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Many discrete optimization problems amount to selecting a feasible set of edges of least
weight. We consider in this paper the context of spatial graphs where the positions of the
vertices are uncertain and belong to known uncertainty sets. The objective is to minimize the
sum of the distances of the chosen set of edges for the worst positions of the vertices in their
uncertainty sets. We first prove that these problems are NP-hard even when the feasible sets
consist either of all spanning trees or of all s− t paths. Given this hardness, we propose an
exact solution algorithm combining integer programming formulations with a cutting plane
algorithm, identifying the cases where the separation problem can be solved efficiently. We
also propose a conservative approximation and show its equivalence to the affine decision
rule approximation in the context of Euclidean distances. We compare our algorithms to
three deterministic reformulations on instances inspired by the scientific literature for the
Steiner tree problem and a facility location problem.

Key words: combinatorial optimization, robust optimization, NP-hardness, cutting plane
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1. Introduction

Research in combinatorial optimization has provided efficient algorithms to solve many com-

plex discrete decision problems, providing exact or near-optimal solutions in reasonable

amounts of time. The applications are countless, ranging from logistics (network design,

facility location, . . .) to scheduling. In this paper, we are interested in the class S of deter-

ministic combinatorial optimization problems that amount to selecting a feasible set of edges

in a given graph G = (V,E) and that minimizes the sum of edge-weights. Any Π ∈ S repre-

sents a specific problem, such as the shortest path or the minimum spanning tree problem.

We consider further that G is a spatial graph embedded into a given metric space (M, d).

Each vertex i is assigned a position ui ∈ M so the weight of each edge {i, j} is given by its

distance d(ui, uj). Denoting by X ⊆ {0, 1}|E| the set of feasible vectors for a given instance,
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any Π ∈ S corresponds to a combinatorial optimization problem of the form

min
x∈X

∑
{i,j}∈E

xijd(ui, uj). (Π)

Problem Π encompasses many applications, such as network design and facility location.

These are typically subject to data uncertainty, be it because of the duration of the decision

process, measurement errors, or simply lack of information. One successful framework that

has emerged to address uncertainty is robust optimization (Ben-Tal and Nemirovski 1998),

where the uncertain parameters are modeled with convex sets such as polytopes, or with finite

sets of points. Many authors have focused more particularly on robust discrete optimization

problems see Bertsimas and Sim (2003), Buchheim and Kurtz (2018), Kasperski and Zieliński

(2016), Kouvelis and Yu (2013) and the references therein. We enter this framework by

considering the model where the positions of the vertices are subject to uncertainty, therefore

impacting the distances among the vertices. The resulting problem thus seeks to find a

feasible set of edges that minimizes its worst-case sum of distances. Formally, we introduce

for each vertex i ∈ V the set of possible locations as the uncertainty set Ui ⊆M of cardinality

σi = |Ui|. We consider that there is no correlation between the positions of the different

vertices, so a scenario is given by the tuple u = (u1, . . . , u|V|) which belongs to the set

U = ×i∈VUi. Then, given Π ∈ S, we study in this paper the locational robust counterpart of

problem Π, formally defined as

min
x∈X

max
u∈U

∑
{i,j}∈E

xijd(ui, uj). (LocRob-Π)

We also devote a particular attention to evaluating the objective function of LocRob-Π,

often called the adversarial problem

max
u∈U

∑
{i,j}∈E

xijd(ui, uj). (adversarial)

We underline that we focus throughout on finite uncertainty sets. However, our setting

encompasses polyhedral uncertainty sets whenever the distance function is convex.

Remark 1. Suppose that M ⊆ Rp for some p > 0 and that d is a convex function. Then,

maximizing over U is equivalent to maximizing over the polytope conv(U) = ×i∈V conv(Ui).
Hence, in that case our setting covers polyhedral uncertainty sets.

As an illustration, the following two applications fall into the context of problem LocRob-Π.
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Example 1 (Subway network design). Designing and expanding a subway network forms an

important optimization problem faced by large cities. The new lines should efficiently cover

dense city areas while interacting well with the existing transportation lines. A key aspect of

this problem amounts to locating the new subway stations. In addition to the technical con-

siderations inherent to any construction, these also involve political considerations as local

officials are never happy to let their citizens face the inconvenience of heavy civil engineer-

ing. This political lever is particularly complex in cities like Brussels having multiple local

governments that must all agree before the stations can finally be constructed. As the overall

process takes years, facing local government changes, the exact locations of the metro stations

typically evolve between the first draft and the final implementation. Now, the exact locations

of the stations impact the lengths of the resulting lines, the construction cost of which is typ-

ically proportional to their lengths (Gutiérrez-Jarpa et al. 2013). The cost of digging the new

lines can therefore be modeled as a network design problem with locational uncertainty on the

position of the vertices, usually including additional technical and environmental constraints.

Example 2 (Strategic facility location). A production company wishes to expand its activities

in a new region, locating additional facilities. We consider the strategic level where the

company may only choose approximate locations, as the exact locations will be known later,

after all technical and legal considerations have been studied. We consider a one-stage location

problem where the selection of facilities and assignment of customers are decided at the same

time. This is relevant, for instance, when clients may need different types of products that

require different installations at the facilities. As always in such facility location problems, the

distances between the future clients and facilities lead to significant transportation costs that

need to be kept as low as possible. In this particular case, these distances depend on locations

that are uncertain at the time planning decisions are made. Importantly, the distances are

provided by the underlying road network (Melkote and Daskin 2001), which yields a graph-

induced metric (M, d). More generally, this framework is also relevant for any application

of the p-median problem (Marín and Pelegrín 2019) with locational uncertainty.

Traditionally, robust optimization problems with an objective function that is concave in

the uncertain parameters are reformulated as compact models using conic duality (Ben-Tal

and Nemirovski 1998). These techniques do not readily extend to function d(ui, uj) as the

latter is non-concave in general. Actually, for Euclidean metric spaces based on the vector

space R`, ` ∈ Z+, d(ui, uj) = ‖ui−uj‖2 is convex in ui and uj. Function ‖ui−uj‖2 is closely
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related to the second-order cone (SOC) constraints considered by Zhen et al. (2021) for

robust problems with polyhedral uncertainty sets. Zhen et al. (2021) linearize such robust

SOC constraints by introducing adjustable variables, turning the problem into an adjustable

robust optimization problem that can be tackled exactly (Ayoub and Poss 2016, Zhen et al.

2018, Zeng and Zhao 2013) or approximately using affine decision rules (Ben-Tal et al. 2004)

or finite adaptability approaches (Bertsimas and Dunning 2016, Hanasusanto et al. 2015,

Postek and Den Hertog 2016, Subramanyam et al. 2019), among others.

Interestingly, the approach of Zhen et al. (2021), extended in Roos et al. (2018) to more

general convex functions, makes no particular assumption on the feasibility set of the decision

variables X . A second work closely related to LocRob-Π is that of Citovsky et al. (2017),

who rely on computational geometry techniques to provide constant-factor approximation

algorithms in the special case where X contains all Hamiltonian cycles of G. They propose in

particular to solve a deterministic counterpart of LocRob-Π where the uncertain distances

are replaced by the maximum pairwise distances dmaxij = maxui∈Ui,uj∈Uj d(ui, uj), for each

(i, j) ∈ V2, i 6= j.

To summarize, we see that while Zhen et al. (2021) provide valuable tools for address-

ing problems defined in Euclidean metric spaces considering uncertainty polytopes, their

approaches cannot be used for graph-induced metric spaces, such as those mentioned in Ex-

ample 2. On the other hand, Citovsky et al. (2017) focused on the case where X contains all

Hamiltonian cycles of G. The main purpose of the present paper is thus to provide a more

general solution algorithm that is valid for any set X and metric space (M, d). We only as-

sume that U is finite, encompassing the two cases mentioned above. Specifically, polyhedral

uncertainty in Euclidean metric spaces is already discussed in Remark 1. Then, in the case

of graph-induced metrics, the setM is the set of nodes of a finite graph, meaning that each

Ui ⊆M must be finite as well.

Let us denote by G(x) = (V (x), E(x)) the subgraph induced by x, where E(x) =

{{i, j} ∈ E | xij = 1} and V (x) = {i ∈ V | ∃e ∈ E(x) : i ∈ e}. In this context, we can

summarize our contributions as follows:

• We prove that LocRob-Π is NP-hard even when X consists of all s − t paths and

(M, d) is the one-dimensional Euclidean metric space or when X consists of all spanning

trees of G. These results illustrate how the nature of LocRob-Π fundamentally differs

from the classical min-max robust problem with cost uncertainty, which is known to
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be polynomially solvable whenever the costs lie in independent uncertainty sets (Aissi

et al. 2009).

• We provide a general cutting-plane algorithm for LocRob-Π. We further show that

problem adversarial isNP-hard and provide two algorithms for computing adversarial.

One is based on integer programming formulations while the other one relies on a dy-

namic programming algorithm that involves the threewidth of G(x).

• We leverage the above dynamic programming to provide a compact formulation for the

problem when any G(x) contains only stars (or unions of stars). We can, in theory,

extend that idea to trees, albeit presenting poor numerical performance.

• We propose a conservative approximation of the problem that uncouples U into its

projections Ui, i ∈ V. In the case of Euclidean metric spaces, this approximation leads

to mixed-integer second-order conic reformulations, and turns out to be equivalent to

the affine decision rule reformulation proposed by Zhen et al. (2021).

• We compare the exact cutting plane algorithm numerically with the above conservative

approximation and simple deterministic reformulations. The benchmark is composed of

two families of instances. The first family includes Steiner tree instances that illustrate

subway network design. The second one is composed of strategic facility location

instances.

The rest of the paper is structured as follows. Section 2 studies the hardness of adversarial

and LocRob-Π. In Section 3, we develop the exact solution algorithm. The latter involves

a dynamic programming algorithm for trees, generalized to graphs of bounded threewidth in

the appendix. Section 4 details the conservative reformulation. In Section 5, we present our

numerical experiments. The appendix details the extension of the dynamic programming to

graphs with bounded threewidth (Appendices A and B), the details of the compact formu-

lations (Appendix C) for trees, and the equivalence between our conservative reformulation

and that of Zhen et al. (2021) (Appendix D).

2. Hardness results

We study in this section the complexity of the optimization problems LocRob-Π and

adversarial.
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2.1 Problem robust-Π

Let us start by observing that LocRob-Π is not harder than its nominal counterpart Π

whenever the edges indexed by each x ∈ X are disjoint (do not have common endpoints).

In that case, we have

max
u∈U

∑
{i,j}∈E

xijd(ui, uj) =
∑
{i,j}∈E

max
ui∈Ui,uj∈Uj

xijd(ui, uj) =
∑
{i,j}∈E

xijd
max
ij .

Hence, solving LocRob-Π in the above setting amounts to solve

min
x∈X

∑
{i,j}∈E

xijd
max
ij .

As an example, consider that Π is the assignment problem so G is a bi-partite graph based

on the partition of V into the two sets V1 and V2 of equal size, and any x ∈ X selects |V1|
edges that cover all nodes. Problem Π being solvable in polynomial time, so is LocRob-Π.

In spite of this easy example, we show in this section that LocRob-Π can in general

not be reduced to Π as LocRob-Π is typically harder than Π. We illustrate the hardness of

LocRob-Π by focusing on the two well-known polynomially solvable problems Π, namely the

shortest path problem sp and the minimum spanning tree problem mst. These problems

have been largely studied in the robust combinatorial optimization literature under cost

uncertainty (e.g. Kasperski and Zieliński (2009), Yaman et al. (2001)), which addresses

problems of the type

min
x∈X

max
c∈C

∑
{i,j}∈E

xijcij, (1)

where C is a given uncertainty set included in the positive orthant. Comparing 1 with LocRob-Π

underlines that the difficulty of LocRob-Π lies in the non-linearity of the distance function

d. It is folklore (e.g., Aissi et al. (2009)) that when C is the Cartesian product of intervals,

C = ×e∈E[ce, ce] for ce ≤ ce, problem 1 can be reformulated as minx∈X
∑
{i,j}∈E xijcij making

the robust problems as easy as their nominal counterparts. Our first result below shows that

such is not the case for LocRob-Π, as sp turns NP-hard even in the simple case where

each Ui is a subset of R. Notice that in the 1-dimensional Euclidean space, the convexity of

d(ui, uj) = |ui − uj| implies that Ui is equivalent to the set {ui, ui}, for some ui ≤ ui, in line

with Remark 1.

Proposition 1. LocRob-SP is NP-hard even when (M, d) is the 1-dimensional Euclidean

space.
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Proof. Given a set of integers {a1, . . . , an}, with A =
∑n

i=1 ai, the NP-complete decision

problem partition asks for a subset S ⊂ {1, . . . , n} such that
∑

i∈S ai = A/2. Let K > 0 be

a large enough integer. The reduction considers the graph G with 2n + 2 vertices and 4n

edges as illustrated Figure 1; the regions Ui are translated away from vertex o for visibility.

Specifically, our reduction locates vertices s and t at 0 while Ui = {−u−i , u+
i } for each

vertex i different from s and t. The definition of u+ and u− alternates along the vertices

vi, vi+1, vi+2, . . . and similarly for vertices wi: for each i = 2k + 1, we define u+
vi

= K + ai,

u−vi = K+ A
n
−ai, u+

wi
= K and u−wi = K+ A

n
, while for each i = 2k, we define u+

vi
= K+ A

n
−ai,

u−vi = K + ai, u+
wi

= K + A
n
and u−wi = K.

s t

v1

−u−v1

u+
v1

w1

−u−w1

u+
w1

v2

−u−v2

u+
v2

w2

−u−w2

u+
w2

vn
−u−vn

u+
vn

wn

−u−wn

u+
wn

Figure 1: Reduction from partition when U is a Cartesian product of segments.

We first show that for K large enough, the worst-case u ∈ U for any path P from s to

t alternates from the top of an interval to the bottom of the subsequent interval along the

path. To prove this, notice that for any vertex v ∈ V \ {s, t}, u−v ∈ [K − A,K + A] and

u+
v ∈ [K − A,K + A] and the same holds for any vertex w. Hence, if u alternates for the

entire path, the resulting cost is not smaller than c = 2n(K − A). On the contrary, if u

misses one alternation, its cost cannot be greater than c′ = 2(n − 1)(K + A) + 2A. Hence,

taking K > 2nA ensures c > c′.

The reduction works as follow. Let S ⊆ {1, . . . , n} be a subset of integers and S its

complement. We associate to S the path PS from s to t that contains vi for each i ∈ S

and wi for each i ∈ S. From the above, only two scenarios in U must be considered in the

worst-case and each vertex i ∈ {w1, v1, . . . , wn, vn} contributes to the total length with either
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v0

w0

v1

w1

vn

wn

(a) G

v1
0

w1
0

v1
1

w1
1

v1
n

w1
n

v2
0

w2
0

v2
1

w2
1

v2
n

w2
n

(b) GM.

Figure 2: Graphs used in the reduction for the minimum spanning tree problem.

2u+
i or 2u−i , depending on the scenario considered. We have

c(PS) = max
u∈U

∑
{i,j}∈PS

‖ui − uj‖2

= 2 max

(
nK +

∑
i∈S

ai, n(K +
A

n
)−

∑
i∈S

ai

)

= 2 max

(
nK +

∑
i∈S

ai, A+ nK −
∑
i∈S

ai

)

= 2nK + 2 max

∑
i∈S

ai,
∑
i∈S

ai

 .

Hence, there exists a path PS in X with minimum cost of 2nK+A if and only if there exists

a set S such that
∑

i∈S ai =
∑

i∈S ai = A/2.

For mst we can prove the hardness of the problem only for a more general metric space.

Proposition 2. LocRob-MST is NP-hard.

Proof. We consider the same partition problem as in the proof of Proposition 1. Now G
contains the 2n+ 2 vertices and 3n+ 1 edges depicted on Figure 2a. We consider the metric

space (M, d) induced by the weighted graph GM = (VM, EM, ω) depicted on Figure 2b. Let

K > 0 be a number large enough. The dashed edges and thin edges have their weights equal
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to K and 2K, respectively, while ωv1i−1v
1
i

= 3K + ai, ωv2i−1v
2
i

= 3K + A
n
− ai, ωw1

i−1w
1
i

= 3K,

and ωw2
i−1w

2
i

= 3K + A
n

for each i = 1, . . . , n. The weight vector ω satisfies the triangle

inequalities, so the metric d induced on VM by the shortest paths in GM satisfies dij = ωij

for each {i, j} ∈ EM. Finally, we define Uvi = {v1
i , v

2
i } and Uwi = {w1

i , w
2
i } for i = 0, . . . , n.

We first observe that the cost of a vertical edge {vi, wi} is equal to K for all positions

of (vi, wi) ∈ Uvi × Uwi . Let us consider any tree T in G that contains nv vertical edges and

nh horizontal edges, where n ≤ nh ≤ 2n. For K large enough, we claim that the worst-case

u ∈ U locates all vertices either in the bottom layer of GM that consists of vertices v1
i and

w1
i for i = 0, . . . , n, or in the top layer that consists of the remaining vertices. To prove the

claim, notice that the weight of any horizontal edge in GM is comprised between 3K−A and

3K+A, while the weight of any diagonal edge is 2K. Hence, if u locates all its vertices either

in the bottom or in the top layer, the resulting cost is not smaller than c = nh(3K−A)+nvK.

On the contrary, if u alternates at least once between the layers, its cost cannot be greater

than c′ = (nh−1)(3K+A)+2K+nvK. Hence, taking K > (4n−1)A ≥ (2nh−1)A ensures

c > c′, proving the claim.

We prove next that forK large enough, any optimal tree T inGmust contain n+1 vertical

edges and n horizontal ones. Following the above claim, the cost of a horizontal edge {vi, vi+1}
or {wi, wi+1} for a worst-case u ∈ U is comprised between 3K −A and 3K +A. Hence, any

tree T with nh ∈ {n+ 1, . . . , 2n} horizontal edges costs at least c = nh(3K−A) +nvK while

any tree having nh − 1 horizontal edges costs at most c = (nh − 1)(3K + A) + (nv + 1)K.

Hence, taking K > 2nA ≥ nhA ensures c > c′, proving nh = n in any optimal solution.

As in the proof of Proposition 1, we let S ⊆ {1, . . . , n} be a subset of integers and S

its complement. We associate to S the tree TS that contains {vi−1, vi} for each i ∈ S and

{wi−1, wi} for each i ∈ S. Following the claim above, only two scenarios in U must be

considered, and following again the reasoning used in the proof of Proposition 1, we have

c(TS) = max

(
3nK +

∑
i∈S

ai, 3nK + A−
∑
i∈S

ai

)
= 3nK + max

∑
i∈S

ai,
∑
i∈S

ai

 .

Hence, there exists a spanning tree TS in X with minimum cost of 3nK +A/2 if and only if

there exists a set S such that
∑

i∈S ai =
∑

i∈S ai = A/2.

We detail in the remark below how, for any positive integer `, the metric space (M, d) used

in the proof of Proposition 2 cannot be embedded isometrically into R`. As a consequence,

the hardness of LocRob-MST in Euclidean spaces remains an open problem.
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Remark 2. The graph GM described in the above proof cannot be embedded isometrically

into an Euclidean space, as can be seen by considering the triangle w1
0 w

1
1 w

2
0 and the fourth

point v2
0. The sides of the triangle have length d(w1

0, w
1
1) = 3K, d(w1

1, w
2
0) = 2K, and

d(w2
0, w

1
0) = 2K. Hence, since d(v2

0, w
1
0) = d(v2

0, w
2
0) = K, any isometric embedding maps v2

0

to the midpoint of segment w1
0 w

2
0, so its Euclidean distance to w1

1 must be
√

11
2
K. This is in

contradiction with d(v2
0, w

1
1) = min(ωv20w1

0
+ωw1

0w
1
1
, ωv20v21 +ωv21w1

1
) = min(4K, 4K+A

n
−a1). The

above illustrates that when X contains all spanning trees of G, the complexity of LocRob-Π

is still open when one considers only Euclidean metric spaces.

2.2 Problem adversarial

We now turn to the difficulty of computing the objective function adversarial. Given that

x is fixed throughout, we denote G(x) more shortly as G. Furthermore, we denote the sets

of vertices and edges of G as V [G] and E[G], respectively. Our first result (Proposition 3

below) is that adversarial is hard, even when the metric space is reduced to two points,

or the input graph is a clique. For this, we consider particularly simple metric spaces, and

rely on a reduction from problem max-cut. We recall that max-cut is a famous problem

in combinatorial optimization that, given any input graph G, seeks a partition {V1, V2} of

V [G] such that |{e ∈ E[G] : |e ∩ V1| = 1}| is maximized.

Proposition 3. Even when |M| = 2, there is no PT AS for adversarial unless P = NP.

Proof. Let us denote the objective function of max-cut as fmax-cut(V1, V2) = |{e ∈ E[G] |
|e ∩ V1| = 1}|. Further, we denote by optmax-cut(G) the value of an optimal solution for

graph G. Given an input graph G of max-cut, we defineM = {0, 1} and I as the graph G

itself, Ui =M for any i ∈ V [G], and the distance d by d(x, y) = |x− y|.
Given a solution {V1, V2} (which is a partition) of max-cut, we define ui = 0 if i ∈ V1,

and 1 if i ∈ V2. This implies c(u, I) = fmax-cut(V1, V2). For the reverse direction, given a

solution u of adversarial, we define V1 = {i | ui = 0} and V2 = V [G] \ V1, and we also

have c(u, I) = fmax-cut(V1, V2).

The above immediatly implies that there is an S-reduction (see for instane Crescenzi

(1997)) from max-cut to adversarial, proving the result.

Let us now turn to parameterized complexity, and let tw be the treewidth of G, see

Appendix A.1 for the formal definition of treewidth. Informally, tw measures the thickness
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of a tree structure defining G. In particular, tw(G) = 1 for any tree G. As we show in the

next section that computing adversarial is polynomial on trees, a natural question is to

determine if we can extend this result by proving that adversarial/tw admits an FPT
algorithm (where adversarial/tw denotes problem adversarial parameterized by tw, as

defined in Appendix A.2), meaning an algorithm running in f(tw) · |I|c for some computable

function f and constant c. The following proposition implies that it is very unlikely, and

thus places adversarial with the few problems that are not FPT by treewidth.

Proposition 4. adversarial/tw is W [1]-hard.

Proof. Given a graph G, and a set of integers (called colors) L(i) for any i ∈ V [G], problem

list-col aims at deciding whether we can find a color f(i) ∈ L(i) for any i ∈ V [G] such that

for any edge {i, j} ∈ E[G], f(i) 6= f(j). It is known Fellows et al. (2011) that list-col/tw

isW [1]-hard. Let us now prove that there is a parameterized reduction from list-col/tw to

adversarial/tw, which implies (see Appendix A.2) that adversarial/tw is W [1]-hard.

Given a graph G a list of colors L(i) for any i ∈ V [G], we defineM =
⋃
i∈V [G] L(i), and

d(c1, c2) = 0 is c1 = c2, and 1 otherwise. We define the uncertainty set of G as follows: for

any i, we let Ui = L(i). It is now straightforward to verify that we have a YES-instance of

list-col if and only if c(G) = |V [E]|. As the reduction can be computed in polynomial

time, and the graph (and thus its treewidth) is unchanged, this provides a parameterized

reduction, and we get the desired result.

3. Exact solution of robust-Π

A popular type of algorithms solving exactly difficult robust optimization problems replaces

the large uncertainty set by an approximation of small cardinality, leading to a relaxation of

the original problem. Then, these algorithms iterate between solving integer programming

formulations for the robust problem with small uncertainty set, and checking the optimality

of the solution for the relaxation by solving an adversarial separation problem. This process

leads to cutting plane algorithms (e.g., Bertsimas et al. (2016), Fischetti and Monaci (2012),

Naoum-Sawaya and Buchheim (2016)). Such algorithms involve frequent calls to computing

the objective function adversarial, so we start this section by studying how to solve this

problem. Then, we detail in Section 3.2 the overall cutting plane algorithm for LocRob-Π.
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3.1 Problem adversarial

As in Section 2.2, we denote G(x) more shortly as G in what follows. Given the hardness

results from the previous section, we propose two approaches to computing adversarial

that have non-polynomial running times in general. The first approach relies on an integer

programming formulation. For each i ∈ V and k ∈ {1, . . . , σi}, binary variable yki takes value

1 if and only if vertex i is located at position uki . Therefore, adversarial is equal to

max
∑

{i,j}∈E[G]

σi∑
k=1

σj∑
`=1

d(uki , u
`
j)y

k
i y

`
j

s.t.
σi∑
k=1

yki = 1, ∀i ∈ V [G]

yi ∈ {0, 1}σi , ∀i ∈ V [G]

which can be linearized using classical techniques.

It is also possible to compute adversarial efficiently whenever G has small treewidth

tw(G) using a dynamic programming algorithm. Let us detail the algorithm whenever G is a

tree rooted at vertex r, which we assume oriented from r to its leaves L. We denote by D(i)

the set that contains the direct descendants of i, which is empty if i is a leaf. Let opt(i, ui)

be the maximum value obtained for the subtree starting at i given that node i is located at

ui. We obtain the following recursion:

opt(i, ui) =

{ ∑
j∈D(i)

max
uj∈Uj

d(ui, uj) + opt(j, uj), i ∈ V [G] \ L

0, i ∈ L
(2)

and the optimal solution cost is given by maxur∈Ur opt(r, ur). Dynamic programming recur-

sion (2) will be used in our numerical experiments, which involve trees and stars.

Recall that tw = tw(G) and let us further denote σ = maxi∈V [G] σi. Using dynamic

programming on a well-chosen tree decomposition of G (see Appendix A.1 for the defini-

tion), one can readily extend the above idea to any graph of bounded treewidth, leading to

Theorem 1, whose proof is deferred to Appendix B. We point out that according to Propo-

sition 4 we cannot (unless W [1] =FPT ) remove the dependency in σ to get for example a

O(poly(n)× f(tw)), and this holds for any computable function f .

Theorem 1. adversarial/tw + σ is FPT . More precisely, we can compute an optimal

solution of adversarial in time O(n× tw × σO(tw)).
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3.2 Cutting plane algorithm for the robust problem

Now that we have depicted numerical methods for computing adversarial, we wish to

make the extra step towards the exact solution of the complete problem, LocRob-Π. For

this, we design an exact solution algorithm that generates scenarios of U on the fly in the

course of a branch-and-cut algorithm.

Let Ũ be a finite subset of U . An exact algorithm for LocRob-Π, described in Algo-

rithm 1, relies on the following relaxed formulation

min

ω
∣∣∣∣∣∣ ω ≥

∑
{i,j}∈E

xijd(ui, uj), ∀u ∈ Ũ , x ∈ X

 . (3)

Algorithm 1 describes an iterative cutting-plane implementation, alternating between

the solution of the relaxed master problem (3) and the adversarial separation problem

adversarial. Practical implementation of these algorithms typically rely instead on branch-

and-cut algorithms, where the adversarial separation problem is solved at each integer node

of the branch-and-bound-tree.

Algorithm 1: Cutting-plane algorithm for LocRob-Π

repeat
Let (ω̃, x̃) be an optimal solution of (3)
Let G be the graph induced by x̃
Compute c(G) = maxu∈U

∑
{i,j}∈E[G] d(ũi, ũj) and let ũ be a maximizer

if c(G) > ω̃ then Ũ ← Ũ ∪ {ũ}
until c(G) ≤ ω̃
return G

3.3 Compact formulation for stars

Depending on the structure of the elements of X , the dynamic programming recursion (2)

naturally leads to a compact formulation for the problem. We detail next this idea for the

case where any x ∈ X describes a union of disjoint stars rooted at the elements of a known

set R ⊆ V. For each r ∈ R and ukr ∈ Ur, let us introduce the optimization variable zkr to

model opt(r, ukr), the cost of the star rooted at r given that ur = ukr . Let N(i) be the set

of neighbours of any node i ∈ V. Plugging variables z and x into (2) and noticing that any

node connected to r must be a leaf, we immediately obtain

zkr =
∑
j∈N(r)

xrj max
uj∈Uj

d(ukr , uj). (4)
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Notice that the maximization appearing in the right-hand-side of (4) does not involve op-

timization variables, se we can define the constant dmaxrkj = maxuj∈Uj d(ukr , uj). Then, intro-

ducing zr as the worst-case cost of the star rooted at r, we have

zr = max
k∈[σr]

zkr = max
k∈[σr]

∑
j∈N(r)

xrjd
max
rkj . (5)

Overall, we wish to minimize the sum of zr over all r ∈ R. Reformulating (5) through an

epigraphic reformulation, we obtain

min ω

s.t. ω ≥
∑
r∈R

zr (6)

zr ≥
∑
j∈N(r)

xrjd
max
rkj , ∀r ∈ R, k ∈ [σr] (7)

x ∈ X , z ≥ 0

The above construction can, in theory, be extended to trees. However, in that case the

recurrence relations lead to products between variables, which turns out to be inefficient

numerically. See Appendix C for details.

4. Conservative approximation

We introduce next a (conservative) approximation of LocRob-Π that leads to compact

formulations. Let us introduce an additional optimization variable µe ∈ M for each e ∈ E,
and consider the following optimization problem

min
x∈X

µ∈M|E|

max
u∈U

∑
{i,j}∈E

xij(d(ui, µij) + d(µij, uj)). (cons-Π)

One might interpret the additional variable µij as a compulsory crossing point from vertex

i to vertex j, regardless of the position of these vertices. Using these crossing points, each

distance function only involves a single node, leading to simpler reformulations as we show

below.

Remark 3. Due to the triangle inequalities, the optimal solution cost of cons-Π is not

smaller than the optimal solution cost of LocRob-Π, so cons-Π is a conservative approxi-

mation of LocRob-Π.

14



We show next how to reformulate cons-Π as a discrete optimization problem featuring

a polynomial number of variables. Noticing that∑
{i,j}∈E

xij(d(ui, µij) + d(µij, uj)) =
∑
i∈V

∑
{i,j}∈E

xijd(ui, µij),

we obtain

max
u∈U

∑
{i,j}∈E

xij(d(ui, µij)+d(µij, uj)) = max
u∈U

∑
i∈V

∑
{i,j}∈E

xijd(ui, µij) =
∑
i∈V

max
ui∈Ui

∑
{i,j}∈E

xijd(ui, µij).

Thus, we can introduce an additional variable di for each node i ∈ V, so cons-Π can be

reformulated as

min
∑
i∈V

di (8)

s.t. di ≥
∑
{i,j}∈E

xijd(ui, µij), ∀i ∈ V, ui ∈ Ui (9)

x ∈ X , µ ∈M|E|. (10)

The interest of the above reformulation is that the uncertainty sets Ui, i ∈ V, appear in

distinct constraints, so (9) contains
∑

i∈V σi constraints, which is significantly smaller than

the
∏

i∈V σi elements in the global uncertainty set U . In practice, the numerical difficulty

of problem (8)–(10) typically depends on the considered metric space (M, d) and feasibility

set X . For instance, using ad-hoc pre-processing rules, we may be able to reduce the domain

of each variable µij to a small subset ofMij ⊂M. These rules may not even need to be exact

as problem (8)–(10) is only a conservative approximation of the original problem LocRob-Π.

In what follows, we further develop the case where (M, d) is the p-dimensional Euclidean

space so the distance d(ui, uj) = ‖ui − uj‖2 is now well-defined for any ui, uj ∈ Rp. We can

leverage this to relax the discrete restriction µ ∈M|E| to µ ∈ Rp×|E|, obtaining

min
∑
i∈V

di (11)

s.t. di ≥
∑
{i,j}∈E

xij‖ui − µij‖2, ∀i ∈ V, ui ∈ Ui (12)

x ∈ X , µ ∈M|E|. (13)

The non-linearities in constraints (12) can be avoided by replacing xij‖ui−µij‖2 with ‖xijui−
µij‖2: if xij = 1, both expressions coincide; otherwise, xij = 0, and setting µij = 0 also yields
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equality. Introducing additional variables to isolate each norm into a unique constraint, we

finally obtain the following mixed-integer second-order cone programming formulation

min
∑
i∈V

di (14)

s.t. di ≥
∑
e∈E

∑
i∈e

νki,e (15)

νki,e ≥ ‖xeuki − µe‖2, ∀e ∈ E, i ∈ e, k ∈ [σi] (16)

x ∈ X , µ ∈M|E|. (17)

We conclude this section by mentioning that (14)–(17) can be alternatively obtained by

following the approach proposed in Zhen et al. (2021). Specifically, let us recall the epigraphic

reformulation of LocRob-Π

min ω (18)

s.t. ω ≥
∑
{i,j}∈E

xij‖ui − uj‖2, ∀u ∈ U (19)

x ∈ X . (20)

We detail in Appendix D how each constraint (19) can be reformulated by introducing

recourse variables which, approximated through affine decision rules, leads exactly to (14)–

(17). This connection underlines that the difference between the optimal solution costs

of LocRob-Π and cons-Π can be interpreted as the suboptimality of affine decision rules

for approximating two-stage robust optimization. It also suggests that stronger conservative

approximations could be obtained by using more expressive decision rules, such as the lifted

affine decision rules proposed by de Ruiter and Ben-Tal (2017).

5. Computational experiments

In this section, we compare numerically the exact algorithm from Section 3, denoted exact

hereafter, with three heuristic algorithms that solve deterministic counterparts of LocRob-Π.

Namely, each of these heuristics considers a symmetric function d̂ : V ×V → R+ and returns

the optimal solution of minx∈X
∑
{i,j}∈E xij d̂ij. Three such functions d̂ are considered:

worst: d̂ij = max
ui∈Ui,uj∈Uj

d(ui, uj), as suggested by Citovsky et al. (2017).

16



center: d̂ij = d(βi, βj), where βi is any geometric median of Ui, defined as

βi ∈ arg min
u∈M

∑
u′∈Ui

d(u, u′).

avg: d̂ij = 1
σiσj

∑
ui∈Ui,uj∈Uj

d(ui, uj).

We also include in our numerical assessment the conservative approximation depicted in

Section 4, and denoted cons. We compare these algorithms on the applications mentioned

in the introduction: a subway network design problem, modeled as a Steiner tree problem

(STP), and a simple plant location problem (SPL). Since the applications involve stars and

trees, the separation problems of exact can be solved using the dynamic programming

recurrence presented in (2).

The purpose of our experiments is two-fold. First and foremost, we wish to assess the

numerical efficiency of the exact solution algorithm in terms of solution times. Second, we

measure the approximation ratios obtained by the heuristic algorithms, by comparing the

cost of their solutions to the optimal solution costs.

The algorithms have been coded in Julia (Bezanson et al. 2012), using JuMP (Dunning

et al. 2017) to interface the mixed integer linear programming (MILP) solver CPLEX. They

have been carried out on a processor Intel(R) Core(TM) i7-10510U CPU1.80GHz using up to

4 threads in parallel and with a total running time limit of 2 hours. The source code of every

algorithm is publicly available at https://github.com/mjposs/locational_uncertainty.

5.1 Steiner tree problem

We consider the problem of expanding the subway network of a city, modeled as a Euclidean

Steiner tree problem. The compulsory points model the future stops of the subway, while

the other points model the possible knickpoints of the lines. We thus consider an undirected

graph G = (V,E) where T ⊆ V denotes the set of compulsory vertices; we consider an

arbitrary root r ∈ T and set T0 = T \ {r}. Set X thus contains all trees of G that cover the

vertices of T . Sets Ui ⊆ R2 model the possible locations for the vertices, which we assume to

be polyhedral sets, and we assume that the distance d(ui, uj) = ‖ui − uj‖2 is the Euclidean

distance.

We consider the classical disaggregated MILP formulation for the problem involving

two sets of variables (Magnanti and Wong 1984). For each undirected edge {i, j} ∈ E,
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binary variable xij takes value 1 if and only if the edge is used. Then, for each t ∈ T0 and

e = {i, j} ∈ E, the fractional variable f tij decides how much flow related to t is sent on the

directed arc (i, j). Let Ebidir be the set of directed edges obtained from E by including the two

opposite edges (i, j) and (j, i) for each undirected edge {i, j} ∈ E. Defining the incoming and

outgoing stars at node i as δ−(i) =
{
j
∣∣ (j, i) ∈ Ebidir

}
and δ+(i) =

{
j
∣∣ (i, j) ∈ Ebidir

}
,

respectively, and the balance of vertex i as bti = 0 for i ∈ T0 \ {t}, btr = −1 and btt = 1, we

obtain

min

max
u∈U

∑
{i,j}∈E

xij‖ui − uj‖2


s.t.

∑
(j,i)∈δ−(i)

f tji −
∑

(i,j)∈δ+(i)

f tij = bti, ∀i ∈ V, t ∈ T0

f tij + f tji ≤ xij, ∀{i, j} ∈ E, t ∈ T0

f ≥ 0, x binary

5.1.1 Instances

We assess the different solution algorithms on the instances P6E with 100 vertices and 5

terminals (p619, p620, and 621) that are publicly available at http://steinlib.zib.de/

testset.php. Each of these instances has 180 edges. The position of the vertices, de-

noted ūi hereafter, are not available in the data files P6E, so we estimate them using a

variant of the MDS-MAP algorithm from Shang et al. (2003). Specifically, we apply classi-

cal multidimensional scaling (MDS) from the Julia package MultivariateStats (see https:

//github.com/JuliaStats/MultivariateStats.jl) to compute the positions ū from the

distances, completing the distance matrix with the shortest path values. The uncertainty

sets Ui, i ∈ V are then computed randomly based on two parameters: ∆ that scales the

diameter of each set Ui, and σ the common number of elements of all Ui, i ∈ V. To be more

precise, we first compute the average distance among pairs of points in V, d̄ =
∑

i<j
‖ūi−ūj‖
n(n−1)/2

.

For each i ∈ V, we then uniformly draw one random value in ρi ∈ [0,∆ · d̄] and define the

circle Ci of center ūi and radius ρi. Then, we take σ equidistant points on Ci, yielding

Ui =

{(
ūi1 + ρi cos

(
2kπ

σ

)
, ūi2 + ρi sin

(
2kπ

σ

))
, k = 1, . . . , σ

}
.

We consider each ∆ ∈ {0.2, 0.4, 0.6} and σ ∈ {4, 8, 12}. Following the above procedure,

we create 5 random instances for each P6E instance and choice of parameters, yielding 135

instances in total.
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5.1.2 Results

Figure 3 reports the average solution times, illustrating the impact of the dimension of the

diameters of the uncertainty sets, represented by ∆, and the number of elements in each set,

given by σ. The figure illustrates that, unsurprisingly, the three deterministic counterparts

are solved much faster than cons and exact. More interesting is the fact that exact is

faster than the heuristic algorithm cons when ∆ is small. However, the difficulty of solving

exact grows rapidly with the value of ∆. Notice also that three instances based on p621,

corresponding to ∆ = 0.6, could not be solved to exact optimality within two hours, ending

with optimality gaps of 1%, 5%, and 7%, respectively. Hence, the value reported on Figure 3a

for ∆ = 0.6 is actually a lower bound for the true average value.
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Figure 3: STP: Average solution times in seconds on instances P6E for each algorithm when
varying one of the parameters.
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Figure 4: STP: % of instances for which the additional relative cost is less than x.

Figure 4 reports the cumulative distributions of the cost increase for each of the four

heuristic algorithms, relatively to the cost of the exact solution. Formally, let z(H) denote

the cost of the solution returned by H ∈ {center,worst, avg, cons} and z∗ denote the

optimal solution cost. For each H ∈ {center,worst, avg, cons}, the corresponding curve

19



3

1314
15

25

26

28

36

37

38

46

48

56

66

76

(a) exact

3
13

2324

28

3435

38

45

46

47

48

56
66
76

(b) center

Figure 5: Optimal solutions for instance p620 with ∆ = 0.6 and σ = 4, for which
z(center)/z∗ = 1.46. Grey vertices are common to both solutions, while colored ones
represent nominal positions and each element of Ui for the vertices that are not shared by
the two solutions. We see how center disregards diameters, ending up with additional nodes
having large uncertainty sets. More precisely, computing the average diameters of internal
nodes for both solutions leads to 1974 and 3350 for exact and center, respectively.

reports

g(x) = 100
#{instances for which z(H) ≤ (1 + x) · z∗}

#{all instances}
. (21)

These results show that worst, avg and cons provide solutions with values very close to the

optimal one, with cons being the best of the three, always leading to the optimal solution.

In contrast, the quality of center becomes rather poor as ∆ increases, ranging up to an extra

cost 50% for some of these instances, and with nearly half of the instances with ∆ = 0.6

having an extra cost of at least 20%.

For some insight on the poor results of center, one may observe that it is the only

approximation that completely neglects the shape (and diameter) of the uncertainty sets.

This means that the solution of center may make poor choices when selecting the non-

terminal vertices included in the tree. In particular, the solution of center is likely to

include non-terminal vertices whose uncertainty sets have much larger diameters than those

selected in an optimal solution. We illustrate this by drawing an optimal solution and the

solution returned by center on Figure 5. Fore more details on these aspects we refer to
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our companion paper Bougeret et al. (2022) where we study the approximation ratios of

worst and center. Among other results, we show that while worst achieves a constant

approximation ratio, the solution of center can be arbitrarily bad.

Remark 4. The optimality of the solutions returned by cons that is displayed on Figure 4

means that optimizing along function

ccons(x) = min
µ

max
u∈U

∑
{i,j}∈E

xij(d(ui, µij) + d(µij, uj))

returns the same optimal solution as optimizing along the true objective

c(x) = max
u∈U

∑
{i,j}∈E

xijd(ui, uj).

It does not mean, however, that the conservative approximation (or, equivalently, the affine

decision rule approximation, as discussed in Appendix D) is exact in this case. Specifically,

looking at the detailed results reveals that ccons(x∗) > c(x∗) for the optimal solution x∗

returned by cons.

5.2 Simple plant location

We consider a strategic facility location problem where the exact location of the facility may

be perturbed due to local political and technical considerations, while the exact position of

the clients themselves is subject to uncertainty (Correia and da Gama 2015). The distances

between the facilities and the clients are computed from the shortest path distance on a

weighted graph that represents the underlying road network. The problem can then be

modeled with the weighted graph G = (V,E, l), the vertices of which represent the possible

locations for the facilities and clients, while each edge and its weight represent the existence

of a road between two vertices together with its length. The metric is induced by graph G,

soM = V and d(u, v) is equal to the shortest path between u and v for every u, v ∈ V .

Let I ⊆ V and J ⊆ V represent the set of clients and possible locations for the facilities.

We consider the problem of choosing p facilities among J and assigning every client to its

closest facility so as to minimize the total assignment cost. For each j ∈ J, let yj be a binary

variable indicating whether a facility is located at j, and for each i ∈ I, j ∈ J, let xij ∈ {0, 1}
indicate whether client i is assigned to facility j. The robust problem can then be formulated
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as

min

(
max
u∈U

∑
i∈I,j∈J

xijd(ui, uj)

)
s.t.
∑
j∈J

xij = 1, ∀i ∈ I

xij ≤ yj, ∀i ∈ I, j ∈ J∑
j∈J

yj = p

x, y binary

5.2.1 Instances

We construct the graph G = (V,E, l) as follows. For each vertex i, we generate its position

ui uniformly in the square [0, 1]2 and we select edges so that the resulting graph is planar and

connected and shorter edges are more likely to appear. This procedure allows to mimic real

transportation networks (Daskin 1993). More precisely, we first compute a minimum cost

spanning tree based on the weights {wij = ‖ui − uj‖−2
2 } to ensure the graph is connected.

Then, we iteratively select m− n+ 1 additional edges following the probability distribution

Probij =
wij∑

{i′,j′} wi′j′
for each i 6= j ∈ V while ensuring the resulting graph is planar. The

length lij of each edge {i, j} ∈ E is then given by ‖ui − uj‖2 and the the distance between

every pair of vertices is given by the shortest path between them in G. For each i ∈ V, we
define Ui as the σ vertices that are closest to i. Finally, I is defined as a random subset of

V such that Ui ∩ Ui′ = ∅ for each i, i′ ∈ I and J = V \ I. Following the above procedure,

we create 2 random instances for each choice of parameters n,m, σ and |I|, leading to 486

instances.

5.2.2 Results

Figure 6 reports the average solution times, showing that exact is able to solve every instance

to optimality within a few seconds, being roughly twice slower than the heuristic algorithms.

The figure further underlines that n is the parameter having the strongest impact on the

solution time. This was expected given that larger values for n imply more elements in I

and J , and therefore, larger models. The charts presented for the remaining 4 parameters

do not lead to clear conclusions.

Heuristic cons is not included in the comparison because its efficiency strongly depends

on the definition of setsMij, as discussed in Section 4. While definingMij = M is likely
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to be intractable, it would lead to the tightest bounds. To obtain a good trade-off between

quality and time, one should come up with ad-hoc setsMij ⊂M obtained through heuristics

that would be tailored to the specific instances used. This is beyond the scope of the current

paper, which aims at proposing general methods rather than ad-hoc algorithms for specific

data sets.

Then, following again formula (21), Figure 7 reports the cumulative distributions of the

cost increase of each of the three deterministic heuristics, relatively to the cost of the exact

solution. The results focus only on the parameters having an impact on the resuting costs,

namely n and σ. They illustrate that avg is the best approximation, followed closely by

worst and center. They also show that center behaves worse for small instances and those

having larger uncertainty sets.

Overall, these results illustrate that given the quick solution times of exact due to the

compact formulation presented in Section 3.3, heuristic algorithms do not seem necessary for

obtaining good solutions to this problem. Yet, if one wishes to reduce further the solution

times, avg should be preferred over worst and center.
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Figure 6: SPL: Average solution times in seconds for each algorithm when varying one of
the parameters.
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Figure 7: SPL: For each heuristic algorithm, the curve plots (21), the cumulative distribution
of the % of instances for which the returned solution has an additional (relative) cost less
than the value of the abscissa.

6. Concluding remarks

This paper has been devoted to the study of general combinatorial optimization problems

defined in spatial graphs with locational uncertainty, thus encompassing applications arising

in transportation and facility location, among others. After proving the NP-hardness of

these problems, we have developed an exact solution algorithm based on scenario generation.

The bottleneck of this algorithm lies in the separation problem, so we have studied in depth

the complexity of that problem, also proposing an integer programming formulation. We

have also proposed a conservative approximation that turns out to be equivalent to the affine

decision rules approximation by Zhen et al. (2021) in the case of Euclidean distances. We

have compared these algorithms numerically to different deterministic approximations on

Steiner tree and location instances inspired by the scientific literature.

Our results illustrate that the exact algorithms are fast, being able to solve in reasonable

amounts of time instances of realistic sizes. They also illustrate that the deterministic

reformulations based on average or worst-case distances provide very good solutions in short

amounts of time, offering interesting alternatives whenever an exact solution cannot be

computed in an acceptable time.

Last, our solution algorithms and reformulations critically rely on the fact that the un-
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certainty sets are independent for each vertex i ∈ V. We believe that extending these to

more general (correlated) uncertainty sets would be an interesting topic for future research.
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A. Definitions related to parameterized complexity and
treewidth

A.1 Tree decompositions and treewidth.

A tree decomposition of a graph G = (V,E) is a pair D = (T,B), where T is a tree and

B = {Xw | w ∈ V [T ]} is a collection of subsets of V , called bags, such that:

•
⋃
w∈V [T ] X

w = V ,

• for every edge {i, j} ∈ E, there is a w ∈ V [T ] such that {i, j} ⊆ Xw, and

• for every {x, y, z} ⊆ V [T ] such that z lies on the unique path between x and y in T ,

Xx ∩Xy ⊆ Xz.

We call the vertices of T vertices of D and the sets in B bags of D. The width of a tree

decomposition D = (T,B) is maxw∈V [T ] |Xw| − 1. The treewidth of a graph G, denoted by

tw(G), is the smallest integer t such that there exists a tree decomposition of G of width at

most t. Let us now recall the definition of a nice tree decomposition, which will make the

presentation of the algorithm used to proof Theorem 1 much simpler.

Let D = (T,B) be a rooted tree decomposition of G (meaning that T has a special vertex

r called the root). As T is rooted, we naturally define an ancestor relation among bags, and

say that Xw′ is a descendant of Xw if the vertex set of the unique simple path in T from r
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to w′ contains w. In particular, every vertex w is a descendant of itself. For every w ∈ V [T ],

we define Gw = G[
⋃
{Xw′ | Xw′ is a descendant of Xw in T}].

Such a rooted decomposition is called a nice tree decomposition of G if the following

conditions hold:

• Xr = ∅.

• Every vertex of T has at most two children in T .

• For every leaf ` ∈ V [T ], X` = ∅. Each such vertex ` is called a leaf vertex.

• If w ∈ V [T ] has exactly one child w′, then either

– Xw = Xw′ ∪ {i} for some i 6∈ Xw′ . Each such vertex is called an introduce vertex.

– Xw = Xw′ \ {i} for some i ∈ Xw′ . Each such vertex is called a forget vertex.

• If w ∈ V [T ] has exactly two children wL and wR, then Xw = XwL = XwR . Each such

vertex w is called a join vertex.

We recall that one of the key property of such a nice decomposition is that for any w ∈ V [T ],

Xw is a separator of G. This implies in particular that, in a join vertex, there is no edge

{i, j} ∈ Gw such that i ∈ V [GwL ] \Xw and j ∈ V [GwR ] \Xw.

Given a tree decomposition of a graph G of width t and x vertices, it is possible to

transform it in polynomial time into a nice one of width t and xt vertices (Kloks 1994).

Moreover, it is possible (Bodlaender et al. (2013)) to compute a tree decomposition of width

tw′ = O(tw(G)) and O(n) vertices in time O(ctw(G)n), where n = |V |. By using these two

results, we can compute in time O(ctw(G)n) a nice tree decomposition of width O(tw(G))

with O(tw(G)n) vertices.

A.2 Parameterized complexity

We refer the reader to Downey and Fellows (2013), Cygan et al. (2015) for basic background

on parameterized complexity, and we recall here only some basic definitions. A parameterized

problem is a language L ⊆ Σ∗ × N, where Σ is some fixed alphabet. For an instance

I = (x, k) ∈ Σ∗×N, k is called the parameter. Given a classical (non-parameterized) decision

problem Lc ⊆ Σ∗ and a function κ : Σ∗ → N, we denote by Lc/κ = {(x, κ(x)} | x ∈ Lc} the
associated parameterized problem.
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A parameterized problem L is fixed-parameter tractable (FPT ) if there exists an algo-

rithm A, a computable function f , and a constant c such that given an instance I = (x, k),

A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
For instance, the Vertex Cover problem parameterized by the size of the solution is FPT .

Within parameterized problems, the W-hierarchy may be seen as the parameterized

equivalent to the class NP of classical decision problems. Without entering into details

(see Downey and Fellows (2013), Cygan et al. (2015) for the formal definitions), a parame-

terized problem being W [1]-hard can be seen as a strong evidence that this problem is not

FPT . The canonical example of W [1]-hard problem is Independent Set parameterized

by the size of the solution.

The most common way to transfer W [1]-hardness is via parameterized reductions. A

parameterized reduction from a parameterized problem L1 to a parameterized problem L2 is

an algorithm that, given an instance (x, k) of L1, outputs an instance (x′, k′) of L2 such that

• (x, k) is a yes-instance of L1 if and only if (x′, k′) is a yes-instance of L2,

• k′ ≤ g(k) for some computable function g, and

• the running time is bounded by f(k) · |x|O(1) for some computable function f .

If L1 isW [1]-hard and there is a parameterized reduction from L1 to L2, then L2 isW [1]-hard

as well.

B. Computing the objective function on small treewidth
graphs

Throughout this section, we consider the graph G = (V,E) and denote by u|X the vector u

restricted to components ui such that i ∈ X, for any X ⊆ V .

B.1 Definition of the auxiliary problem

In this section we consider that we are given a fixed input of adversarial, and a nice tree

decomposition D = (T,B) of G. Given w ∈ V [T ], we denote Uw = ×i∈V [Gw]Ui. Let us define
the following maximization problem Π. An input of Π is a pair (w, f) where w ∈ V [T ], and

f is a function from Xw toM such that for any i ∈ Xw, f(i) ∈ Ui. An output is a vector

u ∈ Uw such that for any i ∈ Xw, ui = f(i), which we denote by u ` (w, f). The objective
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is to maximize c(u,Gw). We denote by opt(w, f) the optimal value for instance (w, f). As

usual in DP algorithms, to simplify the presentation we will define an algorithm A that given

an input (w, f) only computes the value opt(w, f). This algorithm could be easily modified

to get an associated optimal solution.

B.2 Join case

Let w be a join vertex with children wL and wR. Given two vectors uL ∈ UwL and uR ∈ UwR ,
such that for any i ∈ Xw, uLi = uRi , we define u = uL � uR by ui = uLi for any i ∈ V [GwL ],

and ui = uRi for any i ∈ V [GwR ]. Observe that u is well defined as for i ∈ Xw, uLi = uRi .

Lemma 1. Let (w, f) be an input of Π such that w is a join vertex with children wL and

wR. For any u ∈ Uw, u ` (w, f) if and only if there exists uL, uR such that the following

conditions hold:

• uL ` (wL, f)

• uR ` (wR, f)

• u = uL � uR

Proof. We obtain the ⇒ direction by defining uL = u|V [GwL ] (resp. uR = u|V [GwR ]). In the

⇐ direction, observe that uL � uR is well defined as for any i ∈ Xw, uLi = uRi = f(i), and

u ` (w, f) is also immediate.

Lemma 2. Let (w, f) be an input of Π such that w is a join vertex with children wL and wR.

Then, opt(w, f) = opt(wL, f)+opt(wR, f)−d(w,f), where d(w,f) =
∑

i,j∈Xw,{i,j}∈E[G] d(f(i), f(j)).

Proof. Let us start with the ≤ inequality. Let u such that c(u,Gw) = opt(w, f). Let uL

and uR as defined by Lemma 1. Observe that c(u,Gw) = c(u,GwL) + c(u,GwR) − d(w,f) as

edges inside Xw are counted twice in the first two terms. We have c(u,GwL) = c(uL, GwL),

and c(uL, GwL) ≤ OPT (wL, f) as uL ` (wL, f), and same properties hold for the right side.

This implies opt(w, f) ≤ opt(wL, f) + opt(wR, f)− d(w,f).

Let us now turn to the other inequality. Let uL such that c(uL, GwL) = opt(wL, f), uR

such that c(uR, GwR) = opt(wR, f), and u = uL � uR. According to Lemma 1, u ` (w, f),

and again c(u,Gw) = c(uL, GwL) + c(uR, GwR)− d(w,f), implying the desired inequality.
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We are now ready to define the DP algorithm A in the join case. Given an input (w, f)

of Π such that w is a join vertex with children wL and wR, A(w, f) returns A(wL, f) +

A(wR, f)− d(w,f). It follows from induction and using Lemma 2 that A(w, f) = opt(w, f).

B.3 Introduce case

Given any input (w, f) of Π and X ⊆ Xw, we denote by f|X function f restricted to X. The

following two lemmas are easily verified.

Lemma 3. Let (w, f) be an input of Π such that w is an introduce vertex with children w′.

Let i be such that Xw = Xw′ ∪ {i}. For any u ∈ Uw, u ` (w, f) if and only if the following

conditions hold:

• u|V [Gw′ ] ` (w′, f|Xw′ )

• ui = f(i)

Lemma 4. Let (w, f) be an input of Π such that w is an introduce vertex with children

w′. Let i be such that Xw = Xw′ ∪ {i}. Then, opt(w, f) = opt(w′, f|Xw′ ) + d(i,w,f), where

d(i,w,f) =
∑

j∈Xw,{i,j}∈E[G] d(f(i), f(j)).

We are now ready to define the DP algorithm A in the introduce case. Given an input

(w, f) of Π such that w is an introduce vertex with children w′, whereXw = Xw′∪{i}, A(w, f)

returns A(w′, f|Xw′ ) + d(i,w,f). Using Lemma 4 and induction, we obtain that A(w, f) =

opt(w, f).

B.4 Forget case

Let (w, f) be an input of Π such that w is a forget vertex with children w′. Let i such that

Xw′ = Xw ∪ {i}. For any x ∈ M, we denote f (i,x) the function from Xw′ to M such that

f (i,x)(j) = f(j) for any j 6= i, and f (i,x)(i) = x. We obtain the following lemma.

Lemma 5. Let (w, f) be an input of Π such that w is a forget vertex with children w′. Let

i be such that Xw′ = Xw ∪ {i}. For any u ∈ Uw, u ` (w, f) if and only if u ` (w′, f (i,ui)).

Lemma 6. Let (w, f) be an input of Π such that w is a forget vertex with children w′. Let

i be such that Xw′ = Xw ∪ {i}. Then, opt(w, f) = maxx∈Ui opt(w′, f (i,x)).
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Proof. Observe first that Gw = Gw′ . Let us start with the ≤ inequality. Let u such that

c(u,Gw) = opt(w, f). Notice that c(u,Gw) = c(u,Gw′). By Lemma 5, u ` (w′, f (i,ui)),

implying c(u,Gw′) ≤ opt(w′, f (i,ui)) ≤ maxx∈Ui opt(w′, f (i,x)).

Let us now turn to the other inequality. Let x∗ ∈ Ui maximizing the right side. Let

u such that c(u,Gw′) = opt(w′, f (i,x∗)). Notice that as u ` (w′, f (i,x∗)), ui = x∗, and thus

u ` (w′, f (i,ui)). According to Lemma 5, u ` (w, f), implying that c(u,Gw′) = c(u,Gw) ≤
opt(w, f).

We are now ready to define the DP algorithm A in the forget case. Given an input (w, f)

of Π such that w is a forget vertex with children w′, where Xw′ = Xw ∪{i}, A(w, f) returns

maxx∈Ui A(w′, f (i,x)). It follows by induction and using Lemma 6 that A(w, f) = opt(w, f).

B.5 Putting pieces together

Theorem 2. adversarial/tw + σ is FPT . More precisely, we can compute an optimal

solution of adversarial in time O(ntwσO(tw)), where n = |V |, tw = tw(G), and σ =

maxi∈V σi.

Proof. Given an input (M, d, G,U) of adversarial, we start (see Appendix A.1) by com-

puting in time O(ctw(G)n) a nice tree decomposition of width O(tw(G)) with N = O(ntw(G))

vertices. Remember that this nice tree decomposition is rooted on a vertex r such that

Xr = ∅. Then, we output A(r, ∅). Notice that as Xr = ∅, the second parameter (the func-

tion from Xr to M) is defined nowhere and denoted ∅. As A solves Π optimaly, we have

A(r, ∅) = opt(r, ∅). Moreover, as Gr = G, we have opt(r, ∅) = c(G).

Let us now consider the running time of A. Given a tree decomposition with N vertices

(in the tree of bags) and of width t, the size of the DP table is O(Nσt), the time to compute

one entry is dominated by the forget case where the branching is in O(σ), implying a running

time in O(Nσt+1). Pluging the corresponding values, we get the claimed running time.

C. Compact formulation for the Steiner Tree Problem

We extend next the construction from Section 3.3 to trees, albeit this involves logical con-

straints. We consider more particularly the case of the Steiner Tree Problem where a set

of terminals T ⊆ V is given and any feasible solution is a Steiner tree connecting the ter-

minals of T . We further assume that r is a given arbitrary root in T and that any x ∈ X
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describes an directed tree from r to the set of terminals T \ {r}. In particular, this in-

volves that the edges are directed, so variables xij and xji now denote the two directed

edges (i, j) and (j, i) obtained from {i, j}, leading to the directed set of edges Ebidir. Simi-

larly, we introduce the incoming and outgoing stars of i as δ−(i) =
{
j
∣∣ (j, i) ∈ Ebidir

}
and

δ+(i) =
{
j
∣∣ (i, j) ∈ Ebidir

}
, respectively.

Then, extending the optimization variable z to any node in V , we obtain the following

formulation

min ω

s.t. ω ≥ zkr , ∀k ∈ [σr] (22)

zki ≥
∑

j∈δ+(i)

xij max
`∈[σj ]

(
d(uki , u

`
j) + z`j

)
, ∀i ∈ V, k ∈ [σj] (23)

x ∈ X , z ≥ 0. (24)

To linearize the maxima in the right-hand-side of (23), we introduce variables Zk
ij such that

Zk
ij ≥ d(uki , u

`
j) + z`j , ∀` ∈ [σj]

and replace (23) with

zki ≥
∑

j∈δ+(i)

xijZ
k
ij, ∀i ∈ V \ T0, k, ` ∈ [σj]. (25)

The right-hand-side of constraints (25) can be further linearized with the help of additional

variables Xk
ij and logical constraints

xij = 1 =⇒ Xk
ij ≥ Zk

ij.

We illustrate and compare the above formulation on small artificial instances built upon

the format instance which includes 7 vertices and 9 edges (the instance is available at http:

//steinlib.zib.de/format.php). To get larger instances from the format instance, we

remove the central terminal and add layered copies of the instance. Figure 8 depicts the

original structure of the format instance and that obtained by adding one copy. We denote

as format(κ) the instance with κ copies of the original graph.

The results presented on Figure 9 underline that compact can hardly solve large in-

stances, as the solution times increase significantly with κ. They also illustrate that cons is

much slower than exact on these small artificial instances.
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(a) format(1) (b) format(2)

Figure 8: Small instances inspired by the format instance from SteinLib, T contains the
larger nodes.
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Figure 9: STP: Average solution times in seconds on instances format(κ) for each algorithm
when varying one of the parameters.

D. Connection with the affine decision rules approxima-
tion from Zhen et al. (2021)

Notice first that, due to the convexity of the norm, the constraint

∀u ∈ U :
∑
{i,j}∈E

xij‖ui − uj‖2 ≤ ω

is equivalent to

∀u ∈ conv(U) :
∑
{i,j}∈E

xij‖ui − uj‖2 ≤ ω.

Next, let us denote the unit ball of dimension p by Wp, as well as W = ×e∈EWp. Let us

also direct arbitrarily every edge in E, leading to the set of directed edges ~E. Following the

same idea as (Zhen et al. 2021, Theorem 1), we obtain that the constraint

∀u ∈ conv(U) :
∑

(i,j)∈~E

xij‖ui − uj‖2 ≤ ω
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is equivalent to

∀u ∈ conv(U) :
∑

(i,j)∈~E

xij max
wij∈Wp

wTij(ui − uj) ≤ ω (26)

⇔∀w ∈ W , u ∈ conv(U) :
∑

(i,j)∈~E

xijw
T
ij(ui − uj) ≤ ω (27)

⇔∀w ∈ W : max

 ∑
(i,j)∈~E

xijw
T
ij

(
σi∑
k=1

λki u
k
i −

σj∑
`=1

λ`ju
`
j

) ∣∣∣∣∣
σi∑
k=1

λki = 1,∀i ∈ V, λ ≥ 0

 ≤ ω

(28)

⇔∀w ∈ W : min

∑
i∈V

µi

∣∣∣∣∣∣ µi ≥
 ∑

(i,j)∈~E

xijw
T
ij −

∑
(j,i)∈~E

xjiw
T
ji

uki ,∀i ∈ V, k ∈ [σi]

 ≤ ω.

(29)

Observe that the left-hand side of (29) can be interpreted as a two-stage robust opti-

mization problem without first-stage variables, with µ playing the role of the second-stage

variables, and with w representing the uncertain parameters. This type of models being

notoriously difficult to solve to optimality, we follow (Zhen et al. 2021, Lemma 1) and seek

a heuristic solution by considering second-stage variables µ that can be expressed as affine

decision rules

µi(w) = µ0
i +

∑
(i′,j′)∈~E

µTi,i′j′wi′j′ , (30)

where µ0
i ∈ R and µi,i′j′ ∈ Rp. Replacing (19) by (29) with µ substituted with the right-hand

side of (30), we obtain

min ω

s.t. ω ≥
∑
i∈V

µ0
i +

∑
(i′,j′)∈~E

µTi,i′j′wi′j′

 , ∀w ∈ W

µ0
i +

∑
(i′,j′)∈~E

µTi,i′j′wi′j′ ≥

 ∑
(i,j)∈~E

xijw
T
ij −

∑
(j,i)∈~E

xjiw
T
ji

uki , ∀i ∈ V, k ∈ [σi], w ∈ W

x ∈ X .
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Dualizing the robust counstraints with respect to w ∈ W yields

min ω (31)

s.t. ω ≥
∑
i∈V

µ0
i +

∑
(i,j)∈~E

∥∥∥∥∥µi,ij + µj,ij +
∑
i′ 6=i,j

µi′,ij

∥∥∥∥∥
2

(32)

µ0
i ≥

∑
(i,j)∈~E

‖xijuki − µi,ij‖2 +
∑

(j,i)∈~E

‖xjiuki + µi,ji‖2 +
∑

(i′,j′)∈~E:i 6=i′,j′

‖µi,i′j′‖2, ∀i ∈ V, k ∈ [σi]

(33)
x ∈ X . (34)

We discuss next how we can substantially reduce the number of affine multipliers in (30), and

consequently, in problem (31)–(34). Let (ω̃, x̃, µ̃0, µ̃) denote an optimal solution to (31)–(34).

Observe that the optimal solution cost is equal to ω̃ = maxu∈U ω̃(u) where

ω̃(u) =
∑
i∈V

 ∑
(i,j)∈~E

‖x̃ijui − µ̃i,ij‖2 +
∑

(j,i)∈~E

‖x̃jiui + µ̃i,ji‖2 +
∑

(i′,j′)∈~E:i 6=i′,j′

‖µ̃i,i′j′‖2


+
∑

(i,j)∈~E

∥∥∥∥∥µ̃i,ij + µ̃j,ij +
∑
i′ 6=i,j

µ̃i′,ij

∥∥∥∥∥
2

(35)

=
∑

(i,j)∈~E

‖x̃ijui − µ̃i,ij‖2 + ‖x̃ijuj + µ̃j,ij‖2 +
∑
i′ 6=i,j

‖µ̃i′,ij‖2 +

∥∥∥∥∥µ̃i,ij + µ̃j,ij +
∑
i′ 6=i,j

µ̃i′,ij

∥∥∥∥∥
2


(36)

We are going to define a sequence of two new solutions, µ̃′ and µ̃′′, such that the corre-

sponding values ω̃′(u) and ω̃′′(u) are not greater than ω̃(u) for each u ∈ U . First, we define

µ̃′ by setting µ̃′i′,ij = 0 for all (i, j) ∈ ~E such that i′ /∈ {i, j} and µ̃′i′,ij = µ̃i′,ij otherwise, and

let ω̃′(u) be the right-hand side of (36) with µ replaced by µ′. Observe that

∑
i′ 6=i,j

‖µ̃′i′,ij‖2 +

∥∥∥∥∥µ̃′i,ij + µ̃′j,ij +
∑
i′ 6=i,j

µ̃′i′,ij

∥∥∥∥∥
2

=
∥∥µ̃′i,ij + µ̃′j,ij

∥∥
2

= ‖µ̃i,ij + µ̃j,ij‖2

≤
∑
i′ 6=i,j

‖µ̃i′,ij‖2 +

∥∥∥∥∥µ̃i,ij + µ̃j,ij +
∑
i′ 6=i,j

µ̃i′,ij

∥∥∥∥∥
2

,

which implies that

ω̃′(u) ≤ ω̃(u), (37)
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for each u ∈ U . Second, we define another solution µ̃′′ such that µ̃′′i,ij = µ̃′i,ij and µ̃′′j,ij =

−µ̃′i,ij,∀(i, j) ∈ ~E. Then, we denote as ω̃′′(u) the corresponding right-hand side of (36).

Observe that for each u ∈ U

ω̃′′(u) =
∑

(i,j)∈~E

(
‖x̃ijui − µ̃′′i,ij‖2 + ‖x̃ijuj + µ̃′′j,ij‖2 + ‖µ̃′′i,ij + µ̃′′j,ij‖2

)
(38)

=
∑

(i,j)∈~E

(
‖x̃ijui − µ̃′i,ij‖2 + ‖x̃ijuj − µ̃′i,ij‖2

)
≤ ω̃′(u). (39)

From (37) and (39), we see that we can set µ̃i′,ij = 0 for all (i, j) ∈ ~E such that i′ /∈ {i, j}
and µ̃i,ij = −µ̃j,ij,∀(i, j) ∈ ~E without deteriorating the quality of the solution returned

by (31)–(34). Thus, renaming the variables µi,ij as µij, formulation (31)–(34) becomes

min ω

s.t. ω ≥
∑
i∈V

µ0
i

µ0
i ≥

∑
(i,j)∈~E

‖xijuki − µij‖2 +
∑

(j,i)∈~E

‖xjiuki − µji‖2, ∀i ∈ V, u ∈ U

x ∈ X ,

and the equivalence with (14)–(17) follows by removing the dummy variable ω, introducing

artificial variables to separate the norms into individual second-order cone constraints, and

renaming µ0
i as di.
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