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Abstract

We are interested by the controllability of a fluid-structure interaction system where the fluid is viscous
and incompressible and where the structure is elastic and located on a part of the boundary of the fluid’s
domain. In this article, we simplify this system by considering a linearization and by replacing the wave/plate
equation for the structure by a heat equation. We show that the corresponding system coupling the Stokes
equations with a heat equation at its boundary is null-controllable. The proof is based on Carleman estimates
and interpolation inequalities. One of the Carleman estimates corresponds to the case of Ventcel boundary
conditions. This work can be seen as a first step to handle the real system where the structure is modeled
by the wave or the plate equation.
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2010 Mathematics Subject Classification. 76D05, 35Q30, 93B05, 93B07, 93C10

oo

11
11
12
14
16

17
17
18
19



1 Introduction

Fluid-structure interaction systems are important systems for many applications such as aerodynamics, medicine
(for instance the study of the motion of the blood in veins or in arteries), biology (animal locomotion in a fluid),
civil engineering (design of bridges), naval architecture (design of boats and submarines), etc. Moreover, their
mathematical studies can be very challenging due to several difficulties: in particular, the complexity of fluid
equations such as the Navier-Stokes system, the strong coupling between the fluid system and the structure
system and the free-boundary corresponding to the structure displacement.

In this article we consider a simplified fluid-structure interaction system. The corresponding system without
simplification has been proposed in [4I] as a model for the blood flow in a vessel. It writes as follows: we denote
by Z the torus (in order to consider periodic boundary conditions):

I :=R/(27Z),
and for any deformation ¢ : Z — (—1,00), we consider the corresponding fluid domain
Qo ={(z1,22) €T xR ; 25 € (0,14 4(x1))}. (1.1)
Then the equations of motion are

Orw + (w- V)w —divT(w, ) =0 ¢ >0, 2 € Qyy,
divw=0 t>0, IEQ@(Q,
w(t,xy, 1+ L(t, 1)) = (0l)(t,z1)e2 t >0, z1 €Z, (1.2)
w=0 t>0, x€ly,
Ol + oq@ilf — agﬁilﬁ — 66@516 = —Hy(w,7) ¢t>0, x1 €L,

where

FO :IX{O}, Iy :IX{].}

In the above system, we have used the following notations: (ey,es) is the canonical basis of R? and
1
T(w, ) =2D(w) — wla, D(w)= 3 (Vw + (Vw)*), (1.3)

]ﬁlg(w, m)(t,x1) = [(1 + |5’w1€|2)1/2 [T(w, m)n] (t, 1,1+ L(t, z1)) - ea] . (1.4)

The two first lines of (1.2)) correspond to the Navier-Stokes system for the fluid velocity w and the pressure
. The last line of a beam equation satisfied by the deformation /. We have used the standard no-
slip boundary conditions (third and forth equations). To simplify, we assume that the viscosity of the fluid is
constant and equal to 1. The vector fields n corresponds to the unit exterior normal to ).

This system has been studied by many authors: [13] (existence of weak solutions), [7], [30], [2I] and [33]
(existence of strong solutions), [43] (stabilization of strong solutions), [4] (stabilization of weak solutions around
a stationary state). There are also some works in the case § = 0, that is without damping on the beam equation:
the existence of weak solutions is proved in [20] and in [37] (see also [52]). In [22], the existence of local strong
solutions is obtained for a structure described by either a wave equation (o = 6 = 0 and a3 > 0) or a beam
equation with inertia of rotation (a; > 0, @y = 6 = 0 and with an additional term —dyss¢). In [5] and [6],
the authors show the existence and uniqueness of strong solutions in the case vy > 0, ao > 0 and § = 0.
Using similar techniques they also analyze the case of the wave equation (a; = 6 = 0 and as > 0) in [I]
showing in particular that the semigroup of the linearized system is analytic. Let us mention also some results
for more complex models: [29, 28] (linear elastic Koiter shell), [38] (dynamic pressure boundary conditions),
[39, [40] (3D cylindrical domain with nonlinear elastic cylindrical Koiter shell), [49] and [50] (nonlinear elastic
and thermoelastic plate equations), [32], [34] (compressible fluids), etc.

The advantage of the damping in the beam equation is that the term —58@;4 is a structural damping
so that the corresponding beam equation becomes a parabolic equation (see, for instance, [I5]). In this work,
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Figure 1: Our geometry

we consider a simplified model associated with ([1.2). We neglect the deformation of the fluid domain due to
the elastic déformation and we also linearized the Navier-Stokes system by only considering the Stokes system.
Moreover, we replace the damped beam equation by a heat equation. By setting

Q=7Tx(0,1)

(see Figure , we are thus considering the following system

Ow—Aw+Vr=1,f in (0,T) x Q,
divw=0 in (0,T) x Q,
w=0 on (0,T) x Ty, (15)
w=_ey on (0,T)xTy, ‘

¢ — Oz, = —T(w,m)n-eo in (0,T) X Z,
w(0,-) =w’ inQ, ((t0) =

In the above system, ¢ corresponds to the displacement velocity 0,4 in and we do not consider anymore
the displacement position ¢. We have added a control f localized in the fluid domain, in an arbitrary small
nonempty open set w of Q. Our goal is to show the null-controllability of this simplified system and to do this,
as it is standard (see, for instance, [5I, Theorem 11.2.1, p.357]), we prove an observability inequality on the
adjoint system:

Ou—Au+Vp=0 in (0,T) x Q,
divu=0 in (0,7) x Q,
u=0 on (0,T) x T, (1.6)
u=mney on (0,T)xT},
0N — Ozyz,n = —T(u,p)np, - €2 in (0,T) x T,
u(0,-) =u° inQ, 70,)=n" inZ
We set ,
L(T) = {f € L¥(T); f(x1) dz1 = 0}
0
and we define the space
H = {[u,n) € L*(Q) x LFZ) ; us=00nTy, up=nonTly, divu=0in Q}. (1.7)

Then, our main result states as follows:

Theorem 1.1. Let v > 1 and let w be a nonempty open set of ). Then, there exists Cy > 0 such that for any
T € (0,1) and for any [uo,no} € H, the solution [u,n] of (1.6) satisfies

C
(T, )TN, < Coexp (T) J[ ol ara
0, T)xw



In particular, for any [wO,CO} € H and for any T > 0, there exists a control f € Lz((O,T) X w) such that the

solution [w, ] of satisfies
w(T,) =0, ((T,)=0.

Remark 1.2. As explained above, Theorem [I.] can be seen as a first control result on a simplified model. We
expect to extend some of the tools developed here to handle the control properties of the system i future
works. The controllability properties of fluid-structure interaction systems have been tackled mainly in the case
where the structure is a rigid body (see, [{2], [18], [31)], [23], [9], [§], [45], [ITF], [16], etc.). In [5G, the author
shows an observability inequality for the adjoint of a linearized and simplified fluid-structure interaction system
in the case of a compressible viscous fluid and of a damped beam. Note that the corresponding control problem
involves two controls, one for the fluid and one for the structure.

For the stabilization of fluid-structure interaction systems, one can quote some results: [Z4)], [4] (for the case
of a damped beam), [48], [46], [3], [2] (for the case of a rigid body).

Remark 1.3. The method proposed here to control a system involving the Stokes equations is quite different
from the method used in a large part of the literature for the controllability of fluid systems. In general, the
method is based on “global Carleman inequalities” (see, for instance [19,[2])]). Here, we follow another strategy
as in [27,[T3)]. Such a method is based on local Carleman inequalities for an “augmented” elliptic operator, from
which one deduces a spectral inequality, in the spirit of [27, [25]. However, as it is pointed out in [I]|], unique
continuation property does not hold for the augmented operator in the direction of the additional variable, due to
the pressure. We then use an adaptation of the original strategy of [27, [26)] in our context. This type of spectral
inequality has already been used in the context of fluids in [12]. We also recall that one can use Theorem to
handle nonlinear controllability issues by applying the general method proposed in [31)].

Remark 1.4. Using the particular geometry considered here, we can simplify the adjoint system. First on 'y,
n = ey and using (1.3)), we deduce

— T(u,p)n - e2 = —204,us +p = 20, u1 +p = p, (1.8)

since uy(x1,1) =0 for x; € L.
Moreover, using the incompressibility of the fluid and the boundary conditions, we deduce that

0= divu dx:/ndacl.
Q T

Using this condition on the heat equation on the boundary and (1.8|) yields

/p(xl,l) dz1 = 0. (1.9)
z

In particular, in contrast with the standard Stokes system, the pressure is not determined up to a constant.

The outline of the article is as follows: in Section [2 we show how to obtain the observability inequality
stated in Theorem [I.I] from a spectral inequality. Such a result is quite standard, but here we show that for a
self-adjoint operator, we do not need the usual assumption that is made on the eigenvalues of the main operator.
Then using this general result, we are reduced to show a spectral inequality that we state in Section [3] along
with the functional framework. The spectral inequality is itself the consequence of an interpolation inequality
that we obtain in Section [5] One of the main difficulties to obtain such an inequality comes from the fact that
we need to estimate the pressure. Section[d]is devoted to such an estimate which is one of the main parts of this
article. The proof of the spectral inequality and thus of Theorem [I.1]is obtained at the end of Section[5] In the
appendix, we show an interpolation estimate for the Ventcel boundary condition that is mainly a consequence
of a Carleman estimate obtained in [IT].

Notation 1.5. In the whole paper, we use C' as a generic positive constant that does not depend on the other
terms of the inequality. The value of the constant C may change from one appearance to another. We also use
the notation X <Y if there exists a constant C > 0 such that we have the inequality X < CY.



2 From a spectral inequality to the null-controllability

This section is devoted to a “classical” result showing that a spectral inequality implies the final-state observ-
ability and thus the null-controllability. The proof follows closely the proof in [26] 27] and we only prove it here
for sake of completeness and also to show that we do not need any assumption on the asymptotic behavior of
the spectrum of the operator (which is used in the above references).

More precisely, we assume here that A : D(A) — H is a positive self-adjoint operator with compact resolvents
in an Hilbert space . We denote by (A;) the nondecreasing sequence of eigenvalues and by (w;) an orthonormal
basis of H composed by eigenvectors of A: Aw; = Ajw; for j > 1. We also consider a control operator

B e LU,H).

Theorem 2.1. Assume the above hypotheses. Assume moreover the existence of So > 0, C > 0 and k €
C5°(0,80) such that that for any A > 0, and for any (a;); € ch,

2

S() .
Z la ) < CeC\/X/ K2 (s) Z a; cosh(sVA;)B*wW|  ds. (2.1)
A;<A 0 A <A u
Then for all v > 1, there exists Co > 0 such that for any T € (0,1) and for any 2° € H,
~TAL012 < Co TB*—tAOZdt -
40, < Coosn () [ et an)f a 22

We recall that relation ([2.2)) implies the null-controllability of the system

de .
I + A0 =Bg in (0,T), (2.3)
0(0) = 0° € H.
2.1 Controllability of the first modes
We define
Ha =span{w;, \; <A}, IIp:H — Ha the orthogonal projection.
We are interested here by the control problem
de .
E#—AH—HABQ in (0,7), (2.4)
0(0) = 6° € Hy,
for some 7 > 0. We consider the linear operator
So
G ::/ #2(s) cosh(svVA)IIy BB* cosh(svVA)II, ds.
0
From (2.1), Ga € L(H,) is symmetric, positive and invertible with
-1 CVA
1Gx ||c(HA) S Cen V.
We set 1
c:=2——-¢€(1,2).
5 (1,2)
From [26, Lemma A.1], there exists e € C°°(R) such that for some constants c;
suppe = [0,1], (2.5)



e(z)| < cre™2® e if Im(z) <0, 2.6
|2|
8(2)] > ese =" if 2 € iR~ (2.7)
From ({2.7), we have that e(—iTA) € L(H ) is invertible and

L geatanyre, (2.8)

|| e(—iTA)”
c3

||£(7‘l/\) g

Then we define L
ha(s) := —552(5)3* cosh(sVA)G'e(—irA)~te ™9 (s € R).

We have that hy € C5°(R,U) with supp ha C (0, Sp) and

Al e gy < CeCYAHAGDT g0 (2.9)

Thus, hy € Hol(C;) and
T ca(AT)Y/ m(z
HhA(Z)Hu < CeCVATeAn) 7 Solm()] |60 (2.10)

As in [47], we introduce Qx € Hol(C;U) such that
Qa(—iz?) = ha(iz) + ha(—iz) (z € C).
We deduce from the above relation and that
[Qa(2)lly < CeOVRresdn™ Sl o), (211)
We define gp € Hol(C;U) b

From , . ) and (2.11] , we have

lga(2)lly, < CeCVAFean 7 gSov/Islerim=l 90| (2 € C) (2.12)

gn(2) == e(72)Qa(2).

and
HQA(Z)HM < C€C¢K+c4(AT)1/"eSo\/ge—cm'l/olzll/” HQOHH if Tmz < 0. (2.13)

Since o < 2, we can use a Paley-Wiener type theorem (see [26, Proposition A.3|) and deduce the existence of

ga € C5°((0,7);U) such that
ga(z) = ga(2).

In particular, from (2.13)) and the Laplace method, for all ¢ € (0,7),

C\/K+04(AT)1/”+T1/(%U> ||90 (2.14)

98] < lgall 1 gar < Ce [

Now, for any j such that A\; <A,

</Te(7t)ABgA(T — 1) dt,wj> = (Bga(—iX;), wj),
0 H
= (A=ir B (/X)) + Ba(=i/3y) ) s )
= <€(i7-A)B /050 ha(s)2 cosh(s/);) ds,wj> = _ (efTAOO,wj)H

H
so that the solution 6 of (2.4) with the control g(t) = ga (7 — t) satisfies (1) = 0.
By a duality argument and ([2.14)), this implies that
1 T
HHAe_TAzO||2 < Chexp <C’1 (7 + VA + (AT)V/(%’_D)) / HB*HAe_tAZOHZ dt. (2.15)
T 0



2.2 Proof of Theorem [2.1]
We are now in a position to prove Theorem adapting the method of [35].

Proof of Theorem[2.1 We set

Assume

From (Z.15)

HHAZ (T(Q)) H2 < Crexp (C’1 (17 + VA + (AET)V/(%_U)) /T(Z)

We set

so that for

(2.16)) becomes

i (1)<

with

Then from (2.18)), we deduce

7(2)

p(T) Hz <T(2)> H2 < /T

(2) —er

2(t) = e~ 420,

TW >0, 7>0,

(e7)

T2) —er
1
A =
(er)' ™7
T,e € (0,1),

1

and T3 =71® 47,

p(7) = 20, exp

For € > 0 small enough, the above relation yields

p(T)

Assume

Then for all £ > 0, (2.21)) implies

() | (=)

and thus

Thus for some constant Cy > 0,

7(2)

(T, < [ 1B e ptrr2)

(2)

(2) —er

()

T e (0,1).

2

H SEFT

o T
2 " 9
S/T 1 B* (1)l dt+ﬂ(2k+2>

T ro
p(3) 1@< [ 150l a

I= (DI < Cs exp(

2

T

= B,

|B*Taz(8)[l7, dt

g

|B*TIaz(t)|ly, dt.

(

(),

T
ok+1

2
s a2 (1) 0 (1)

2

),

2

H

e

—2AT

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)



3 Functional framework and spectral inequality

In order to prove Theorem [[.I] we are going to apply Theorem [2.1] In this section, we first give the functional
framework associated with (1.6). Then we write the spectral inequality that will be proven in the remaining
part of the article.

3.1 Functional framework
We recall that H is defined by . We also define
Vi={[u,n] € (H'(Q) x H'(Z))NH ; uy =0 on 00} .

We denote by P, the orthogonal projection from L?*(Q) x LZ(Z) onto H. We now define the linear operator
Ap : D(Ap) CH — H by

D(Ag) ==V N [H2(Q) X H2(I)], (3.1)
and for [u,n] € D(Ap), we set
" Au
AQ |:77:| = PO 62 n . (32)

Then one can check that (1.6) writes
d
© — Az i (0,7),
dt
2(0) = 2°.

with z = [u, ], 2° = [u°,7°]. In the next proposition, we show in particular that Ay is the infinitesimal generator
of a semigroup so that z(t) = e*°2% for ¢t > 0.

Proposition 3.1. The operator Ay defined by (3.1))—(3.2]) has compact resolvents, and is self-adjoint negative
on H.

Proof. By definition of Ay, we have for any [u, ], [v, (] € D(Ap),

2m 2
<Ao B] , {ﬂ >H = /QAu-U d:c+/0 (5%177) ¢ dry = —/QVu : Vo dx—/o (02,n) (02,C) da.

Thus Ay is symmetric and negative (by using the Poincaré inequalities).
In order to show that Ay is self-adjoint it is sufficient to show that it is onto. Assume [f,g] € H and let us
solve the equation

u
~ o [2] = 11,01 (33)
n
Multiplying the above equation by [v, (] € V leads to the weak formulation

2m 2
/QVu : Vo dx—i—/o (03,1) (05,C) dxy = /Qfm dx—l—/o gCdx1 ([v,{]€V). (3.4)

Using the Poincaré inequalities, we see that we can apply the Riesz theorem and deduce the existence and
uniqueness of [u,n] € V solution of (3.4). Then if v € C°(Q) with dive =0 and ¢ =0 in (3.4]), we obtain that

/Vu:Vv dx:/f~vdx (v e Cr (), dive =0). (3.5)
Q Q



Using the De Rham theorem, we deduce the existence of p such that

—Au+Vp=f inQ,
divu =0 1in Q,

3.6
u=0 only (3:6)

u=mney onlj.

Using the elliptic regularity of the Stokes system, we deduce that (u,p) € H*/2(Q) x H'/?(Q). Multiplying the
first above equation by v, with [v,¢] € V, we deduce that for any ¢ € H*(Z) N L3(T),

21 27
/ (O01) (8, C) dar = —{pyry, ) + / oC day. (3.7)
0 0

Since pir, = ([pIs — Vu]n)p, € H~Y*(T), we deduce that n € H3/%(Z) and from (3.6) that (u,p) € H*(Q) x
H'(Q). Thus pyr, € HY2(T), and from (3.7), we deduce that € H?(Z). We conclude that [u, 7] € D(Ag) and

satisfies (3.3)).
The fact that Ay has compact resolvents is coming from the compact embedding of H? into L? for bounded
domains. O

In particular, the eigenvalues A; > 0 of —Ag satisfy A; — oo and there exists

(4)
([z(j)}) orthonormal basis of H (3.8)
J
composed by eigenvectors of Ag:
(4) (9)
— 4o [um] = [um] (3.9)
n n

The above system can be written as

— AP 4 vpli) = )\ju(j)
divu? =0
w9 =0 onT, (3.10)
w) = pWey on Ty
_ailn(j) —pl) = /\j77(j) inZ
and more precisely as
—njul?) — (82, + ) 4+ 8,,p9) =0
Au) — (@2, + 2 )uf) + 0,,pD =0
8$1u§j) + 8$2uéj) =0
ugj) =0 on 9N
ugj) =0 only

—)\jugj) — a§1u§j> =p¥) onTy.

(3.11)

3.2 Spectral inequality

We are now in a position to state the spectral inequality for the operator Ag defined in the previous section.
Theorem 3.2. Let wy be a nonempty open subset of Q and Sy > 0. There exist C > 0 and x € C5°(0,5y) such
that for any A > 0, and for any (a;); € CV,

2

So
Z |aj|2 < C’ecﬂ/ K2 (s) Z a; cosh(svVA;)ul?) ds. (3.12)
0

A <A A <A L2(w)



In order to prove Theorem we define for s € (0,.5)) and z € Q,

U(s,z) = Z a; cosh(VAjs)u? (z), P(s,x) := Z a; cosh(VA;8)p9 (z) + cp(s) (3.13)

Aj<A Aj <A
and the domains
Z :=(0,50) x 2=1(0,5) xZ x (0,1), J;:=(0,50) xT;=(0,5)xZx{i} (i=0,1). (3.14)
From (3.11)), we deduce that
—02U, — (02, + 02)U1 + 0, P=0 in Z,
—02Us — (02, + 02 ))Us + 0,,P =0 in Z,
69,:1U1 +(r“)x2U2 =0 in Z,
U =0 onJyUJ;

U2 =0 on Jo,
—ang — BilUg =P- mI(P) on Jl.

(3.15)

In the above system, we write

1 2m
mz(P) := %/0 P(xq,1) day

and by using this notation in the last equation of , we can replace the pressure that should satisfies a
relation of the form by the pressure P defined up to a function cp of s. In that way, we can, in what
follows, impose another condition on P (typically that its mean on an open set is zero).

To show Theorem we first truncate U and P in a neighborhood of {s = sg}, with

_ %
=2

We thus consider x € C5°((0, Sp)), satisfying 0 < x < 1 and

So -

1 if |s — sg| < 50/8,
x(s) =4 b il = ol < So/ (3.16)
0 if |s— so| = So/6.
We work with the following localized solutions
u(s,x1,22) = x()U (s, 21, 22), p(s,21,22) := x(s)P(s,x1,22) (3.17)
that satisfy
—8§u1 — (aﬁl + 852)1“ +0,,p=fi InZ
*33162 — (331 + 852)’1142 +0p,p=/fo InZ
O U1 + Ogoug =0 in Z
ur =0 on JyUJy (318)
us =0 on Jy
—0Fuy — 92 up = fs+p—mz(p) onJy,
where
fii=—X"U1 =2xX'0sU1,  fai= —x"Us — 205U, fs = =xX"(U2)},, —2x'(0:V2)),, - (3.19)
We also have that ) )
u=0 and p=0 ifs¢ {350, 350} ) (3.20)
As usual, we can use the three first equations to obtain the following equation for the pressure:
—Ap=—(02, +02,)p=0p, f1 + O, f2 = 0. (3.21)

10



4 A global observability estimate on the pressure

In this section, we prove a global estimate on the pressure. We first introduce our weight and the corresponding
conjugated operators. We then state our main result, that is Theorem Then we show a first estimate on the
pressure involving high frequency pressure terms at the boundary. Such terms are then estimated by showing
some a priori estimates and this allows us to prove Theorem

4.1 Choice of the weight and conjugated operators
Let us consider a nonempty open set wg such that wy C w. Let
A>0,7>0.
Then we consider ¢ € C(Q; R™), such that
1;(.2?17.’1?2) =1 — x5 in a neighborhood of {zo =1}, and 1;(.’1)1,1‘2) = 2 in a neighborhood of {z5 =0} (4.1)
and such that all its critical points belong to wy:
Vi(z) =0 = z € wp. (4.2)

We set B , )
@(s,z) = M@ =(5=50)" () = g7 (5750)7, (4.3)

Note that with our above choices,

900(3) = QD(S’ ’0) = 30(57 * 1) = Héi%(p(sax)'

We recall that we define (u,p) from (U, P) by (3.17) (truncation in s) and that the source f; are defined by
(3.19). We then define

vi=e"%u, q:=€%p, g;:=e¥f; (1€{l,...,3}). (4.4)
In order to take into account the dependence in s, we write
Os
z=(s,2) = (s,21,22) € Z, V.= |04 |, A, =02+02 +02,
Oz,

and their tangential counterparts
0
Vi = {85} Doy, =07 +07.
z1

We keep our previous notation

V: |:811:| R A:a§1+8§2

Oz,
The equations satisfied by v and ¢ can be written with the introduction of the following conjugated operators:
QAP = —€TPAeTT? = A, + 27V, V, — 7—2‘vz§0|2 + T(AZW)a (4'5)
Dy = —€™Ae™ ™ = —A + 27 (V) - V — 7%|Vop|? + 7(Ap), (4.6)
Sy = —€"P0N; 5,77 = —A, 5, + 27(0s0)0s — 72(0500)* + 7(0%¢0). (4.7)

Then we deduce from (3.18]) and (3.21]) the following conjugated system:

ngvl +e¥0up=g1 inZ,
Qcpv2 + eﬂpawzp =g2 inZ
D,q=0 in Z,

V1 =0 on JoUJl,

vg =0 on Jy,

Seva = g3 +q—mz(g) on Ji.

(4.8)
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We define h; by
hi = eTwOfi (Z = 1, 2,3) (49)

The main result of this section is the following result.

Theorem 4.1. There exist \g = )\0(12, So) > 0 and 7o = TO(QZ, So) > 0 such that for any X > Ao and 7 > 79,
there exists C = C(X, ¢, So) > 0 such that for any A > 0 and for any (a;); € CY, the function q defined by
(13-13), (3.17) and (4.4) satisfies

2 2
Nl 222y + TV 22y + 72 la = mz (@) 120,y + T IVl 20,50y <00

2 2 2
< C (P10l 20,50y xw0) + TV 20,501 x00) + T (1005112 2) + 100 B2l 322 + 100 s[32s,)) ) - (4:20)

We prove this theorem in the remainder of this section.

4.2 A first estimate on the pressure

In order to prove Theorem [4.1) we exploit that ¢ satisfies the third equation of (4.8)), where D,, is defined by
(4.6). Since we do not have any boundary condition, we need to split the boundary value of ¢ into high and low
frequencies. More precisely, for Q € H 2(Q), we introduce the Fourier coefficients of the trace of Q :

1 27‘(‘ .
7 Q(x1,0)e~ k1 dgy
ar(Q) == 1” 0o (k€ z). (4.11)

o ; Q(ml,l)e*i}”l dxq

We then define the sets of low tangential frequencies and high tangential frequencies:
72 72
LF, :={k€Z, k*< ?inf 02,0}, HF,:={k€cZ, k*> 5 inf |0, )%}

In the above definition, the infimum of d,,¢ is taken for z € 9Q and s € [0, Sy).

Due to (4.1) and (4.3)), we have
inf |0, 0] = Ae™%.

Proposition 4.2. Thgre exist \g = /\Q(TZ, So) >0 and 19 = 70(1;, So) > 0 such that for any A = \g and T = 7o,
there exists C = C(\, 1, So) > 0 such that for any s € [0,So], and any Q € H?*(Q),

7'3HQ||2L2(Q) + 7'||VQH2L2(Q) + T|aw29\%2(ag) + Z (7 + k?)ax(Q)
kELF,

Y <|D<PQ||2L2(Q) + 7@l ) + TNV 2y + Y (7 +k2)lak(Q)2> - (412)

keHF .

Proof. We can decompose the operator D, (see (4.6)) as follows D, =S + A+ R, where
S=-A-1Vp|?, A=21Vyp -V+27(Ap), R=-71(Ay).
Then, after some standard computation, we can obtain that
/(SQ)(AQ)dx - T/ (2V20(VQ. VQ) + Ap|VOP?) du +73/ (2V20(Vi, Vi) — [Vo?Ag) Q] dz
Q Q Q

—T/(A2<,0)|Q|2dx+8, (4.13)
Q
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where

0%
2, _
Ve <8$ia$j)i,j

and where B corresponds to the boundary terms:

B=-2r [ 8,9(Vy VQ)dl + T/

(0n0)|VQJ2dT — 27 / (Ap)(8,Q)QdT
o0 oQ o0

+T/ (8nA<p)Q2dF—TS/ |V ?(0np)Q%dr.
o0 a0

Using (4.1]), we have that 9,0 < 0 and we can simplify the above quantity:
B=r [ 1000l(0:,Q% 0 ~7 [ 101,61 (0,00 27 [ (8,00 €)(@,,Q)QT
a0 o0 a0

+r / (83,0)(n - e2)Q2dT + 73 / Oanil® Q2T
o0 o0

Combining the above relation with (4.3)), there exists 71 = 71(Sp) > 0 such that for any 7 > 71, we have

1
B> 77')\4,00/ (8,,Q)% dl’ —T/\goo/ (8,,Q)%dl’ + §7'3)\3g08/ Q2dr
2 00 99 4 89

1
> 5”“”0/ (02, Q)% dI' + 277 Ap0 <272A2¢3 - k2> lax(Q))?. (4.14)
oQ keZ

Using (4.3)) and , there exist C; = C1(v), Cy = Ca(v), T2 = 72(S0,%) and Ay = A1 (¢)) such that for A > )\
and 7 > 7o,

T / (2V%p(VQ,VQ) + Ap|VOQ[?) dx + 7° / (2V20(Ve, Vo) — [Vel*Ap) [Qdz — 7 / (A%p)| Q| da
Q Q Q

> cl/ (20 IV QI + 7% 1) da - 02/ (20 1VQI + 710" Q) da. (4.15)
Q w

0

Finally, combining (4.13)), (4.14) and (4.15), we deduce the existence of Ag > 0 and 7o > 0 such that for any
A > X and T > 79, there exist C3 = C5(\,9,S0) > 0 and Cy = Cy(\, 1, Sp) > 0 such that

1
14 Q72 = SIS + A) QT2 () — IRQIIZ () > Re (SQ,AQ) 120y — [RQ720,1)

2, 3102 2 2 12 2
> C3 </Q(T|VQ| +7%19%) dsr:—i—T/BQ(asz) dl' + 1 Z (T°+k )|ak(Q)|>

kELF,

- Cy (/ (rIVOP +%1QP) do+71 ) kQak(Q)2>.

keHF,
O

Applying the above result to Q = ¢ solution of (4.8)) and integrating into (0, Sp), we deduce that

mqlZ22) + TVl Z2(2) + 71022417 2((0,50) x00) + Z 7(7* 4+ k?)|ax(9)]72(0.50)
keLF .

<C <T3q||i2<<o,so>m> +7IValE (0,500 000 + D TP+ ’f2>|“k(q>|%2<o,so>> - (416)
keHF ,

We recall that g(s, ) = 01if |s — sg| = So/6 due to the support of x (see (3.16])). Next, we will estimate the high
tangential frequencies of the pressure.
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4.3 Estimates in the high frequency regime

We define
Y = (0, So) X (O, 1), I, .= (O,So) X {’L}, 1 =0,1.

We recall that (u,p) is defined by (3.17) and (f1, fa, f3) is defined by ([3.19). We define (u*, p*, fF, f5, f¥) the
Fourier coefficients of (u,p, f1, f2, f3) in the z; direction. For instance

1 27 .
uk (s, 29) = —/ u(s, 1, x0)e”F drxy  ((s,23) €Y).
2T 0
Finally, with 7 > 0 and g defined by (4.3)), we set
wh = ey gk =emeoph Rk =m0 fR (1 =1,2,3). (4.17)

Note that hf are the Fourier coefficients of the functions h; defined by (4.9)). Since ¢ only depends on s, and

using (4.3]), (4.4), we have
k
ax(q) = [(ﬂk)10:| : (4.18)

(™)1,
Let us define the following conjugated operators:
Qk,po =€ (— 9?2 — 32 +EHe TP = 92 — 332 + k% 4+ 270305 — T2(00)? + Top s
Sk = €790 (=05 + k%)™ = =07 + k* + 27(0s — T7(0)” + T( -
Then, for k € Z, (3.18) transforms into
Qrpowt +ikn® = bk inY,

k k k .
Qr,poWs +0p,™ =hy inY,
divyw® =0 inY,

wf =0 onhUI, (4.19)
w§ =0 on Iy,
Sk pwh =hE + 7% on Iy,
where
divy {f 1] — ik fy + Ou fo.
f
The relation (3.20) yields
1 2
wF=0 and 7" =0 ifs ¢ [350, 350} ) (4.20)

Proposition 4.3. If the solution of (4.19) satisfies (4.20), then there exist A\g = A3(So) > 0 and C(Sp) > 0
such that for any A > A3 and k € HF

C
7% 22 o0,y < (CEESIE (HthL2 oy 151 Ly + P8 Lo >)

Proof. We multiply the first line (4.19) by wl, the second line (4.19) by wlg, and the last line (4.19) by w§ .
Integrating by parts and summing up yield

/ 00k dy + / Ban*? dy + K / b P dy — 7 / (eh)2 w2 dy

Y Y Y Y

\3sw’2“|2 ds + k> |w’2“|2 ds — 72/ (@6)2|w§|2 ds
11 Il

*Re/ ’fdy+Re/ §dy+Re/ wk ds.  (4.21)

I

I
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Now, since k € HF, we have
2

2
k? > 7—?inf |02, 0|% = %)\267253.
On the other hand,
sup |¢p| < So-
[O’SO]
From the two previous relations, we deduce the existence of A3 = A3(Sp) > 0 such that for A > A3 and for
k € HF,

G )

N |

Combining the above relation and (4.21]) yields

(72 + 1) [ [0s0®, 00 |2y, + (72 B2 [[0F Gy + (72 + ) [00h oy + (72 4 B2 b L,

2 2 2
S ||h11€HL2(y) + ||h12€HL2(Y) + |h§|L2(Il) . (4.22)
Now, we write under the form

(=02 - 92, + K*) wi +ikr* = HY inY,
(02 — 02, + k*) wh + 0y, 7" = Hf in,
diviw® =0 inY,

’ 4.23
w]f:0 on IopU Iy, ( )
wh =0 on I,
(=02 + k*)wh = HY +7* on Iy,

where
HY = —27¢) 0,0k + 72(0h) 2wl — rolwt + hf,
ko ’ k 2/ IN2. k ",k k
H3 = =27¢0s,ws + 7°(pg) w5 — Tpows + hs,
Hy = —2rpdsws + 72(¢))*wh — gy + +hy.

From (4.22)), we deduce

HH{CHLQ(Y) +[1HE (| 2 ) + |H§|L2(11) . Hh]fHL?(Y) [R5 oy + |h§|L2(11)' (4.24)

We multiply the first line ([#.23) by —9%w!, the second line [#.23) by —9%w5, and the last line (#23) by —d2w}.
Integrating by parts, summing up and using (4.24]) yield

+ k2 HaswkH2L2 + |8§w§|iz(h) + 1 |asw§|i2(11)

2 2 2
S ey + 1RSIy + 195 o,y - (4:25)

2 2
070" [ 12 vy + 11050z 2

() ()

Next, we write (4.23]) under the form

(=02, + k%) wh +ikr® = HF inY,
(=02, + k) wh + 07" = HY inY,
divpwfF =0 inY,

’ 4.26
w’sz on IyU Iy, ( )
wh =0 on Iy,

E*wk = HY + 7% on I,
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where _ _ B
HY := HF + 0%w¥, HY:= HY +0*wh, HY .= HY + 9w}

From (4.24) and (4.25)), we deduce
||

The first two lines of (4.26)) can be written as

Tk

H2 3

&l

+| +|
L2(Y) L2(Y) L2(1y)

ikxq _k ikxq f{'{c ikxy ,  k
\Y% (e m ) =e ﬁ§ + A (e w )
and thus B
ikxy _k ikxq Hf ikxy, k
[V (e )HH—l(Q) S ||€ Ik +[|V (e rw )||L2(Q)
2@
and using that k # 0, we deduce from the above estimate that
ikl‘l k ikxl ﬁ{c_ ik$1 k
[ HH*l(Q) S le Ik +[|V (" rw )HLz(Q)'
21 lH-1(@)

SN oy + 12l oy + 1251 o -

(4.27)

(4.28)

(4.29)

(4.30)

Combining (4.29) and (4.30) with the Necas inequality (see, for instance, [I0, p.231, Theorem IV.1.1]), we

deduce that

e | oy S || Y]
and thus, with and ,

k ||7TkHL2(Y) < thlcnm(y) + Hhéﬂ”LZ(y) + ‘héﬂm(h) :

+ ’ﬁfﬂ

+ RV (eF M wb) | Loy

L2(0,1) L2(0,1)

(4.31)

(4.32)

On the other hand, differentiating the divergence equation of system (4.26)) with respect to xz2 and using

([@-22), yield
||332w§||L2(Y) + Ha@ﬂk”Lz(Y) S thlCHB(Y) + ||hI2CHL2(Y) + |h§|L2(11) .

Then, combining the above relation with (4.32) and with a trace inequality, we deduce

1
||7TkHL2(IoLJI1) S 51/2 (Hh’fHLQ(Y) + HhISHLZ(Y) + ’h§|L2(11)) :

Using that k£ € HF,, we deduce the result.

4.4 Proof of Theorem [4.1]
From Proposition and from (4.18]), for k£ € HF,

(72 + k) [ @72 0,50 S F° (10817200 + 1S [y + 1B )
and thus, with the Parceval formula,

2 2 2
Z (r* + kz)\ak(qu(o,so) S ||8w1h1HL2(Z) + ||3m1h2||L2(z) + |811h3|L2(J1) J
kEHF,

where we have used (4.17) and (4.9).

Combining this estimate with (4.16)) we finally obtain the sought result.
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5 Proof of the spectral inequality

The proof of the spectral inequality, that is is based on interpolation estimates. More precisely, it will be
a consequence of Theorem stated below. In order to show such a result, we first recall some interpolation
inequalities available in the literature and then we combine them with the global pressure estimates, that is
Theorem to show Theorem The last part of this section is devoted to the proof of the spectral inequality
from the interpolation inequality.

First, we need the following notation for this section:

S S S S
Op := (SO_;,SO+6()> X wp, O:= <80—5O,So-‘r50> X W, (51)
= So So s So So
Z = (So — 10,80+ 10) X Q, Jl = (80 — 10,80+ 10) X F17 (52)
~ S, S, ~ S S
7 = <80—90,80+90> XQ7 Jl = (80—90,80—|—90) XFl. (53)
Notethatéc?andjlcj.

5.1 Estimates on the velocity

The two components of the velocity satisfy different boundary conditions (see (3.15)). We start by an estimate
on the first component U; that satisfies homogeneous Dirichlet boundary conditions. For the proof of this result,
we refer to relation (1) in Section 3 of [27].

Theorem 5.1. There exist C; > 0 and py € (0,1) such that for all w € H*(Z) such that wy, o, =0,

—u M1
lwll s (2) < O ol (182wl 2z) + ol o)) - (5.4)

Note that Theoremis stated with an H' observation in [27], but we can transform it into an L? observation
as in by using a cut-off function and integrations by parts.

For the estimate of U, we note that it satisfies a Ventcel boundary condition on J; and the Dirichlet
boundary condition on Jy. Hence, we use the following result, which is basically a consequence of a Carleman
estimate obtained in [IT]. However for the sake of completeness, we prove the next result in Appendix

Theorem 5.2. There exist Co > 0 and pa € (0,1) such that

Il () + [0ls ) < o (Iolls (2 + wlin(zy)

M2
. (9.9
sy Hlwliay) - 65)

X (||AZUJ||L2(§) + ‘(3x2w)|\,1 = Agy 5wy,

for all w € H*(Z) such that wy, =0 and w), € H2(Jy).

Note that both Theorem and Theorem hold for u3 € (0,1) such that pu3 < p1 and pg < po (with a
modification of the constants Cy and C3). Thus, with ps = min(p, u2) and an adequate constant Cj, we can
apply Theorem [5.1] with w = U; and Theorem [5.2| with w = Us,, where U satisfies (3.15) and we deduce

1—ps

1O g1 (2) + Vel a5,y < Cs (IIUllHl(z) + |U2|H1(fl))
M3
% (IVPlLagzy + [P, = mz(P)| gy + 10l 20)) - (5:6)

We have used here the fact that on Jq,
0y, Uy = —0,, U1 = 0.

We are going now to combine the above estimate with the estimates of the pressure terms obtained in Section [4]
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5.2 Patching the estimates together
Combining the previous estimates, we can now prove the following result.
Theorem 5.3. There exist C > 0 and p € (0,1) such that for any A > 0 and for any (a;); € CN, the function
U defined by (3.13)) satisfies
1—p
100012 + 10l (7)< € (01202 + Oalizagy) WMoy

Proof. We start with the estimate (4.10)), where we recall that ¢ is given by (3.17)), (4.4) and h;, i = 1,2,3 by
(.9):

T2\l €" X P72 z) +TN€TPXV P L2 (z) + 2|7 X(P —mz(P) 125,y +7|e™X 00, PlL( ) + 717 X0, Pli2 1,
< (7217 Pl 20y + Tl VP 320y + 7 I1E7#0s, fill 122,
+7 Hew"amf2||2m(z) +7 |ew"0w1f3|iz(]1) ) (5.7)
Note that f1, fo (respectively fs) are supported in
Zg = (suppX’) x Z x (0,1) (respectively in Jg := (supp x’) x Z x {1}),

and since supp X' C [so — S0/6, so + So/6]
s2

SUp Py = sup @y < € % . (5.8)

Js Zs

Hence, from (3.19)

_sg
1€79°8,, fill p2(z) + €70 0xy foll 122y + 1679000, falp2 gy < O™ ™ (IUlm2(z) + [U2lm2(1)) - (5.9)
InZ (respectively in :]\1), x(s) =1, and
53
inf o = inf g =inf g = e 31, (5.10)
Z Z J1

Combining (5.7), (5.9) and (5.10), there exist 74, c1,co > 0 such that for all 7 > 74, we have
- 2 2 —eor
IVPIZ, 5, + (P = mz(P)a s, < €7 (IPI2a0n) + IVPIEx(0) )+ (1Ulla2) + Ualizgy) - (5.10)
On the other hand, we deduce from ([5.6) and a Young inequality that
__Hk3c2
1Ulls (2 + 1Vl (7)< Cae™ H77 (U 2) + el 7))
2+
+ez (”VP”L?(2) + [Py =mz(P)| a5 + ||UHL2<00>)
and combining this relation with (5.11]), we deduce the existence of c3,cs > 0 such that for all 7 > 74
ear - 2 2
1011 (2) + Uslins () € €™ (W01l ar2gz) + 102larzgany) + €7 (1PN 20 + IV Pz + 10112200

Now, we can use cp in (3.13) so that for all s € [0, S|,

P(s,z) de =0

wo
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and using the Poincaré-Wirtinger inequality, we deduce that
2 2
P2 00) S IVPIL200) S AUl L2(0,) -

We deduce that for some constants cs,cg > 0, for all 7 > 74,

102y + 102l () S €7 (W0 lla(zy + Walga) + € M0 1zzcop)-

Optimizing this inequality with respect to 7 > 74 (see, for instance, [I1, Lemma 8.4]) allows us to conclude the
proof of Theorem [5.3] O

5.3 From the interpolation inequality to the spectral inequality

Using Theorem [5.3] we are now in a position to prove Theorem 3.2} This inequality combined with Theorem 2]
yields the main result of the article (Theorem [1.1]).

Proof of Theorem[3.3 From (3.8) and (3.1, we deduce that

S
So-‘rTg

||U|\ip(2) + |U2‘i11(j1) > \\U||2Lz(2) + IUz\QLz(jl) >/ . > laj)? cosh(VA;5)? ds 2 Y a; )

S0TT0 A\;<A Aj<A

and
2 2
U132y + |Ualia ) S €€V D7 Jayl?
A <A

Combining Theorem [5.3] with the previous relations, we deduce that

2
S ai P eV U G0,
Aj<A

Using a cut-off function and integrations by parts, we deduce

CVA 2
ST i S VAU o) -
Aj<A

and thus Theorem 3.2 O

A Proof of Theorem [5.2

A.1 A Carleman estimate

The proof of Theorem is mainly based on a Carleman estimate obtained in [II] that we recall here. We
recall that Z, Ji, Jy are defined by (3.14)) whereas Z and J; are defined by (5.2]). In what follows, we consider
2% € Jy, an open neighborhood V of 2% in Z and a weight function ¢ € C°*°(V). For any o € R, we define

p<P70'(Z7£aT) = ‘€|2 - T2|vz<p(z)|2 - 02 + 27’7-6 ! VZQO(Z), (Z € ‘/a 5 € R37 T E R)
It is the principal symbol of the conjugated operator associated with —A, — ¢, that is, of the operator

P,o=—€%(A4+0%) e =-A,+27V.0 V. — 7|V + 7(A.p) — 0°.

We assume the following hypotheses on ¢: sub-ellipticity on V, that is the existence of 7y > 0 such that for any
2€V,6€R3 |o| >1and 7 > 1|0,

1
Ppo(2,6,7) =0 = % {PoorPpo} (2,€,7) > 0. (A1)
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and the two following conditions to handle Ventcel boundary conditions (see |11}, conditions (23) and (24)]):

V.p#0 inV, and sup |V, ¢ < vinf|ds,e0|, (A.2)
vna v

for vg > 0 small enough. We recall that the Poisson bracket is defined by

3
{p(l) p(z)} _ Zlﬁlﬁ PP
) = 0¢; 0z 0€; 0z
where we set here z1 = s, 23 = z1 and z3 = z2 to simplify.
Then we have the following result proved in [I1]:

Theorem A.1. Assume z° € Jy and V is an open neighborhood of 2° in Z. Assume also that ¢ € C(V)
satisfies the conditions (A.1)) and (A.2) for vy small enough. Then, there exist 79 > 0 and C' > 0 such that for
all |o| =2 1, for all T > 1olo| and for all w € C§°(V),

2 2 2 2
T e wll o) + T Vawlpay + 70 €W L yrgy + T Vew i L v
2 2 2
+ 7 |6T<paa:2w\t]1 |L2(Vﬂj1) < C (Heﬂp(_Az - UQ)UJHL%V) +7 ’eﬂp(awzw\,h - As,$1w\J1 |L2(an1)) .

First to precise the above statement, by w € C§°(V) we mean that w is the restriction of a C*° function
with compact support in Vy where V; is an open set of R x Z x R such that V, N Z = V. Second, we use the
above result in the case ¢ = 1, so that by taking 7y large enough, we obtain that for all 7 > 7y and for all
w e Cgo(V),

2 2 2 2
e B e T N R Ea AT

T 2 T 2 T 2
7000, 3 () < C (€77 Bewllag) + 717 @uss, = Aoy favasy) - (A3)

A.2 Interpolation estimates for the Ventcel boundary condition

Using the Carleman inequality of the previous section, one can deduce, in a classical way, an interpolation
inequality. First let us define the weight function that we are going to use.
We consider the following norms on R x Z x R:

2 2 1/2
‘(8,1‘171’2)‘)\22 (;—i-ié—l—x%) .

We consider 20 = (s*,2%,1) € Jy,
Vi=(s"—0,8"+0) x (x] —d,2] +9) x (1 =46,1],

with ¢ € (0,1) small enough such that

S S
(s* =0, +9) C (so—go,so—l—go)

(see (5.3)). We also define z* = (s*,27,0). Then we define

b(@) =z -2y, p=e

Lemma A.2. There exists Ao > 0 such that for any A > Ao, the weight function ¢ satisfies (A.1) and (A.2) on
V' for some 79 = 19(\).
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Proof. We assume that A > 1 in all what follows. First, since V1 # 0 in V, we deduce the first point of (A.2).
For the second point of (A.2)), we first notice that

252 1/2

inf ¢ =1, supy = <)\2 + 1) <2 (A4)
Vndy Vv

We thus deduce

1-46 12
SUp [Veoy o < sup p = and  inf|9,p > A e (077
7 7. 1%

VﬂJl VﬁJl

Consequently there exists A; such that the second point of (A.2]) holds for A > A;.
For (A.1]), we compute the Poisson bracket:

1
%{pg&,a7ptp,a} = T2 (Vz()o) Vz(p ! VZQD + (Viw) 5 : 5
=728 (N IVl = A (V20) (V20) - (V20 ) + 0 (W20 €)% = A (V20) € -€)
> PPNVl = PN | VY| Vg = Ap | VEY| €.
Now, if py o (2,&,7) = 0, then [£]* = 7°A%p?|V,4(2)|* + o2 so that
1
o Por Do} 2 T206° Vet = 20°0%6° | V29| V.0 — Mg [V20] 0.
From (A.4), there exist positive constants independent of A such that
Cy < |V < o, |V2Y| < Cs.
In particular there exist C' > 0 and Ay > A1, such that for A > Ag,
| y— 214 3 2 2
5 Pooi oo} 2 OT2A" — Ao V2| o

and there exists 79 = 79(\) such that for 7 > 7|o],

1 C
@{pgo,ovptp,a} P 572)‘4303 > 0.

From now on, the value of A shall be kept fixed. We define, for 8 > 0,
Zg ={z€Z; dist(z,J1) > B}
Lemma A.3. Assume 2° € J,. There exist an open neighborhood 1% of 2° in Z, u, B € (0,1) and C > 0 such
that for any v € H*(Z) with v, € H2(Jy),
1—p
101l g7y + |U|J1‘H1(‘7mjl) <0 <||”||H1(2) + |U|J1‘H1(jl))
N
% (180l 2(z) + [0eat1, = Butin oy + 0llmsz,)) - (A5)

Proof. Standard computation shows the existence of r3 > 1 such that

5 8 d 8
|z — 2", =13 z=(s,z1,1) € J1 = (s,21) € (s*— s*—|—> X (xf—2,xi+>.
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We consider r2 € (1,73). We can also check the existence of 1 € (0,4) such that
{z=(s,z1,29) €Z; 1 -1 <a2<1, [z—2"|,<rg}CV
We consider two cut-off functions xg, x1 € C*°(R x Z x R) such that

0 i O<a<lon _JO i =2t >
Xo(z){ 1 if 1—-r/2<z9<1, Xl(z){ 1 if |z —2"], <7

Let us consider v € C*°(Z) and let us apply the Carleman estimate (A.3)) to w = xox1v € C3°(V). In the
right-hand side of this estimate, we have

A (xox1v) = (xox1) Azv + 2V, (xox1) - Vv +vA; (xox1)
Note that in supp xox1, ¢ < Cs := e~*(1=)  The two last terms in the above relation are included in
VN(suppVxo) CVN{xs €1 —r1,1—r1/2]}
and on this set, ¢ < C5 or in
VN (supp Vxi) CV N {rs < |z — 2", <13}
and on this set, ¢ < C; := e *"2. Therefore,
le™ Az w]] S e AL + ST o] +eT o] (A.6)
2WNL2(V) ~ zYIlL2(v) HY(Vn{z2€[l—r1,1-71/2]}) HY(V) :
and similarly,
€77 (Ozyw) g, — Agzyw)g,) | > <eC3T‘8 v — Dgay vy, | . —l—eClT’v | 5 (A.7)
zo W|.Jy s,x1 W|Jy Lz(VﬂJl) ~ w2 V| Jq s,x1 Y| Jy Lz(VﬁJl) |J1 Hl(Vﬁjl) . .
There exists r4 > 0 such that
{zeRXIxR; |z-2°|<ry} C {z:(s,xl,xg)eRxIxR; 1—%1<a:2, |z—z*|/\<r2}.

Then on the set _
V::{zeZ; |z—z0|<r4}CV

we have xox1 = 1 and ¢ > Cy := e **"Pv ¥ with Cy € (Cy,C3). Combining this with (A-3)), (A.6) and (A.7),

we deduce that for all 7 > 79,

||UHH1(x7) + |UIJ1‘H1(V01)
S e (A0l aqy + [02ati, = Dl aqvay + 1011 vrgesein-raara/am)
+ e (2= (HU”Hl(V) + |”|J1|H1(vmf1)) - (A8

Optimizing this inequality with respect to 7 yields the interpolation inequality for v smooth. A density argument
permits to conclude the proof of Lemma, O

Proof of Theorem[5.3 By a compactness argument, one can deduce from Lemma an interpolation result
on a neighborhood of J;. Then we combine this with classical interpolation estimates (see [27]) in the interior
and at the boundary Jy where Dirichlet boundary condition hold to conclude. A similar proof is done in [1T]
(see Lemma 8.3). O
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