Assume the above hypotheses. Assume moreover the existence of S0 > 0, C > 0 and κ ∈
C∞0 (0, S0) such that that for any Λ > 0, and for any (aj)j ∈ CN,

∑
λj6Λ

|aj |2 6 CeC
√

Λ

∫ S0

0

κ2(s)

∥∥∥∥∥∥
∑
λj6Λ

aj cosh(s
√
λj)B

∗w(j)

∥∥∥∥∥∥
2

U

ds. (2.1)

Then for all γ > 1, there exists C0 > 0 such that for any T ∈ (0, 1) and for any z0 ∈ H,

∥∥e−TAz0
∥∥2

H 6 C0 exp

(
C0

T γ

)∫ T

0

∥∥B∗e−tAz0
∥∥2

U dt. (2.2)

We recall that relation (2.2) implies the null-controllability of the system
dθ

dt
+Aθ = Bg in (0, T ),

θ(0) = θ0 ∈ H.
(2.3)

2.1 Controllability of the first modes
We define

HΛ = span {wj , λj 6 Λ} , ΠΛ : H → HΛ the orthogonal projection.

We are interested here by the control problem
dθ

dt
+Aθ = ΠΛBg in (0, τ),

θ(0) = θ0 ∈ HΛ,
(2.4)

for some τ > 0. We consider the linear operator

GΛ :=

∫ S0

0

κ2(s) cosh(s
√
A)ΠΛBB

∗ cosh(s
√
A)ΠΛ ds.

From (2.1), GΛ ∈ L(HΛ) is symmetric, positive and invertible with∥∥G−1
Λ

∥∥
L(HΛ)

6 CeC
√

Λ.

We set
σ := 2− 1

γ
∈ (1, 2).

From [26, Lemma A.1], there exists e ∈ C∞(R) such that for some constants cj

supp e = [0, 1], (2.5)
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|ê(z)| 6 c1e
−c2|z|1/σ if Im(z) 6 0, (2.6)

|ê(z)| > c3e
−c4|z|1/σ if z ∈ iR−. (2.7)

From (2.7), we have that ê(−iτA) ∈ L(HΛ) is invertible and∥∥ê(−iτA)−1
∥∥
L(HΛ)

6
1

c3
ec4(Λτ)1/σ

. (2.8)

Then we define
hΛ(s) := −1

2
κ2(s)B∗ cosh(s

√
A)G−1

Λ ê(−iτA)−1e−τAθ0 (s ∈ R).

We have that hΛ ∈ C∞0 (R,U) with supphΛ ⊂ (0, S0) and

‖hΛ‖L∞(R,U) 6 CeC
√

Λ+c4(Λτ)1/σ ∥∥θ0
∥∥
H . (2.9)

Thus, ĥΛ ∈ Hol(C;U) and ∥∥∥ĥΛ(z)
∥∥∥
U
6 CeC

√
Λ+c4(Λτ)1/σ

eS0|Im(z)| ∥∥θ0
∥∥
H . (2.10)

As in [47], we introduce QΛ ∈ Hol(C;U) such that

QΛ(−iz2) = ĥΛ(iz) + ĥΛ(−iz) (z ∈ C).

We deduce from the above relation and (2.10) that

‖QΛ(z)‖U 6 CeC
√

Λ+c4(Λτ)1/σ

eS0

√
|z| ∥∥θ0

∥∥
H . (2.11)

We define gΛ ∈ Hol(C;U) by
gΛ(z) := ê(τz)QΛ(z).

From (2.5), (2.6) and (2.11), we have

‖gΛ(z)‖U 6 CeC
√

Λ+c4(Λτ)1/σ

eS0

√
|z|eτ | Im z| ∥∥θ0

∥∥
H (z ∈ C) (2.12)

and
‖gΛ(z)‖U 6 CeC

√
Λ+c4(Λτ)1/σ

eS0

√
|z|e−c2τ

1/σ|z|1/σ ∥∥θ0
∥∥
H if Im z 6 0. (2.13)

Since σ < 2, we can use a Paley-Wiener type theorem (see [26, Proposition A.3]) and deduce the existence of
gΛ ∈ C∞0 ((0, τ);U) such that

ĝΛ(z) = gΛ(z).

In particular, from (2.13) and the Laplace method, for all t ∈ (0, τ),

|gΛ(t)| 6 ‖gΛ‖L1(R;U) 6 Ce
C
√

Λ+c4(Λτ)1/σ+ C

τ1/(2−σ)
∥∥θ0
∥∥
H . (2.14)

Now, for any j such that λj 6 Λ,(∫ τ

0

e−(τ−t)ABgΛ(τ − t) dt, wj
)
H

= (BĝΛ(−iλj), wj)H

=
(
ê(−iτA)B

(
ĥΛ(i

√
λj) + ĥΛ(−i

√
λj)
)
, wj

)
H

=

(
ê(−iτA)B

∫ S0

0

hΛ(s)2 cosh(s
√
λj) ds, wj

)
H

= −
(
e−τAθ0, wj

)
H

so that the solution θ of (2.4) with the control g(t) = gΛ(τ − t) satisfies θ(τ) = 0.
By a duality argument and (2.14), this implies that∥∥ΠΛe

−τAz0
∥∥2

6 C1 exp

(
C1

(
1

τγ
+
√

Λ + (Λτ)γ/(2γ−1)

))∫ τ

0

∥∥B∗ΠΛe
−tAz0

∥∥2

U dt. (2.15)
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2.2 Proof of Theorem 2.1
We are now in a position to prove Theorem 2.1, adapting the method of [35].

Proof of Theorem 2.1. We set
z(t) = e−tAz0.

Assume
T (1) > 0, τ > 0, and T (2) = T (1) + τ.

From (2.15)

∥∥∥ΠΛz
(
T (2)

)∥∥∥2

6 C1 exp

(
C1

(
1

(ετ)
γ +
√

Λ + (Λετ)γ/(2γ−1)

))∫ T (2)

T (2)−ετ
‖B∗ΠΛz(t)‖2U dt. (2.16)

We set
Λ =

1

(ετ)
1+γ (2.17)

so that for
τ, ε ∈ (0, 1),

(2.16) becomes

2ρ(τ)
∥∥∥ΠΛz

(
T (2)

)∥∥∥2

6
∫ T (2)

T (2)−ετ
‖B∗ΠΛz(t)‖2U dt (2.18)

with
ρ(τ) :=

1

2C1
exp

(
− 3C1

(ετ)
γ

)
. (2.19)

Then from (2.18), we deduce

ρ(τ)
∥∥∥z (T (2)

)∥∥∥2

6
∫ T (2)

T (2)−ετ
‖B∗z(t)‖2U dt+ C

∥∥∥z (T (1)
)∥∥∥2

H
ετe−2Λτ(1−ε) + ρ(τ)

∥∥∥z (T (1)
)∥∥∥2

H
e−2Λτ (2.20)

For ε > 0 small enough, the above relation yields

ρ(τ)
∥∥∥z (T (2)

)∥∥∥2

H
6
∫ T (2)

T (1)

‖B∗z(t)‖2U dt+ ρ(τ/2)
∥∥∥z (T (1)

)∥∥∥2

H
(2.21)

Assume
T ∈ (0, 1).

Then for all k > 0, (2.21) implies

ρ

(
T

2k+1

)∥∥∥∥z( T2k
)∥∥∥∥2

H
6
∫ T

2k

T

2k+1

‖B∗z(t)‖2U dt+ ρ

(
T

2k+2

)∥∥∥∥z( T

2k+1

)∥∥∥∥2

H
(2.22)

and thus

ρ

(
T

2

)
‖z (T )‖2H 6

∫ T

0

‖B∗z(t)‖2U dt. (2.23)

Thus for some constant C2 > 0,

‖z (T )‖2H 6 C2 exp

(
C2

T γ

)∫ T

0

‖B∗z(t)‖2U dt. (2.24)
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3 Functional framework and spectral inequality
In order to prove Theorem 1.1, we are going to apply Theorem 2.1. In this section, we first give the functional
framework associated with (1.6). Then we write the spectral inequality that will be proven in the remaining
part of the article.

3.1 Functional framework
We recall that H is defined by (1.7). We also define

V :=
{

[u, η] ∈
(
H1(Ω)×H1(I)

)
∩H ; u1 = 0 on ∂Ω

}
.

We denote by P0 the orthogonal projection from L2(Ω) × L2
0(I) onto H. We now define the linear operator

A0 : D(A0) ⊂ H → H by
D(A0) := V ∩

[
H2(Ω)×H2(I)

]
, (3.1)

and for
[
u, η
]
∈ D(A0), we set

A0

[
u
η

]
:= P0

 ∆u

∂2
x1
η

 . (3.2)

Then one can check that (1.6) writes {
dz

dt
= A0z in (0, T ),

z(0) = z0.

with z = [u, η], z0 = [u0, η0]. In the next proposition, we show in particular that A0 is the infinitesimal generator
of a semigroup so that z(t) = etA0z0 for t > 0.

Proposition 3.1. The operator A0 defined by (3.1)–(3.2) has compact resolvents, and is self-adjoint negative
on H.

Proof. By definition of A0, we have for any [u, η], [v, ζ] ∈ D(A0),〈
A0

[
u
η

]
,

[
v
ζ

]〉
H

=

∫
Ω

∆u · v dx+

∫ 2π

0

(
∂2
x1
η
)
ζ dx1 = −

∫
Ω

∇u : ∇v dx−
∫ 2π

0

(∂x1η) (∂x1ζ) dx1.

Thus A0 is symmetric and negative (by using the Poincaré inequalities).
In order to show that A0 is self-adjoint it is sufficient to show that it is onto. Assume [f, g] ∈ H and let us

solve the equation

−A0

[
u
η

]
= [f, g]. (3.3)

Multiplying the above equation by [v, ζ] ∈ V leads to the weak formulation∫
Ω

∇u : ∇v dx+

∫ 2π

0

(∂x1η) (∂x1ζ) dx1 =

∫
Ω

f · v dx+

∫ 2π

0

gζ dx1 ([v, ζ] ∈ V). (3.4)

Using the Poincaré inequalities, we see that we can apply the Riesz theorem and deduce the existence and
uniqueness of [u, η] ∈ V solution of (3.4). Then if v ∈ C∞c (Ω) with div v = 0 and ζ = 0 in (3.4), we obtain that∫

Ω

∇u : ∇v dx =

∫
Ω

f · v dx (v ∈ C∞c (Ω), div v = 0). (3.5)

8



Using the De Rham theorem, we deduce the existence of p such that
−∆u+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ0

u = ηe2 on Γ1.

(3.6)

Using the elliptic regularity of the Stokes system, we deduce that (u, p) ∈ H3/2(Ω)×H1/2(Ω). Multiplying the
first above equation by v, with [v, ζ] ∈ V, we deduce that for any ζ ∈ H1(I) ∩ L2

0(I),∫ 2π

0

(∂x1η) (∂x1ζ) dx1 = −〈p|Γ1
, ζ〉+

∫ 2π

0

gζ dx1. (3.7)

Since p|Γ1
= ([pI3 −∇u]n)|Γ1

∈ H−1/2(I), we deduce that η ∈ H3/2(I) and from (3.6) that (u, p) ∈ H2(Ω) ×
H1(Ω). Thus p|Γ1

∈ H1/2(I), and from (3.7), we deduce that η ∈ H2(I). We conclude that [u, η] ∈ D(A0) and
satisfies (3.3).

The fact that A0 has compact resolvents is coming from the compact embedding of H2 into L2 for bounded
domains.

In particular, the eigenvalues λj > 0 of −A0 satisfy λj →∞ and there exists([
u(j)

η(j)

])
j

orthonormal basis of H (3.8)

composed by eigenvectors of A0:

−A0

[
u(j)

η(j)

]
= λj

[
u(j)

η(j)

]
(3.9)

The above system can be written as 

−∆u(j) +∇p(j) = λju
(j)

div u(j) = 0

u(j) = 0 on Γ0

u(j) = η(j)e2 on Γ1

−∂2
x1
η(j) − p(j) = λjη

(j) in I

(3.10)

and more precisely as 

−λju(j)
1 − (∂2

x1
+ ∂2

x2
)u

(j)
1 + ∂x1

p(j) = 0

−λju(j)
2 − (∂2

x1
+ ∂2

x2
)u

(j)
2 + ∂x2

p(j) = 0

∂x1u
(j)
1 + ∂x2u

(j)
2 = 0

u
(j)
1 = 0 on ∂Ω

u
(j)
2 = 0 on Γ0

−λju(j)
2 − ∂2

x1
u

(j)
2 = p(j) on Γ1.

(3.11)

3.2 Spectral inequality
We are now in a position to state the spectral inequality for the operator A0 defined in the previous section.

Theorem 3.2. Let ω0 be a nonempty open subset of Ω and S0 > 0. There exist C > 0 and κ ∈ C∞0 (0, S0) such
that for any Λ > 0, and for any (aj)j ∈ CN,

∑
λj6Λ

|aj |2 6 CeC
√

Λ

∫ S0

0

κ2(s)

∥∥∥∥∥∥
∑
λj6Λ

aj cosh(s
√
λj)u

(j)

∥∥∥∥∥∥
2

L2(ω)

ds. (3.12)
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In order to prove Theorem 3.2, we define for s ∈ (0, S0) and x ∈ Ω,

U(s, x) :=
∑
λj6Λ

aj cosh(
√
λjs)u

(j)(x), P (s, x) :=
∑
λj6Λ

aj cosh(
√
λjs)p

(j)(x) + cP (s) (3.13)

and the domains

Z := (0, S0)× Ω = (0, S0)× I × (0, 1), Ji := (0, S0)× Γi = (0, S0)× I × {i} (i = 0, 1). (3.14)

From (3.11), we deduce that 

−∂2
sU1 − (∂2

x1
+ ∂2

x2
)U1 + ∂x1

P = 0 in Z,
−∂2

sU2 − (∂2
x1

+ ∂2
x2

)U2 + ∂x2
P = 0 in Z,

∂x1U1 + ∂x2U2 = 0 in Z,
U1 = 0 on J0 ∪ J1

U2 = 0 on J0,
−∂2

sU2 − ∂2
x1
U2 = P −mI(P ) on J1.

(3.15)

In the above system, we write

mI(P ) :=
1

2π

∫ 2π

0

P (x1, 1) dx1

and by using this notation in the last equation of (3.15), we can replace the pressure that should satisfies a
relation of the form (1.9) by the pressure P defined up to a function cP of s. In that way, we can, in what
follows, impose another condition on P (typically that its mean on an open set is zero).

To show Theorem 3.2, we first truncate U and P in a neighborhood of {s = s0}, with

s0 :=
S0

2
.

We thus consider χ ∈ C∞0 ((0, S0)), satisfying 0 6 χ 6 1 and

χ(s) =

{
1 if |s− s0| 6 S0/8,

0 if |s− s0| > S0/6.
(3.16)

We work with the following localized solutions

u(s, x1, x2) := χ(s)U(s, x1, x2), p(s, x1, x2) := χ(s)P (s, x1, x2) (3.17)

that satisfy 

−∂2
su1 − (∂2

x1
+ ∂2

x2
)u1 + ∂x1p = f1 in Z

−∂2
su2 − (∂2

x1
+ ∂2

x2
)u2 + ∂x2

p = f2 in Z
∂x1

u1 + ∂x2
u2 = 0 in Z

u1 = 0 on J0 ∪ J1

u2 = 0 on J0

−∂2
su2 − ∂2

x1
u2 = f3 + p−mI(p) on J1,

(3.18)

where

f1 := −χ′′U1 − 2χ′∂sU1, f2 := −χ′′U2 − 2χ′∂sU2, f3 := −χ′′(U2)|J1
− 2χ′(∂sU2)|J1

. (3.19)

We also have that
u = 0 and p = 0 if s /∈

[
1

3
S0,

2

3
S0

]
. (3.20)

As usual, we can use the three first equations to obtain the following equation for the pressure:

−∆p = −(∂2
x1

+ ∂2
x2

)p = ∂x1f1 + ∂x2f2 = 0. (3.21)
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4 A global observability estimate on the pressure
In this section, we prove a global estimate on the pressure. We first introduce our weight and the corresponding
conjugated operators. We then state our main result, that is Theorem 4.1. Then we show a first estimate on the
pressure involving high frequency pressure terms at the boundary. Such terms are then estimated by showing
some a priori estimates and this allows us to prove Theorem 4.1.

4.1 Choice of the weight and conjugated operators
Let us consider a nonempty open set ω0 such that ω0 ⊂ ω. Let

λ > 0, τ > 0.

Then we consider ψ̃ ∈ C∞(Ω;R+), such that

ψ̃(x1, x2) = 1− x2 in a neighborhood of {x2 = 1}, and ψ̃(x1, x2) = x2 in a neighborhood of {x2 = 0} (4.1)

and such that all its critical points belong to ω0:

∇ψ̃(x) = 0 =⇒ x ∈ ω0. (4.2)

We set
ϕ(s, x) := eλψ̃(x)−(s−s0)2

, ϕ0(s) := e−(s−s0)2

. (4.3)

Note that with our above choices,

ϕ0(s) = ϕ(s, ·, 0) = ϕ(s, ·, 1) = min
x∈Ω

ϕ(s, x).

We recall that we define (u, p) from (U,P ) by (3.17) (truncation in s) and that the source fi are defined by
(3.19). We then define

v := eτϕu, q := eτϕp, gi := eτϕfi (i ∈ {1, . . . , 3}). (4.4)

In order to take into account the dependence in s, we write

z = (s, x) = (s, x1, x2) ∈ Z, ∇z =

 ∂s∂x1

∂x2

 , ∆z = ∂2
s + ∂2

x1
+ ∂2

x2
,

and their tangential counterparts

∇s,x1 =

[
∂s
∂x1

]
, ∆s,x1 = ∂2

s + ∂2
x1
.

We keep our previous notation

∇ =

[
∂x1

∂x2

]
, ∆ = ∂2

x1
+ ∂2

x2
.

The equations satisfied by v and q can be written with the introduction of the following conjugated operators:

Qϕ := −eτϕ∆ze
−τϕ = −∆z + 2τ∇zϕ · ∇z − τ2|∇zϕ|2 + τ(∆zϕ), (4.5)

Dϕ := −eτϕ∆e−τϕ = −∆ + 2τ (∇ϕ) · ∇ − τ2|∇ϕ|2 + τ(∆ϕ), (4.6)

Sϕ := −eτϕ0∆s,x1e
−τϕ0 = −∆s,x1 + 2τ(∂sϕ0)∂s − τ2(∂sϕ0)2 + τ(∂2

sϕ0). (4.7)

Then we deduce from (3.18) and (3.21) the following conjugated system:

Qϕv1 + eτϕ∂x1
p = g1 in Z,

Qϕv2 + eτϕ∂x2p = g2 in Z,
Dϕq = 0 in Z,
v1 = 0 on J0 ∪ J1,
v2 = 0 on J0,
Sϕv2 = g3 + q −mI(q) on J1.

(4.8)
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We define hi by
hi := eτϕ0fi (i = 1, 2, 3). (4.9)

The main result of this section is the following result.

Theorem 4.1. There exist λ0 = λ0(ψ̃, S0) > 0 and τ0 = τ0(ψ̃, S0) > 0 such that for any λ > λ0 and τ > τ0,
there exists C = C(λ, ψ̃, S0) > 0 such that for any Λ > 0 and for any (aj)j ∈ CN, the function q defined by
(3.13), (3.17) and (4.4) satisfies

τ3‖q‖2L2(Z) + τ‖∇q‖2L2(Z) + τ3 |q −mI(q)|2L2(J1) + τ |∇q|2L2((0,S0)×∂Ω)

6 C
(
τ3‖q‖2L2((0,S0)×ω0) + τ‖∇q‖2L2((0,S0)×ω0) + τ

(
‖∂x1

h1‖2L2(Z) + ‖∂x1
h2‖2L2(Z) + |∂x1

h3|2L2(J1)

))
. (4.10)

We prove this theorem in the remainder of this section.

4.2 A first estimate on the pressure
In order to prove Theorem 4.1, we exploit that q satisfies the third equation of (4.8), where Dϕ is defined by
(4.6). Since we do not have any boundary condition, we need to split the boundary value of q into high and low
frequencies. More precisely, for Q ∈ H2(Ω), we introduce the Fourier coefficients of the trace of Q :

ak(Q) :=


1

2π

∫ 2π

0

Q(x1, 0)e−ikx1 dx1

1

2π

∫ 2π

0

Q(x1, 1)e−ikx1 dx1

 (k ∈ Z). (4.11)

We then define the sets of low tangential frequencies and high tangential frequencies:

LFτ := {k ∈ Z, k2 6
τ2

2
inf |∂x2ϕ|2}, HFτ := {k ∈ Z, k2 >

τ2

2
inf |∂x2ϕ|2}.

In the above definition, the infimum of ∂x2
ϕ is taken for x ∈ ∂Ω and s ∈ [0, S0].

Due to (4.1) and (4.3), we have
inf |∂x2

ϕ| = λe−s
2
0 .

Proposition 4.2. There exist λ0 = λ0(ψ̃, S0) > 0 and τ0 = τ0(ψ̃, S0) > 0 such that for any λ > λ0 and τ > τ0,
there exists C = C(λ, ψ̃, S0) > 0 such that for any s ∈ [0, S0], and any Q ∈ H2(Ω),

τ3‖Q‖2L2(Ω) + τ‖∇Q‖2L2(Ω) + τ |∂x2
Q|2L2(∂Ω) +

∑
k∈LFτ

τ(τ2 + k2)|ak(Q)|2

6 C

(
‖DϕQ‖2L2(Ω) + τ3‖Q‖2L2(ω0) + τ‖∇Q‖2L2(ω0) +

∑
k∈HFτ

τ(τ2 + k2)|ak(Q)|2
)
. (4.12)

Proof. We can decompose the operator Dϕ (see (4.6)) as follows Dϕ = S +A+R, where

S = −∆− τ2|∇ϕ|2, A = 2τ∇ϕ · ∇+ 2τ(∆ϕ), R = −τ(∆ϕ).

Then, after some standard computation, we can obtain that∫
Ω

(SQ)(AQ)dx = τ

∫
Ω

(
2∇2ϕ(∇Q,∇Q) + ∆ϕ|∇Q|2

)
dx+ τ3

∫
Ω

(
2∇2ϕ(∇ϕ,∇ϕ)− |∇ϕ|2∆ϕ

)
|Q|2dx

− τ
∫

Ω

(∆2ϕ)|Q|2dx+ B, (4.13)
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where

∇2ϕ =

(
∂2ϕ

∂xi∂xj

)
i,j

and where B corresponds to the boundary terms:

B = −2τ

∫
∂Ω

∂nQ(∇ϕ · ∇Q)dΓ + τ

∫
∂Ω

(∂nϕ)|∇Q|2dΓ− 2τ

∫
∂Ω

(∆ϕ)(∂nQ)QdΓ

+ τ

∫
∂Ω

(∂n∆ϕ)Q2dΓ− τ3

∫
∂Ω

|∇ϕ|2(∂nϕ)Q2dΓ.

Using (4.1), we have that ∂nϕ < 0 and we can simplify the above quantity:

B = τ

∫
∂Ω

|∂x2
ϕ| (∂x2

Q)
2
dΓ− τ

∫
∂Ω

|∂x2
ϕ| (∂x1

Q)
2
dΓ− 2τ

∫
∂Ω

(∂2
x2
ϕ)(n · e2)(∂x2

Q)QdΓ

+ τ

∫
∂Ω

(∂3
x2
ϕ)(n · e2)Q2dΓ + τ3

∫
∂Ω

|∂x2
ϕ|3Q2dΓ.

Combining the above relation with (4.3), there exists τ1 = τ1(S0) > 0 such that for any τ > τ1, we have

B >
1

2
τλϕ0

∫
∂Ω

(∂x2
Q)

2
dΓ− τλϕ0

∫
∂Ω

(∂x1
Q)

2
dΓ +

3

4
τ3λ3ϕ3

0

∫
∂Ω

Q2dΓ

>
1

2
τλϕ0

∫
∂Ω

(∂x2
Q)

2
dΓ + 2πτλϕ0

∑
k∈Z

(
3

4
τ2λ2ϕ2

0 − k2

)
|ak(Q)|2. (4.14)

Using (4.3) and (4.2), there exist C1 = C1(ψ̃), C2 = C2(ψ̃), τ2 = τ2(S0, ψ̃) and λ1 = λ1(ψ̃) such that for λ > λ1

and τ > τ2,

τ

∫
Ω

(
2∇2ϕ(∇Q,∇Q) + ∆ϕ|∇Q|2

)
dx+ τ3

∫
Ω

(
2∇2ϕ(∇ϕ,∇ϕ)− |∇ϕ|2∆ϕ

)
|Q|2dx− τ

∫
Ω

(∆2ϕ)|Q|2dx

> C1

∫
Ω

(
τλ2ϕ |∇Q|2 + τ3λ4ϕ3 |Q|2

)
dx− C2

∫
ω0

(
τλ2ϕ |∇Q|2 + τ3λ4ϕ3 |Q|2

)
dx. (4.15)

Finally, combining (4.13), (4.14) and (4.15), we deduce the existence of λ0 > 0 and τ0 > 0 such that for any
λ > λ0 and τ > τ0, there exist C3 = C3(λ, ψ̃, S0) > 0 and C4 = C4(λ, ψ̃, S0) > 0 such that

‖DϕQ‖2L2(Ω) >
1

2
‖(S +A)Q‖2L2(Ω) − ‖RQ‖

2
L2(Ω) > Re (SQ,AQ)L2(Ω) − ‖RQ‖

2
L2(0,1)

> C3

(∫
Ω

(
τ |∇Q|2 + τ3|Q|2

)
dx+ τ

∫
∂Ω

(∂x2Q)
2
dΓ + τ

∑
k∈LFτ

(τ2 + k2)|ak(Q)|2
)

− C4

(∫
ω0

(
τ |∇Q|2 + τ3|Q|2

)
dx+ τ

∑
k∈HFτ

k2|ak(Q)|2
)
.

Applying the above result to Q = q solution of (4.8) and integrating into (0, S0), we deduce that

τ3‖q‖2L2(Z) + τ‖∇q‖2L2(Z) + τ |∂x2q|2L2((0,S0)×∂Ω) +
∑
k∈LFτ

τ(τ2 + k2)|ak(q)|2L2(0,S0)

6 C

(
τ3‖q‖2L2((0,S0)×ω0) + τ‖∇q‖2L2((0,S0)×ω0) +

∑
k∈HFτ

τ(τ2 + k2)|ak(q)|2L2(0,S0)

)
. (4.16)

We recall that q(s, ·) ≡ 0 if |s− s0| > S0/6 due to the support of χ (see (3.16)). Next, we will estimate the high
tangential frequencies of the pressure.
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4.3 Estimates in the high frequency regime
We define

Y := (0, S0)× (0, 1), Ii := (0, S0)× {i}, i = 0, 1.

We recall that (u, p) is defined by (3.17) and (f1, f2, f3) is defined by (3.19). We define (uk, pk, fk1 , f
k
2 , f

k
3 ) the

Fourier coefficients of (u, p, f1, f2, f3) in the x1 direction. For instance

uk(s, x2) :=
1

2π

∫ 2π

0

u(s, x1, x2)e−ikx1 dx1 ((s, x2) ∈ Y ).

Finally, with τ > 0 and ϕ0 defined by (4.3), we set

wk = eτϕ0uk, πk = eτϕ0pk, hki = eτϕ0fki (i = 1, 2, 3). (4.17)

Note that hki are the Fourier coefficients of the functions hi defined by (4.9). Since ϕ0 only depends on s, and
using (4.3), (4.4), we have

ak(q) =

[
(πk)|I0
(πk)|I1

]
. (4.18)

Let us define the following conjugated operators:

Qk,ϕ0 := eτϕ0(−∂2
s − ∂2

x2
+ k2)e−τϕ0 = −∂2

s − ∂2
x2

+ k2 + 2τϕ′0∂s − τ2(ϕ′0)2 + τϕ′′0 ,

Sk,ϕ0
:= eτϕ0(−∂2

s + k2)e−τϕ0 = −∂2
s + k2 + 2τϕ′0∂s − τ2(ϕ′0)2 + τϕ′′0 .

Then, for k ∈ Z, (3.18) transforms into

Qk,ϕ0w
k
1 + ikπk = hk1 in Y,

Qk,ϕ0w
k
2 + ∂x2π

k = hk2 in Y,
divk w

k = 0 in Y,
wk1 = 0 on I0 ∪ I1,
wk2 = 0 on I0,
Sk,ϕw

k
2 = hk3 + πk on I1,

(4.19)

where
divk

[
f1

f2

]
= ikf1 + ∂x2

f2.

The relation (3.20) yields

wk = 0 and πk = 0 if s /∈
[

1

3
S0,

2

3
S0

]
. (4.20)

Proposition 4.3. If the solution of (4.19) satisfies (4.20), then there exist λ3 = λ3(S0) > 0 and C(S0) > 0
such that for any λ > λ3 and k ∈ HFτ ,

‖πk‖L2(I0∪I1) 6
C

(k2 + τ2)1/4

(∥∥hk1∥∥L2(Y )
+
∥∥hk2∥∥L2(Y )

+
∣∣hk3∣∣L2(I1)

)
.

Proof. We multiply the first line (4.19) by wk1 , the second line (4.19) by wk2 , and the last line (4.19) by wk2 .
Integrating by parts and summing up yield∫

Y

|∂swk|2 dy +

∫
Y

|∂x2
wk|2 dy + k2

∫
Y

|wk|2 dy − τ2

∫
Y

(ϕ′0)2|wk|2 dy

+

∫
I1

|∂swk2 |2 ds+ k2

∫
I1

|wk2 |2 ds− τ2

∫
I1

(ϕ′0)2|wk2 |2 ds

= Re

∫
Y

hk1w
k
1 dy + Re

∫
Y

hk2w
k
2 dy + Re

∫
I1

hk3w
k
2 ds. (4.21)
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Now, since k ∈ HFτ , we have

k2 >
τ2

2
inf |∂x2

ϕ|2 =
τ2

2
λ2e−2s20 .

On the other hand,
sup

[0,S0]

|ϕ′0| 6 S0.

From the two previous relations, we deduce the existence of λ3 = λ3(S0) > 0 such that for λ > λ3 and for
k ∈ HFτ

k2 − τ2|ϕ′0|2 >
1

2
(τ2 + k2).

Combining the above relation and (4.21) yields

(τ2 + k2)
∥∥[∂swk, ∂x2w

k
]∥∥2

L2(Y )
+ (τ2 + k2)2

∥∥wk∥∥2

L2(Y )
+ (τ2 + k2)

∣∣∂swk2 ∣∣2L2(I1)
+ (τ2 + k2)2

∣∣wk2 ∣∣2L2(I1)

.
∥∥hk1∥∥2

L2(Y )
+
∥∥hk2∥∥2

L2(Y )
+
∣∣hk3∣∣2L2(I1)

. (4.22)

Now, we write (4.19) under the form

(
−∂2

s − ∂2
x2

+ k2
)
wk1 + ikπk = Hk

1 in Y,(
−∂2

s − ∂2
x2

+ k2
)
wk2 + ∂x2

πk = Hk
2 in Y,

divk w
k = 0 in Y,

wk1 = 0 on I0 ∪ I1,
wk2 = 0 on I0,(
−∂2

s + k2
)
wk2 = Hk

3 + πk on I1,

(4.23)

where

Hk
1 := −2τϕ′0∂sw

k
1 + τ2(ϕ′0)2wk1 − τϕ′′0wk1 + hk1 ,

Hk
2 := −2τϕ′0∂sw

k
2 + τ2(ϕ′0)2wk2 − τϕ′′0wk2 + hk2 ,

Hk
3 := −2τϕ′0∂sw

k
2 + τ2(ϕ′0)2wk2 − τϕ′′0wk2 + +hk3 .

From (4.22), we deduce∥∥Hk
1

∥∥
L2(Y )

+
∥∥Hk

2

∥∥
L2(Y )

+
∣∣Hk

3

∣∣
L2(I1)

.
∥∥hk1∥∥L2(Y )

+
∥∥hk2∥∥L2(Y )

+
∣∣hk3∣∣L2(I1)

. (4.24)

We multiply the first line (4.23) by −∂2
sw

k
1 , the second line (4.23) by −∂2

sw
k
2 , and the last line (4.23) by −∂2

sw
k
2 .

Integrating by parts, summing up and using (4.24) yield

∥∥∂2
sw

k
∥∥2

L2(Y )
+
∥∥∂s∂x2

wk
∥∥2

L2(Y )
+ k2

∥∥∂swk∥∥2

L2(Y )
+
∣∣∂2
sw

k
2

∣∣2
L2(I1)

+ k2
∣∣∂swk2 ∣∣2L2(I1)

.
∥∥hk1∥∥2

L2(Y )
+
∥∥hk2∥∥2

L2(Y )
+
∣∣hk3∣∣2L2(I1)

. (4.25)

Next, we write (4.23) under the form

(
−∂2

x2
+ k2

)
wk1 + ikπk = H̃k

1 in Y,(
−∂2

x2
+ k2

)
wk2 + ∂x2

πk = H̃k
2 in Y,

divk w
k = 0 in Y,

wk1 = 0 on I0 ∪ I1,
wk2 = 0 on I0,
k2wk2 = H̃k

3 + πk on I1,

(4.26)
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where
H̃k

1 := Hk
1 + ∂2

sw
k
1 , H̃k

2 := Hk
2 + ∂2

sw
k
2 , H̃k

3 := Hk
3 + ∂2

sw
k
1 .

From (4.24) and (4.25), we deduce∥∥∥H̃k
1

∥∥∥
L2(Y )

+
∥∥∥H̃k

2

∥∥∥
L2(Y )

+
∣∣∣H̃k

3

∣∣∣
L2(I1)

.
∥∥hk1∥∥L2(Y )

+
∥∥hk2∥∥L2(Y )

+
∣∣hk3∣∣L2(I1)

. (4.27)

The first two lines of (4.26) can be written as

∇
(
eikx1πk

)
= eikx1

[
H̃k

1

H̃k
2

]
+ ∆

(
eikx1wk

)
(4.28)

and thus ∥∥∇ (eikx1πk
)∥∥
H−1(Ω)

6

∥∥∥∥∥eikx1

[
H̃k

1

H̃k
2

]∥∥∥∥∥
H−1(Ω)

+
∥∥∇ (eikx1wk

)∥∥
L2(Ω)

(4.29)

and using that k 6= 0, we deduce from the above estimate that

∥∥eikx1πk
∥∥
H−1(Ω)

6

∥∥∥∥∥eikx1

[
H̃k

1

H̃k
2

]∥∥∥∥∥
H−1(Ω)

+
∥∥∇ (eikx1wk

)∥∥
L2(Ω)

. (4.30)

Combining (4.29) and (4.30) with the Nečas inequality (see, for instance, [10, p.231, Theorem IV.1.1]), we
deduce that

k
∥∥eikx1πk

∥∥
L2(Ω)

.
∥∥∥H̃k

1

∥∥∥
L2(0,1)

+
∥∥∥H̃k

2

∥∥∥
L2(0,1)

+ k
∥∥∇ (eikx1wk

)∥∥
L2(Ω)

(4.31)

and thus, with (4.27) and (4.22),

k
∥∥πk∥∥

L2(Y )
.
∥∥hk1∥∥L2(Y )

+
∥∥hk2∥∥L2(Y )

+
∣∣hk3∣∣L2(I1)

. (4.32)

On the other hand, differentiating the divergence equation of system (4.26) with respect to x2 and using
(4.22), (4.27) yield

‖∂2
x2
wk2‖L2(Y ) + ‖∂x2π

k‖L2(Y ) .
∥∥hk1∥∥L2(Y )

+
∥∥hk2∥∥L2(Y )

+
∣∣hk3∣∣L2(I1)

.

Then, combining the above relation with (4.32) and with a trace inequality, we deduce

‖πk‖L2(I0∪I1) .
1

k1/2

(∥∥hk1∥∥L2(Y )
+
∥∥hk2∥∥L2(Y )

+
∣∣hk3∣∣L2(I1)

)
.

Using that k ∈ HFτ , we deduce the result.

4.4 Proof of Theorem 4.1
From Proposition 4.3 and from (4.18), for k ∈ HFτ

(τ2 + k2)
∣∣ak(q)

∣∣2
L2(0,S0)

. k2
(∥∥hk1∥∥2

L2(Y )
+
∥∥hk2∥∥2

L2(Y )
+
∣∣hk3∣∣2L2(I1)

)
and thus, with the Parceval formula,∑

k∈HFτ

(τ2 + k2)|ak(q)|2L2(0,S0) . ‖∂x1
h1‖2L2(Z) + ‖∂x1

h2‖2L2(Z) + |∂x1
h3|2L2(J1) ,

where we have used (4.17) and (4.9).
Combining this estimate with (4.16) we finally obtain the sought result.
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5 Proof of the spectral inequality
The proof of the spectral inequality, that is (3.12) is based on interpolation estimates. More precisely, it will be
a consequence of Theorem 5.3 stated below. In order to show such a result, we first recall some interpolation
inequalities available in the literature and then we combine them with the global pressure estimates, that is
Theorem 4.1 to show Theorem 5.3. The last part of this section is devoted to the proof of the spectral inequality
from the interpolation inequality.

First, we need the following notation for this section:

O0 :=

(
s0 −

S0

6
, s0 +

S0

6

)
× ω0, O :=

(
s0 −

S0

5
, s0 +

S0

5

)
× ω, (5.1)

Z̃ :=

(
s0 −

S0

10
, s0 +

S0

10

)
× Ω, J̃1 :=

(
s0 −

S0

10
, s0 +

S0

10

)
× Γ1, (5.2)

Ẑ :=

(
s0 −

S0

9
, s0 +

S0

9

)
× Ω, Ĵ1 :=

(
s0 −

S0

9
, s0 +

S0

9

)
× Γ1. (5.3)

Note that Z̃ ⊂ Ẑ and J̃1 ⊂ Ĵ1.

5.1 Estimates on the velocity
The two components of the velocity satisfy different boundary conditions (see (3.15)). We start by an estimate
on the first component U1 that satisfies homogeneous Dirichlet boundary conditions. For the proof of this result,
we refer to relation (1) in Section 3 of [27].

Theorem 5.1. There exist C1 > 0 and µ1 ∈ (0, 1) such that for all w ∈ H2(Z) such that w|J0∪J1
= 0,

‖w‖H1(Z̃) 6 C1 ‖w‖1−µ1

H1(Ẑ)

(
‖∆zw‖L2(Ẑ) + ‖w‖L2(O0)

)µ1

. (5.4)

Note that Theorem 5.1 is stated with anH1 observation in [27], but we can transform it into an L2 observation
as in (5.4) by using a cut-off function and integrations by parts.

For the estimate of U2, we note that it satisfies a Ventcel boundary condition on J1 and the Dirichlet
boundary condition on J0. Hence, we use the following result, which is basically a consequence of a Carleman
estimate obtained in [11]. However for the sake of completeness, we prove the next result in Appendix A.

Theorem 5.2. There exist C2 > 0 and µ2 ∈ (0, 1) such that

‖w‖H1(Z̃) + |w|H1(J̃1) 6 C2

(
‖w‖H1(Ẑ) + |w|H1(Ĵ1)

)1−µ2

×
(
‖∆zw‖L2(Ẑ) +

∣∣∣(∂x2
w)|J1

−∆x1,sw|J1

∣∣∣
L2(Ĵ1)

+ ‖w‖L2(O0)

)µ2

. (5.5)

for all w ∈ H2(Z) such that w|J0
= 0 and w|J1

∈ H2(J1).

Note that both Theorem 5.1 and Theorem 5.2 hold for µ3 ∈ (0, 1) such that µ3 6 µ1 and µ3 6 µ2 (with a
modification of the constants C1 and C2). Thus, with µ3 = min(µ1, µ2) and an adequate constant C3, we can
apply Theorem 5.1 with w = U1 and Theorem 5.2 with w = U2, where U satisfies (3.15) and we deduce

‖U‖H1(Z̃) + |U2|H1(J̃1) 6 C3

(
‖U‖H1(Ẑ) + |U2|H1(Ĵ1)

)1−µ3

×
(
‖∇P‖L2(Ẑ) +

∣∣P|J1
−mI(P )

∣∣
L2(Ĵ1)

+ ‖U‖L2(O0)

)µ3

. (5.6)

We have used here the fact that on J1,
∂x2

U2 = −∂x1
U1 = 0.

We are going now to combine the above estimate with the estimates of the pressure terms obtained in Section 4.
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5.2 Patching the estimates together
Combining the previous estimates, we can now prove the following result.

Theorem 5.3. There exist C > 0 and µ ∈ (0, 1) such that for any Λ > 0 and for any (aj)j ∈ CN, the function
U defined by (3.13) satisfies

‖U‖H1(Z̃) + |U2|H1(J̃1) 6 C
(
‖U‖H2(Z) + |U2|H2(J1)

)1−µ
‖U‖µH2(O0) .

Proof. We start with the estimate (4.10), where we recall that q is given by (3.17), (4.4) and hi, i = 1, 2, 3 by
(4.9):

τ3‖eτϕχP‖2L2(Z) + τ‖eτϕχ∇P‖2L2(Z) + τ3|eτϕ0χ(P −mI(P ))|2L2(J1) + τ |eτϕ0χ∂x1
P |2L2(J1) + τ |eτϕ0χ∂x2

P |2L2(J1)

6 C
(
τ3‖eτϕP‖2L2(O0) + τ‖eτϕ∇P‖2L2(O0) + τ ‖eτϕ0∂x1

f1‖2L2(Z)

+ τ ‖eτϕ0∂x1
f2‖2L2(Z) + τ |eτϕ0∂x1

f3|2L2(J1)

)
. (5.7)

Note that f1, f2 (respectively f3) are supported in

Z8 := (suppχ′)× I × (0, 1) (respectively in J8 := (suppχ′)× I × {1}),

and since suppχ′ ⊂ [s0 − S0/6, s0 + S0/6]

sup
J8

ϕ0 = sup
Z8

ϕ0 6 e−
S2

0
36 . (5.8)

Hence, from (3.19)

‖eτϕ0∂x1
f1‖L2(Z) + ‖eτϕ0∂x1

f2‖L2(Z) + |eτϕ0∂x1
f3|L2(J1) 6 Ceτe

−
S2

0
36
(
‖U‖H2(Z) + |U2|H2(J1)

)
. (5.9)

In Ẑ (respectively in Ĵ1), χ(s) ≡ 1, and

inf
Ẑ
ϕ = inf

Ẑ
ϕ0 = inf

Ĵ1

ϕ0 = e−
S2

0
81 . (5.10)

Combining (5.7), (5.9) and (5.10), there exist τ4, c1, c2 > 0 such that for all τ > τ4, we have

‖∇P‖2
L2(Ẑ)

+ |(P −mI(P ))|2
L2(Ĵ1)

6 ec1τ
(
‖P‖2L2(O0) + ‖∇P‖2L2(O0)

)
+ e−c2τ

(
‖U‖H2(Z) + |U2|H2(J1)

)
. (5.11)

On the other hand, we deduce from (5.6) and a Young inequality that

‖U‖H1(Z̃) + |U2|H1(J̃1) 6 C4e
− µ3c2

2(1−µ3)
τ
(
‖U‖H1(Ẑ) + |U2|H1(Ĵ1)

)
+ e

c2
2 τ
(
‖∇P‖L2(Ẑ) +

∣∣P|J1
−mI(P )

∣∣
L2(Ĵ1)

+ ‖U‖L2(O0)

)
and combining this relation with (5.11), we deduce the existence of c3, c4 > 0 such that for all τ > τ4

‖U‖H1(Z̃) + |U2|H1(J̃1) . e−c3τ
(
‖U‖H2(Z) + |U2|H2(J1)

)
+ ec4τ

(
‖P‖2L2(O0) + ‖∇P‖2L2(O0) + ‖U‖L2(O0)

)
Now, we can use cP in (3.13) so that for all s ∈ [0, S0],∫

ω0

P (s, x) dx = 0
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and using the Poincaré-Wirtinger inequality, we deduce that

‖P‖2L2(O0) . ‖∇P‖
2
L2(O0) . ‖∆zU‖L2(O0) .

We deduce that for some constants c5, c6 > 0, for all τ > τ4,

‖U‖H1(Z̃) + |U2|H1(J̃1) . e−c5τ
(
‖U‖H2(Z) + |U2|H2(J1)

)
+ ec6τ ‖U‖H2(O0) .

Optimizing this inequality with respect to τ > τ4 (see, for instance, [11, Lemma 8.4]) allows us to conclude the
proof of Theorem 5.3.

5.3 From the interpolation inequality to the spectral inequality
Using Theorem 5.3, we are now in a position to prove Theorem 3.2. This inequality combined with Theorem 2.1
yields the main result of the article (Theorem 1.1).

Proof of Theorem 3.2. From (3.8) and (3.1), we deduce that

‖U‖2H1(Z̃) + |U2|2H1(J̃1) > ‖U‖2L2(Z̃) + |U2|2L2(J̃1) >
∫ s0+

S0
10

s0−S0
10

∑
λj6Λ

|aj |2 cosh(
√
λjs)

2 ds &
∑
λj6Λ

|aj |2

and
‖U‖2H2(Z) + |U2|2H2(J1) . eC

√
Λ
∑
λj6Λ

|aj |2

Combining Theorem 5.3 with the previous relations, we deduce that∑
λj6Λ

|aj |2 . eC
√

Λ ‖U‖2H2(O0) .

Using a cut-off function and integrations by parts, we deduce∑
λj6Λ

|aj |2 . eC
√

Λ ‖U‖2L2(O) .

and thus Theorem 3.2.

A Proof of Theorem 5.2

A.1 A Carleman estimate
The proof of Theorem 5.2 is mainly based on a Carleman estimate obtained in [11] that we recall here. We
recall that Z, J1, J0 are defined by (3.14) whereas Z̃ and J̃1 are defined by (5.2). In what follows, we consider
z0 ∈ J̃1, an open neighborhood V of z0 in Z and a weight function ϕ ∈ C∞(V ). For any σ ∈ R, we define

pϕ,σ(z, ξ, τ) = |ξ|2 − τ2|∇zϕ(z)|2 − σ2 + 2iτξ · ∇zϕ(z), (z ∈ V, ξ ∈ R3, τ ∈ R).

It is the principal symbol of the conjugated operator associated with −∆z − σ2, that is, of the operator

Pϕ,σ = −eτϕ
(
∆z + σ2

)
e−τϕ = −∆z + 2τ∇zϕ · ∇z − τ2|∇zϕ|2 + τ(∆zϕ)− σ2.

We assume the following hypotheses on ϕ: sub-ellipticity on V , that is the existence of τ0 > 0 such that for any
z ∈ V , ξ ∈ R3, |σ| > 1 and τ > τ0|σ|,

pϕ,σ(z, ξ, τ) = 0 =⇒ 1

2i
{pϕ,σ, pϕ,σ} (z, ξ, τ) > 0. (A.1)
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and the two following conditions to handle Ventcel boundary conditions (see [11, conditions (23) and (24)]):

∇zϕ 6= 0 in V , and sup
V ∩J̃1

|∇s,x1
ϕ| 6 ν0 inf

V
|∂x2

ϕ| , (A.2)

for ν0 > 0 small enough. We recall that the Poisson bracket is defined by

{
p(1), p(2)

}
=

3∑
j=1

p(1)

∂ξj

p(2)

∂zj
− p(2)

∂ξj

p(1)

∂zj

where we set here z1 = s, z2 = x1 and z3 = x2 to simplify.
Then we have the following result proved in [11]:

Theorem A.1. Assume z0 ∈ J̃1 and V is an open neighborhood of z0 in Z. Assume also that ϕ ∈ C∞(V )
satisfies the conditions (A.1)) and (A.2) for ν0 small enough. Then, there exist τ0 > 0 and C > 0 such that for
all |σ| > 1, for all τ > τ0|σ| and for all w ∈ C∞0 (V ),

τ3 ‖eτϕw‖2L2(V ) + τ ‖eτϕ∇zw‖2L2(V ) + τ3
∣∣eτϕw|J1

∣∣2
L2(V ∩J̃1)

+ τ
∣∣eτϕ∇s,x1

w|J1

∣∣2
L2(V ∩J̃1)

+ τ
∣∣eτϕ∂x2w|J1

∣∣2
L2(V ∩J̃1)

6 C
(∥∥eτϕ(−∆z − σ2)w

∥∥2

L2(V )
+ τ

∣∣eτϕ(∂x2w|J1
−∆s,x1w|J1

∣∣2
L2(V ∩J̃1)

)
.

First to precise the above statement, by w ∈ C∞0 (V ) we mean that w is the restriction of a C∞ function
with compact support in V0 where V0 is an open set of R × I × R such that V0 ∩ Z = V . Second, we use the
above result in the case σ = 1, so that by taking τ0 large enough, we obtain that for all τ > τ0 and for all
w ∈ C∞0 (V ),

τ3 ‖eτϕw‖2L2(V ) + τ ‖eτϕ∇zw‖2L2(V ) + τ3
∣∣eτϕw|J1

∣∣2
L2(V ∩J̃1)

+ τ
∣∣eτϕ∇s,x1w|J1

∣∣2
L2(V ∩J̃1)

+ τ
∣∣eτϕ∂x2

w|J1

∣∣2
L2(V ∩J̃1)

6 C
(
‖eτϕ∆zw‖2L2(V ) + τ

∣∣eτϕ (∂x2
w|J1

−∆s,x1
w|J1

)∣∣2
L2(V ∩J̃1)

)
. (A.3)

A.2 Interpolation estimates for the Ventcel boundary condition
Using the Carleman inequality of the previous section, one can deduce, in a classical way, an interpolation
inequality. First let us define the weight function that we are going to use.

We consider the following norms on R× I × R:

∣∣(s, x1, x2

)∣∣
λ

:=

(
s2

λ2
+
x2

1

λ2
+ x2

2

)1/2

.

We consider z0 = (s∗, x∗1, 1) ∈ J̃1,

V := (s∗ − δ, s∗ + δ)× (x∗1 − δ, x∗1 + δ)× (1− δ, 1] ,

with δ ∈ (0, 1) small enough such that

(s∗ − δ, s∗ + δ) ⊂
(
s0 −

S0

9
, s0 +

S0

9

)
(see (5.3)). We also define z∗ = (s∗, x∗1, 0). Then we define

ψ(z) := |z − z∗|λ , ϕ = e−λψ.

Lemma A.2. There exists λ0 > 0 such that for any λ > λ0, the weight function ϕ satisfies (A.1) and (A.2) on
V for some τ0 = τ0(λ).
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Proof. We assume that λ > 1 in all what follows. First, since ∇zψ 6= 0 in V , we deduce the first point of (A.2).
For the second point of (A.2), we first notice that

inf
V ∩J̃1

ψ = 1, sup
V

ψ =

(
2δ2

λ2
+ 1

)1/2

6 2. (A.4)

We thus deduce

sup
V ∩J̃1

|∇s,x1ϕ| 6 sup
V ∩J̃1

ϕ = e−λ and inf
V
|∂x2

ϕ| > λ
1− δ

2
e−(2δ2+λ2)

1/2

.

Consequently there exists λ1 such that the second point of (A.2) holds for λ > λ1.
For (A.1), we compute the Poisson bracket:

1

8τi
{pϕ,σ, pϕ,σ} = τ2

(
∇2
zϕ
)
∇zϕ · ∇zϕ+

(
∇2
zϕ
)
ξ · ξ

= τ2ϕ3
(
λ4 |∇zψ|4 − λ3

(
∇2
zψ
)

(∇zψ) · (∇zψ)
)

+ ϕ
(
λ2(∇zψ · ξ)2 − λ

(
∇2
zψ
)
ξ · ξ

)
> τ2λ4ϕ3 |∇zψ|4 − τ2λ3ϕ3

∣∣∇2
zψ
∣∣ |∇zψ|2 − λϕ ∣∣∇2

zψ
∣∣ |ξ|2.

Now, if pϕ,σ(z, ξ, τ) = 0, then |ξ|2 = τ2λ2ϕ2|∇zψ(z)|2 + σ2 so that

1

8τi
{pϕ,σ, pϕ,σ} > τ2λ4ϕ3 |∇zψ|4 − 2τ2λ3ϕ3

∣∣∇2
zψ
∣∣ |∇zψ|2 − λϕ ∣∣∇2

zψ
∣∣σ2.

From (A.4), there exist positive constants independent of λ such that

C1 6 |∇zψ| 6 C2,
∣∣∇2

zψ
∣∣ 6 C3.

In particular there exist C > 0 and λ0 > λ1, such that for λ > λ0,

1

8τi
{pϕ,σ, pϕ,σ} > Cτ2λ4ϕ3 − λϕ

∣∣∇2
zψ
∣∣σ2

and there exists τ0 = τ0(λ) such that for τ > τ0|σ|,

1

8τi
{pϕ,σ, pϕ,σ} >

C

2
τ2λ4ϕ3 > 0.

From now on, the value of λ shall be kept fixed. We define, for β > 0,

Ẑβ := {z ∈ Ẑ ; dist(z, Ĵ1) > β}.

Lemma A.3. Assume z0 ∈ J̃1. There exist an open neighborhood Ṽ of z0 in Z, µ, β ∈ (0, 1) and C > 0 such
that for any v ∈ H2(Z) with v|J1

∈ H2(J1),

‖v‖H1(Ṽ ) +
∣∣v|J1

∣∣
H1(Ṽ ∩J̃1)

6 C
(
‖v‖H1(Ẑ) +

∣∣v|J1

∣∣
H1(Ĵ1)

)1−µ

×
(
‖∆zv‖L2(Ẑ) +

∣∣∂x2
v|J1
−∆s,x1

v|J1

∣∣
L2(Ĵ1)

+ ‖v‖H1(Ẑβ)

)µ
. (A.5)

Proof. Standard computation shows the existence of r3 > 1 such that

|z − z∗|λ = r3 z = (s, x1, 1) ∈ J1 =⇒ (s, x1) ∈
(
s∗ − δ

2
, s∗ +

δ

2

)
×
(
x∗1 −

δ

2
, x∗1 +

δ

2

)
.
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We consider r2 ∈ (1, r3). We can also check the existence of r1 ∈ (0, δ) such that

{z = (s, x1, x2) ∈ Z ; 1− r1 6 x2 6 1, |z − z∗|λ 6 r3} ⊂ V.

We consider two cut-off functions χ0, χ1 ∈ C∞(R× I × R) such that

χ0(z) =

{
0 if 0 < x2 < 1− r1

1 if 1− r1/2 < x2 < 1,
χ1(z) =

{
0 if |z − z∗|λ > r3

1 if |z − z∗|λ 6 r2.

Let us consider v ∈ C∞(Z) and let us apply the Carleman estimate (A.3) to w = χ0χ1v ∈ C∞0 (V ). In the
right-hand side of this estimate, we have

∆z (χ0χ1v) = (χ0χ1) ∆zv + 2∇z (χ0χ1) · ∇zv + v∆z (χ0χ1)

Note that in suppχ0χ1, ϕ 6 C3 := e−λ(1−r1). The two last terms in the above relation are included in

V ∩ (supp∇χ0) ⊂ V ∩ {x2 ∈ [1− r1, 1− r1/2]}

and on this set, ϕ 6 C3 or in

V ∩ (supp∇χ1) ⊂ V ∩ {r2 6 |z − z∗|λ 6 r3}

and on this set, ϕ 6 C1 := e−λr2 . Therefore,

‖eτϕ∆zw‖L2(V ) . eC3τ ‖∆zv‖L2(V ) + eC3τ ‖v‖H1(V ∩{x2∈[1−r1,1−r1/2]}) + eC1τ ‖v‖H1(V ) (A.6)

and similarly,∣∣eτϕ (∂x2
w|J1

−∆s,x1
w|J1

)∣∣
L2(V ∩J̃1)

. eC3τ
∣∣∂x2

v|J1
−∆s,x1

v|J1

∣∣
L2(V ∩J̃1)

+ eC1τ
∣∣v|J1

∣∣
H1(V ∩J̃1)

. (A.7)

There exists r4 > 0 such that{
z ∈ R× I × R ;

∣∣z − z0
∣∣ 6 r4

}
⊂
{
z = (s, x1, x2) ∈ R× I × R ; 1− r1

2
< x2, |z − z∗|λ < r2

}
.

Then on the set
Ṽ :=

{
z ∈ Z ;

∣∣z − z0
∣∣ < r4

}
⊂ V

we have χ0χ1 = 1 and ϕ > C2 := e−λ supṼ ψ, with C2 ∈ (C1, C3). Combining this with (A.3), (A.6) and (A.7),
we deduce that for all τ > τ0,

‖v‖H1(Ṽ ) +
∣∣v|J1

∣∣
H1(Ṽ ∩J̃1)

. e(C3−C2)τ
(
‖∆zv‖L2(V ) +

∣∣∂x2
v|J1
−∆s,x1

v|J1

∣∣
L2(V ∩J̃1)

+ ‖v‖H1(V ∩{x2∈[1−r1,1−r1/2]})

)
+ e−(C2−C1)τ

(
‖v‖H1(V ) +

∣∣v|J1

∣∣
H1(V ∩J̃1)

)
. (A.8)

Optimizing this inequality with respect to τ yields the interpolation inequality for v smooth. A density argument
permits to conclude the proof of Lemma A.3.

Proof of Theorem 5.2. By a compactness argument, one can deduce from Lemma A.3 an interpolation result
on a neighborhood of J̃1. Then we combine this with classical interpolation estimates (see [27]) in the interior
and at the boundary J0 where Dirichlet boundary condition hold to conclude. A similar proof is done in [11]
(see Lemma 8.3).

.
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