
HAL Id: hal-03331166
https://hal.science/hal-03331166v1

Preprint submitted on 1 Sep 2021 (v1), last revised 20 Dec 2023 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization problems in graphs with locational
uncertainty

Marin Bougeret, Jérémy Omer, Michael Poss

To cite this version:
Marin Bougeret, Jérémy Omer, Michael Poss. Optimization problems in graphs with locational un-
certainty. 2021. �hal-03331166v1�

https://hal.science/hal-03331166v1
https://hal.archives-ouvertes.fr

Optimization problems in graphs with locational
uncertainty

Marin Bougeret
LIRMM, University of Montpellier, CNRS, France, marin.bougeret@lirmm.fr

Jérémy Omer
IRMAR, INSA de Rennes, Rennes, France, jeremy.omer@insa-rennes.fr

Michael Poss
LIRMM, University of Montpellier, CNRS, France, michael.poss@lirmm.fr

Many discrete optimization problems amount to select a feasible subgraph of least weight.
We consider in this paper the context of spatial graphs where the positions of the vertices are
uncertain and belong to known uncertainty sets. The objective is to minimize the sum of the
distances in the chosen subgraph for the worst positions of the vertices in their uncertainty
sets. We first prove that these problems are NP-hard even when the feasible subgraphs
consist either of all spanning trees or of all s − t paths. In view of this, we propose en
exact solution algorithm combining integer programming formulations with a cutting plane
algorithm, identifying the cases where the separation problem can be solved efficiently. We
also propose two types of polynomial-time approximation algorithms. The first one relies on
solving a nominal counterpart of the problem considering pairwise worst-case distances. We
study in details the resulting approximation ratio, which depends on the structure of the
metric space and of the feasible subgraphs. The second algorithm considers the special case
of s−t paths and leads to a fully-polynomial time approximation scheme. Our algorithms are
numerically illustrated on a subway network design problem and a facility location problem.

Key words: combinatorial optimization, robust optimization, NP-hardness, approximation
algorithms, cutting plane algorithms

1. Introduction

Research in combinatorial optimization has provided efficient algorithms to solve a large

variety of complex discrete decision problems, providing exact or near-optimal solutions in

reasonable amounts of time. The applications are countless, ranging from logistics (network

design, facility location, . . .) to scheduling, including even important data science applica-

tions such as clustering. Many of these applications amount to select a subset of edges of a

graph G = (V,E) among a family of feasible subsets F and that minimizes its total weight.

Among those, we focus on spatial graphs on a given metric space (M, d), where each vertex i

is assigned a position ui ∈M and the cost of set F ∈ F is given by
∑
{i,j}∈F d(ui, uj), leading

1

to the combinatorial optimization problem

min
F∈F

∑
{i,j}∈F

d(ui, uj). (1)

Problem (1) encompasses many applications, such as network design, facility location, and

clustering. These are typically subject to data uncertainty, be it because of the duration

of the decision process, measurement errors, or simply lack of information. One successful

framework that has emerged to address uncertainty is robust optimization (Ben-Tal and

Nemirovski 1998), modeling the uncertain parameters with convex sets, such as polytopes,

or finite sets of points, among which combinatorial robust optimization focuses on discrete

robust optimization problems (Bertsimas and Sim 2003, Buchheim and Kurtz 2018, Kasper-

ski and Zieliński 2016, Kouvelis and Yu 2013). We enter this framework by considering the

model where the positions of the vertices are subject to uncertainty, therefore impacting

the distances among the vertices. The resulting problem thus seeks to find the feasible sub-

graph that minimizes its worst-case sum of distances. Formally, we introduce for each vertex

i ∈ V the set of possible locations as the uncertainty set Ui ⊆ M. Using the notations

u = (u1, . . . , u|V |) and U = ×i∈V Ui, the general problem considered in this paper can be cast

as

min
F∈F

max
u∈U

∑
{i,j}∈F

d(ui, uj). (2)

As an illustration, the following three applications fall into the context of problem (2).

Example 1 (Subway network design). Designing and expanding a subway network forms an

important optimization problem faced by large cities. The new lines should efficiently cover

dense areas of the city, while interacting well with the existing transportation lines. A key

aspect of this problem amounts to locate the new subway stations. In addition to the tech-

nical considerations inherent to any construction, these also involve political considerations

as local officials are never happy to let their citizens face the inconvenience of heavy civil

engineering. This political lever is particularly complex in cities like Brussels having multiple

local governments that must all agree before the stations can finally be constructed. As the

overall process takes years, facing local government changes, the exact locations of the metro

stations typically evolve between the first draft and the final implementation. Now, the exact

locations of the stations impact the lengths of the resulting lines, the construction cost of

which is typically proportional to their lengths (Gutiérrez-Jarpa et al. 2013). The cost of

2

digging the new lines can therefore be modeled as a network design problem with locational

uncertainty on the position of the vertices, usually including additional technical and envi-

ronmental constraints. When a single line is of interest, F will consist of paths, cycles, or

trees.

Example 2 (Strategic facility location). A production company wishes to expand its activ-

ities in a new region, locating additional facilities. We consider the context of a strategic

level where the company may only choose approximate locations, as the exact locations will be

known later, after all technical and legal considerations have been studied. Furthermore, the

assignment of facilities to clients also needs to be considered in advance as each client may

request different products, which require different installations at the facilities. As always

in such facility location problems, the distances between the future clients and facilities lead

to significant transportation costs that need to be kept as low as possible. In this particular

case, these distances depend on locations that are uncertain at the time planning decisions

are made. This leads to the problem of covering the vertices representing the clients with a

certain number of disjoint stars, the root of each star representing a facility. Importantly,

the distances are provided by the underlying road network (Melkote and Daskin 2001), which

yields a graph-induced metric (M, d).

Example 3 (Data clustering). Given a set of data points, a fundamental problem in clas-

sification seeks to partition the points into a given number of subsets so as to minimize the

dissimilarities among the points grouped into the same subset. The data points may consist

of real values, for instance when they model physical measurements, as well as ordinal val-

ues, for instance, representing the results of medical or psychological surveys. In both cases,

uncertainty on the values is common, be it because of a measurement error, or because of

a lack of information – in which case the corresponding coordinate is replaced by the full

interval (Masson et al. 2020). One must thus group the data in a way that is robust against

these uncertainties. Various objective functions and metric spaces may be considered. With

real values, it is common to minimize the sum of squared Euclidean distances. With ordinal

values instead, a linear function may be more appropriate, coupled with ad hoc graph-induced

distances. In all cases, the resulting problem seeks to partition the set of vertices with cliques.

Traditionally, robust optimization problems with an objective function that is concave in

the uncertain parameters are reformulated as monolithic models using conic duality (Ben-Tal

and Nemirovski 1998). These techniques do not readily extend to function d(ui, uj) as the

3

latter is non-concave in general. Actually, for Euclidean metric spaces based on the vector

space R`, ` ∈ Z+, d(ui, uj) = ‖ui − uj‖2 is convex in ui and uj. Function ‖ui − uj‖2 is

closely related to the second-order cone (SOC) constraints considered by Zhen et al. (2021)

for robust problems with polyhedral uncertainty sets. Zhen et al. (2021) linearize such

robust SOC constraints by introducing adjustable variables, turning the problem into an

adjustable robust optimization problem that can be tackled exactly (Ayoub and Poss 2016,

Zhen et al. 2018, Zeng and Zhao 2013) or approximately using affine decision rules (Ben-Tal

et al. 2004) or finite adaptability approaches (Bertsimas and Dunning 2016, Hanasusanto

et al. 2015, Postek and Hertog 2016, Subramanyam et al. 2019), among others. Interestingly,

the approach of Zhen et al. (2021), extended in Roos et al. (2018) to more general convex

functions, makes no particular assumption on the feasibility set of the decision variables,

herein represented by the set F . A second work closely related to (2) is that of Citovsky

et al. (2017), who rely on computational geometry techniques to provide constant-factor

approximation algorithms in the special case where F contains all Hamiltonian cycles of G.

They propose in particular to solve a deterministic counterpart of (2) where the uncertain

distances are replaced by the maximum pairwise distances dmaxij = maxui∈Ui,uj∈Uj d(ui, uj),

for each (i, j) ∈ V 2, i 6= j.

To summarize, we see that while Zhen et al. (2021) provide valuable tools for address-

ing problems defined in Euclidean metric spaces considering uncertainty polytopes, their

approaches cannot be used for graph-induced metric spaces, such as those mentioned in

Examples 2 and 3. On the other hand, Citovsky et al. (2017) focused on the case where

F contains all Hamiltonian cycles of G. The main purpose of the present paper is thus to

provide unified solution algorithms that are valid for any set F and metric space (M, d). We

only assume that U is finite, which encompasses the two aforementioned cases. Specifically,

when (M, d) is a Euclidean space, the distance is a convex function implying that maximiz-

ing over polytope Upol = ×i∈V Upoli is equivalent to maximizing over the extreme points of

that polytope. Then, in the case of graph-induced metrics, the set M is the set of nodes of

a finite graph, meaning that each Ui ⊆M must be finite as well.

In this context, our contributions can be summarized as follows:

• We prove that problem (2) is NP-hard even when F consists of all s − t paths and

(M, d) is the one-dimensional Euclidean metric space or when F consists of all spanning

trees of G. These results illustrate how the nature of problem (2) fundamentally differs

4

from the classical min-max robust problem with cost uncertainty, which is known to

be polynomially solvable whenever the costs lie in independent uncertainty sets (Aissi

et al. 2009).

• We provide a general cutting-plane algorithm for problem (2) that relies on integer

programming formulations for F . We further show that the separation problem c(F) =

maxu∈U
∑
{i,j}∈F d(ui, uj) is NP-hard and provide two algorithms for computing c(F).

One is based on integer programming formulations while the other one relies on a

dynamic programming algorithm that involves the threewidth of F .

• We extend the approximation algorithm based on dmax and suggested by Citovsky

et al. (2017) to general sets F and metric spaces different from the Euclidean one. We

study in depth the resulting approximation ratios, which depend on the structure of F
and (M, d). Regarding F , we obtain strong results for cycles, stars, trees, and graphs

that can be composed as unions of simpler graphs. As a special case of our results, we

find the ratio of 3 for Hamiltonian cycles, as previously proposed by Citovsky et al.

(2017). Concerning the structure of (M, d), we show that metric spaces that satisfy

Ptolemy’s inequality (Apostol 1967) benefit from stronger results.

• We provide a dynamic programming algorithm for the special case where F consists

of all s− t paths, which is turned into a fully-polynomial time approximation scheme

by rounding data appropriately.

• We compare numerically the exact cutting plane algorithm with the approximation al-

gorithm that relies on dmax. The benchmark is composed of two families of instances.

The first family includes Steiner tree instances that illustrate subway network design.

The second one is composed of strategic facility location instances. The former appli-

cation relies on two-dimensional Euclidean metric spaces so we can further include the

affine decision rule reformulation from Zhen et al. (2021) to the comparison.

The rest of the paper is structured as follows. In Section 2, we introduce the defini-

tions and notations that will be used throughout the paper. We then study the hardness of

problem (2) in Section 3. In Section 4, we develop the exact solution algorithm, including

the details of the computations of c(F). We provide and study the approximation algo-

rithm based on dmax in Section 5 while the fully-polynomial time approximation scheme

5

for s − t paths is depicted in Section 6. In Section 7, we present our numerical experi-

ments. Several appendices are annexed to the paper, containing most of the proofs, details

on fixed-parameter tractable algorithms (FPT), and the affine decision rules reformulation

from Zhen et al. (2021).

2. Notations and definitions

In this section, we provide notations and definitions that will be used throughout the

manuscript.

2.1 Graphs

We consider simple undirected graphs G, where V (G) denotes the set of vertices of G and

E(G) its set of edges, and we assume that G has no isolated vertices. When clear from

context we use notations n = |V (G)| and m = |E(G)|. For any i ∈ V (G), we denote by

N(i) = {j ∈ V (G) | {i, j} ∈ E(G)}. We say that a graph G is a clique if for any two disjoint

vertices i, j, {i, j} ∈ E, and we say that G is a star if G is a tree of maximum diameter 2.

For any positive integer k, we denote [k] = {1, . . . , k}.

2.2 Cost functions

Given any position vector u ∈ Mn and subset of edges F ⊆ E(G), we define c(u, F) =∑
i,j∈F d(ui, uj), and c(F) = maxu∈U c(u, F). We extend these notations to any subgraph

G′ by c(G′) = c(E(G′)) and c(u,G′) = c(u,E(G′)). Moreover, we define diam(Ui) =

maxu,u′∈Ui d(u, u′).

2.3 Robust problems

For the statements and proofs of complexity and approximation results, we give more formal

definitions of the inputs of the optimization problems we consider.

We are interested in the class S of deterministic combinatorial optimization problems

that can be formulated as minF∈F c(u, F). Any Π ∈ S represents a specific problem, such

as the shortest path or the minimum spanning tree. An instance of problem Π is defined by

its input I = (G,α, u,D), where G is the aforementioned graph, α contains problem-specific

additional input, u ∈Mn denotes the position of the nodes, and D is a (symmetric) matrix

recording the distance between each pair u, u′ ∈
⋃
i∈V (G){ui}. Thus, F contains the subsets

6

of edges of G that satisfy the constraints specific to Π for input I. As an example, for the

∆-Shortest Path problem (∆-sp), the additional input α = {s, t} consists of the origin and

destination nodes, so the objective is to find an s − t path P minimizing c(u, P). In the

∆-Minimum Spanning Tree problem (∆-mst), α = ∅, and the objective is to find a spanning

tree T minimizing c(u, T).

For any problem Π ∈ S, we define its robust counterpart robust-Π. The input of an

instance of robust-Π is I = (G,α,U ,D) where G and α are as before, Ui ⊆M contains the

possible positions for node i, and D is a (symmetric) matrix recording the distance between

each pair u, u′ ∈
⋃
i∈V (G) Ui. The objective of robust-Π is to find F ∈ F that minimizes

maxu∈U c(u, F) = c(F). Observe that robust-Π is a generalization of Π as it corresponds

to the case where |Ui| = 1 for any i.

We are also interested in the problem of playing the role of the adversary, corresponding

to computing c(G) for a given graph G. For problem eval-c, an input I = (G,U ,D) where

G, U and D are as before.

For all these optimization problems, we define opt(I) as the optimal solution cost of

instance I. When clear from the context, we may also use the shorter notation opt.

3. Hardness of the robust problem

Let Π be the assignment problem. Any instance of Π involves a partition of V in two sets

of equal size, denoted V 1 and V 2, such that any F ∈ F contains exactly n/2 edges covering

V 1 and V 1. Because the edges belonging to any F ∈ F are disjoint, we have that

c(F) =
∑
{i,j}∈F

max
ui∈Ui,uj∈Uj

d(ui, uj) =
∑
{i,j}∈F

dmaxij .

Hence, robust-Π can be solved in polynomial time by solving the deterministic assignment

problem defined by the partition V1 ∪ V2 and the vector of weights dmax. In spite of this

easy example, we show in this section that robust-Π can in general not be reduced to Π as

robust-Π is typically harder than Π.

We illustrate the hardness of robust-Π by focusing on the two polynomially solvable

problems Π mentioned in Section 2.3, namely the shortest path problem ∆-sp and the mini-

mum spanning tree problem ∆-mst. These problems have been largely studied in the robust

combinatorial optimization literature under cost uncertainty (e.g. Kasperski and Zieliński

7

(2009), Yaman et al. (2001)), namely

min
F∈F

max
c∈C

∑
{i,j}∈F

cij, (3)

where C is a given uncertainty set. It is folklore that when C is the Cartesian product of inter-

vals, C = ×e∈E(G)[ce, ce] for ce ≤ ce, problem (3) can be reformulated as minF∈F
∑
{i,j}∈F cij

making the robust problems as easy as their nominal counterparts. The result below, proved

in Appendix A.1, shows that such is not the case for robust-Π, as ∆-sp turns NP-hard

even in the simple case where each Ui is a subset of R. Notice that in the 1-dimensional

Euclidean space, the convexity of d(ui, uj) = |ui − uj| implies that Ui is equivalent to a

segment [ui, ui], for some ui ≤ ui.

Proposition 1. robust-∆-sp is NP-hard, even when (M, d) is the 1-dimensional Eu-

clidean space.

For ∆-mst we can prove the hardness of the problem only for a more general metric

space. See Appendix A.2 for the proof.

Proposition 2. robust-∆-mst is NP-hard.

We also detail in Appendix A.2 how, for any positive integer `, the metric space (M, d)

used in the proof of Proposition 2 cannot be embedded isometrically into R`. As a conse-

quence, the hardness of robust-∆-mst in Euclidean spaces remains an open problem.

Having proved that robust-Π is NP-hard, we will develop two types of solution algo-

rithms for the problem. In the next section, we provide a cutting plane algorithm based on

integer programming formulations for F , which has an exponential running-time in general.

Then, in Sections 5 and 6, we design polynomial time algorithms that yield approximate

solutions to robust-Π.

4. Exact solution of the general robust problem

A popular type of algorithms solving exactly difficult robust optimization problems replaces

the large uncertainty set by an approximation of small cardinality, leading to a relaxation of

the original problem. Then, these algorithms iterate between solving integer programming

formulations for the robust problem with small uncertainty set, and checking the optimality

of the solution for the relaxation by solving an adversarial separation problem. This process

8

leads to cutting plane algorithms (e.g., Bertsimas et al. (2016), Fischetti and Monaci (2012),

Naoum-Sawaya and Buchheim (2016)). Such algorithms involve frequent calls to computing

the objective function eval-c, so we start this section by studying how to efficiently solve this

problem. Then, we detail in Section 4.2 the overall cutting plane algorithm for robust-Π.

4.1 Hardness and exact solution of the cost evaluation problem

4.1.1 Negative results

Our first result (Proposition 3 below) is that eval-c is hard, even when the metric space is

reduced to two points, or the input graph is a clique. For this, we consider particularly simple

metric spaces, and rely on a reduction from problem max-cut. We recall that max-cut

is a famous problem in combinatorial optimization that, given any input graph G, seeks a

partition {V1, V2} of V (G) such that |{e ∈ E(G) : |e ∩ V1| = 1}| is maximized. The detailed

proof is provided in Appendix B.1.

Proposition 3. Even when |M| = 2, there is no PT AS for eval-c unless P = NP.

Our second result assumes instead that G is a clique, and relies on a reduction from

problem max-diversity. Given a ground set X, a natural number k and a diversity

function div : 2X → R, max-diversity seeks to output a subset S ⊆ X of size k that

maximizes div(S). The special case of interest here, proved NP-hard in Cevallos et al.

(2018), considers that the ground set X is the three-dimensional Euclidean space, and that

div(S) =
∑

i,j∈X ‖i− j‖2. We obtain immediately the following result.

Proposition 4. Even when restricted to input graphs that are cliques, to metric space defined

by squared Euclidean distance in the three-dimensional Euclidean space, and to instances

where Ui =M for all i, eval-c is NP-hard.

Let us now turn to parameterized complexity, and let tw be the treewidth of G (see

Appendix F.2 for the definition of treewidth). Informally, tw measures the thickness of a

tree structure describing G. In particular, tw(G) = 1 for any tree G. As we show in the next

section that computing eval-c is polynomial on trees, a natural question is to determine if

we can extend this result by proving that eval-c/tw admits an FPT algorithm, meaning

an algorithm running in f(tw) · |I|c for some computable function f and constant c (see

Appendix F.1 for details). The following proposition implies that it is very unlikely, and thus

places eval-c with the few problems that are not FPT by treewidth. See Appendix B.2

for the proof of the proposition.

9

Proposition 5. eval-c/tw is W [1]-hard.

4.1.2 Positive results

Given the aforementioned hardness results, we propose two approaches to computing c(G).

The first approach relies on an integer programming formulation. For each i ∈ V and

k ∈ {1, . . . , |Ui|}, binary variable yki takes value 1 if and only if vertex i is located at position

uki . Therefore, c(G) is equal to

max
∑
{i,j}∈E

|Ui|∑
k=1

|Uj |∑
`=1

d(uki , u
`
j)y

k
i y

`
j

s.t.

|Ui|∑
k=1

yki = 1, ∀i ∈ V

yi ∈ {0, 1}|Ui|, ∀i ∈ V

which can be linearized using classical techniques.

It is also possible to compute c(G) efficiently whenever G has small treewidth tw(G)

using a dynamic programming algorithm. Let us detail the algorithm whenever G is a tree

rooted at vertex r, which we assume oriented from r to its leaves L. We denote by D(i) the

set that contains the direct descendants of i, which is empty if i is a leaf. Let opt(i, ui) be

the maximum value obtained for the subtree starting at i given that node i is located at ui.

We obtain the following recursion:

opt(i, ui) =

{ ∑
j∈D(i)

max
uj∈Uj

d(ui, uj) + opt(j, uj), i ∈ V (G) \ L

0, i ∈ L
(4)

and the optimal solution cost is given by maxur∈Ur opt(r, ur). Dynamic programming recur-

sion (4) will be used in our numerical experiments, which involve trees and stars.

Recall that tw = tw(G) and let us further denote σ = maxi∈V (G) |Ui|. Using dynamic

programming on a nice tree decomposition of G (see Appendix F.2 for the definition), one

can readily extend the above idea to any graph of bounded treewidth, leading to Theorem 1,

whose proof is deferred to Appendix G. We point out that according to Proposition 5 we

cannot (unless W [1] =FPT) remove the dependency in σ to get for example a O(poly(n)×
f(tw)), and this holds for any computable function f .

Theorem 1. eval-c/tw+ σ is FPT . More precisely, we can compute an optimal solution

of eval-c in time O(n× tw × σO(tw)).

10

4.2 Cutting plane algorithm for the robust problem

Now that we have depicted numerical methods for computing eval-c, we wish to make the

extra step towards the exact solution of the complete problem, robust-Π. For this, we

design an exact solution algorithm that generates scenarios of U on the fly in the course of

a branch-and-cut algorithm. We thus choose to associate to each F ∈ F the binary vector

xF ∈ {0, 1}m such that xFij = 1 if and only if {i, j} ∈ F . As a result, the counterpart of

F is the set of binary vectors X = {xF , F ∈ F}. With these notations, robust-Π can be

reformulated as

min
x∈X

max
u∈U

∑
{i,j}∈E

xijd(ui, uj). (5)

Let Ũ be a finite subset of U . An exact algorithm for (5), described in Algorithm 1, relies

on the following relaxed formulation

min

ω | ω ≥ ∑
{i,j}∈E

xijd(ui, uj), ∀u ∈ Ũ , x ∈ X

 . (6)

Algorithm 1 describes an iterative cutting-plane implementation, alternating between

the solution of the relaxed master problem (6) and the adversarial separation problem c(F).

Practical implementation of these algorithms typically rely instead on branch-and-cut al-

gorithms, where the adversarial separation problem is solved at each integer node of the

branch-and-bound-tree.

Algorithm 1: Cutting-plane algorithm for (2)

repeat
Let (ω̃, x̃) be an optimal solution of (6)
Let F be the support of x̃
Compute c(F) = maxu∈U

∑
{i,j}∈F d(ũi, ũj) and let ũ be a maximizer

if c(F) > ω̃ then Ũ ← Ũ ∪ {ũ}
until c(F) ≤ ω̃
return F

For large and complex problems, one can hardly expect Algorithm 1 to run quickly,

so it may be wiser to first try a quick approximation algorithm. We provide in the next

section such an algorithm and study in depth the worst-case bound between the solution

cost returned by the algorithm and the optimal solution cost.

11

5. Approximation algorithm for the general robust prob-

lem

5.1 Reduction to a deterministic problem by using worst case dis-
tances

Algorithm 2: Solving a deterministic counterpart based on some representative
location u∗

Given an instance of robust-Π: minF∈F maxu∈U
∑
{i,j}∈F d(ui, uj)

Select u∗ ∈ U
Compute F using an approximation algorithm for minF∈F

∑
{i,j}∈F d(u∗i , u

∗
j)

return F

A simple approach to robust-Π would be to choose a relevant vector u∗ to obtain

the corresponding problem Π, given by minF∈F
∑
{i,j}∈F d(u∗i , u

∗
j), and use any known ap-

proximation algorithm for the deterministic problem Π. This approach is formalized by

Algorithm 2.

Unfortunately, choosing such a representative u∗ is not easy. For instance, a natu-

ral choice might be to consider the barycenters of each set, i.e., u∗ = ubc where ubci ∈
arg minu1∈Ui

∑
u2∈Ui d(u1, u2). Although the choice of barycenters may appear natural at first

glance, the cost of the solution F bc returned by Algorithm 2 for u∗ = ubc may actually be

arbitrarily larger than the optimal solution cost.

Observation 1. Let Π ∈ S such that F = E(G). Let ebc be the solution returned by

Algorithm 2 for u∗ = ubc. The ratio c(ebc)/opt is unbounded, even when (M, d) is included

in the one-dimensional Euclidean metric space.

Proof. For any ε > 0 small enough, consider V = {1, 2, 3} and E = {{1, 2}, {2, 3}} with

U1 = {ε}, U2 = {0}, and U3 = {−1, 1}. We have that ubc1 = ε and ubc2 = ubc3 = 0 so

Algorithm 2 picks edge {2, 3} having a cost of c({2, 3}) = 1. In contrast edge {1, 2} has a

cost of ε, yielding a ratio of 1/ε.

We proceed by using a different approach for constructing the deterministic problem Π.

For each {i, j} ∈ E, we define the worst-case distances as dmaxij = maxui∈Ui,uj∈Uj d(ui, uj),

and define similarly the value cmax(F) =
∑
{i,j}∈F d

max
ij for any F ∈ F .

Notice that, in general, there is no u∗ ∈ U such that d(u∗i , u
∗
j) = dmaxij for any i and

j: the worst-case position ui ∈ Ui of a node i typically varies with the edge {i, j} ∈ E

12

depending on the uncertainty set Uj. Then, rather than choose a particular vector u∗ ∈ U ,

we define a new metric space (M′, d′) whereM′ = {Ui, i ∈ V (G)}, and for any vertices i 6= j,

d′(Ui,Uj) = dmaxij . Observe that d′ is indeed a distance. In particular, d′(Ui,Uj) = 0 means

that Ui = Uj and that both sets are reduced to a singleton. Consequently, minF∈F c
max(F) =∑

{i,j}∈F d
′(Ui,Uj) is an instance of Π. The resulting approach is summarized in Algorithm 3,

which transfers approximability of Π to robust-Π.

Theorem 2. Let Π ∈ S where the output F belongs to a graph class F . Suppose that

there is a polynomial ρ1-approximation for Π, and that cmax(F) ≤ ρ2c(F) for any F ∈ F .

Then, using this approximation in Algorithm 3 yields a polynomial ρ1ρ2-approximation for

robust-Π.

Proof. Let F be the output of Algorithm 3, F ∗ be an optimal solution of the instance of

robust-Π, and Fmax ∈ arg minF∈F c
max(F). Then c(F) ≤ cmax(F) ≤ ρ1c

max(Fmax) ≤
ρ1c

max(F ∗) ≤ ρ1ρ2c(F
∗).

Algorithm 3: Solving a deterministic counterpart based on dmax distances

Given an instance of robust-Π: minF∈F maxu∈U
∑
{i,j}∈F d(ui, uj)

Compute F using an approximation algorithm for minF∈F c
max(F)

return F

In Section 5.2 and Section 5.3 we prove the existence of constant upper bounds on the

ratio cmax(F)/c(F) for different families F and metric spaces. A summary of our results is

given in Table 1. In particular, for any graph F , Theorem 4 states that cmax(F) ≤ 4c(F)

for any Ptolemaic metric space, and Theorem 5 states that cmax(F) ≤ 9c(F) for any metric

space. These imply that, up to a constant factor, robust-Π is not harder to approximate

than Π, as formalized below.

Theorem 3. Let Π be a problem of S. Suppose that there is a ρ1-approximation for Π.

Then, using this approximation in Algorithm 3, it is a 4ρ1-approximation for robust-Π

restricted to Ptolemaic metric space, and a 9ρ1-approximation for robust-Π.

5.2 Bounding the approximation ratio on general graphs

We divide our study of cmax(F)/c(F) for arbitrary sets of edges F into special metric spaces

that satisfy an important property, called Ptolemy’s inequality, and metric spaces that do

not satisfy this property.

13

Problem (graph family) deterministic ver-
sion

c(F)/cmax(F) robust counterpart

Π ∈ S ρ-approx. 9 (Thm 5)
4 (Ptolemaic, Thm 4)

9ρ-approx.
4ρ-approx. (Ptolemaic)

min-ewcp (clique) 2-approx.
(Eremin et al. 2014)

2 (Prop 10) 4-approx.

∆-sp (path) polynomial 2 (Cor 3) 2 approx
NP-hard (Prop 1)
FPT AS (Thm 7)

∆-mst (tree) polynomial 6 (Prop 14)
4 (Ptolemaic, Thm 4)
2
√

2 (planar Eucl.,
Prop 15)

6-approx.
4-approx. (Ptolemaic)
2
√

(2)-approx. (planar
Eucl.)
NP-hard (Prop 2)

∆-tsp (cycle) 3
2 -approx.
(Christofides 1976)

2 (Citovsky et al. (2017)
and Cor 3)

3-approx.
(Citovsky et al. 2017)
PT AS (planar Eucl.)
(Citovsky et al. 2017))

Table 1: Overview of our results. When no reference is given, the ratios in the ”robust
counterpart” column are obtained by Theorem 2. All our results are for finite Ui, except the
2
√

2 ratio for trees, which holds for balls in the Euclidean plane, and the PT AS for ∆-tsp
holding for disjoint unit balls in the Euclidean plane.

5.2.1 Ptolemaic metric spaces

Let us recall Ptolemy’s inequality (see e.g. Apostol (1967)). A metric space (M, d) is

Ptolemaic if for any four points A,B,C,D in M,

d(A,C) · d(B,D) ≤ d(A,B) · d(C,D) + d(B,C) · d(A,D).

We consider throughout the section that (M, d) is Ptolemaic, which includes for instance

Euclidean spaces. A direct consequence of the definition is given by the following lemma.

Lemma 1. Let ABC be a triangle in a Ptolemaic metric space (M, d) such that d(B,C) ≥
max{d(A,B), d(A,C)}. Then, for any O ∈M,

d(O,A) ≤ d(O,B) + d(O,C). (7)

Proof. Using d(B,C) ≥ max{d(A,B), d(A,C)} and Ptolemy’s inequality, we get

d(B,C) · d(O,A) ≤ d(B,C) · d(O,B) + d(B,C) · d(O,C),

and the result follows.

14

Using the above inequality, we can get a constant bound on the approximation ratio by

focusing on the extremities of a diameter of each uncertainty set Ui,∈ V . The detailed proof

is in Appendix C.1. It results in the following ratio.

Theorem 4. Let (M, d) be a Ptolemaic metric space. Then, cmax(F) ≤ 4 c(F).

5.2.2 Arbitrary metric spaces

Lemma 1 does not apply to non-Ptolemaic metric spaces, as illustrated in the following

example.

1B
1

A

1
C

0.5
1.5

0

0.5

Figure 1: Counter example of Lemma 1 for non-Ptolemaic metric spaces.

Example 4. Let M be a metric space on four points A,B,C,O, and consider a distance d

such that (see also Figure 1)

d(X, Y) =

1 if {X, Y } ⊆ {A,B,C}
0.5 if {X, Y } ∈ {{O,B}, {O,C}}
1.5 if {X, Y } = {O,A}

,

One readily verifies that d(O,A) = 3
2
(d(O,B) + d(O,C)).

In fact, multiplying the right-hand-side of (7) by 3/2, as in Example 4, is enough for any

metric space.

Lemma 2. Let ABC be a triangle ofM such that d(B,C) ≥ max{d(A,B), d(A,C)}. Then,

for any O ∈M,

d(O,A) ≤ 3

2
(d(O,B) + d(O,C)).

Proof. Using d(B,C) ≥ max{d(A,B), d(A,C)} and applying the triangular inequality at

each step, we get

d(O,A) ≤ d(O,B) + d(A,B) ≤ d(O,B) + d(B,C) ≤ 2d(O,B) + d(O,C)

d(O,A) ≤ d(O,C) + d(A,C) ≤ d(O,C) + d(B,C) ≤ d(O,B) + 2d(O,C)

Adding the above two inequalities provides the result.

15

Using the above result, we can obtain a weaker counterpart of Theorem 4 for non-

Ptolemaic metric spaces. See Appendix C.2 for the detailed proof.

Theorem 5. For any metric space (M, d), cmax(F) ≤ 9 c(F).

5.3 Bounding the approximation ratio on specific structures

In what follows, we assume that the structure of the subragph induced by F can be lever-

aged to obtain stronger bounds than in the previous section. We first describe how graph

decomposition can be used to obtain such bounds. We then address the special graphs that

have been singled out in our introductory applications, namely: paths, cycles, trees (subway

network design), cliques (clustering), and stars (facility location). Unless stated otherwise,

we assume throughout the section that (M, d) is an arbitrary metric space, non-necessarily

Ptolemaic.

5.3.1 Building blocks

We study below how the bounds obtained for distinct subsets of edges can be combined to

obtain a bound on their union.

Proposition 6. Let G be a graph, Ft ⊆ E(G) and ρt ≥ 1 such that cmax(Ft) ≤ ρt c(Ft) for

each t = 1, . . . , T . Then:

• cmax
(
∪Tt=1Ft

)
≤ T × max

t=1,...,T
ρt c

(
∪Tt=1Ft

)
, and

• cmax(∪Tt=1Ft) ≤ max
t=1,...,T

ρt c(∪Tt=1Ft) if, in addition, Ft ∩ Ft′ = ∅ for each t 6= t′ ∈ [T].

Proof. In the first case we have

T · c(F) ≥
T∑
t=1

c(Ft) ≥
T∑
t=1

1

ρt
cmax(Ft) ≥

cmax(F)

max
t=1,...,T

ρt
.

In the second case we have

c(F) = max
u∈U

T∑
t=1

∑
{i,j}∈Ft

d(ui, uj) =
T∑
t=1

c(Ft) ≥
T∑
t=1

1

ρt
cmax(Ft) ≥

cmax(F)

max
t=1,...,T

ρt
.

The above results are particularly useful when combining sets Ft having low values of ρt.

The simplest example of such a set is a single edge.

Observation 2. For any e ∈ E(G), cmax(e) = c(e).

16

From the above observation and Proposition 6, we obtain immediately that matchings

also satisfy the equality.

Corollary 1. For any matching F , cmax(F) = c(F).

Matchings can be further combined to obtain general bounds that depend on the char-

acteristics of F . In the remainder, χ(F) denotes the edge chromatic number of F and ∆(F)

denotes its maximum degree.

Corollary 2. cmax(F) ≤ χ(F) c(F).

Proof. We can cover F by χ(F) disjoint matchings.

5.3.2 Graphs with small maximum degree

Recall that Vizing’s theorem states that χ(F) ≤ ∆(F) + 1. Combining this with Corollary 2

implies that cmax(F) ≤ (∆(F) + 1)c(F). Actually, the bound can be decreased to ∆(F), as

stated below. See Appendix C.3 for the proof.

Proposition 7. For any graph F , cmax(F) ≤ ∆(F) c(F).

Proposition 7 immediately implies the following Corollary, which had an ad-hoc proof for

cycles in Citovsky et al. (2017).

Corollary 3. Let F be a path or a cycle, then cmax(F) ≤ 2 c(F).

We verify in the two propositions below that the above bound is tight. See Appendices D.1

and D.2 for the proofs.

Proposition 8. For any path F of length at least three, there exists an uncertainty set U
such that cmax(F) = 2 c(F).

Proposition 9. For any cycle F of length at least four, there exists an uncertainty set U
such that cmax(F) = 2 c(F).

The above proposition considers cycles that contain at least four vertices, so one can

wonder what happens in the case of smaller cycles. We show next that for cycles that

contain only 3 vertices, the bound can be reduced to 3/2.

17

Remark 1. Consider the 3-cycle F . Applying the triangular inequality three times yields:

c(F) = max
u∈U

(d(u1, u2) + d(u2, u3) + d(u1, u3)) ≥ max
u∈U

(2 max{d(u1, u2), d(u2, u3), d(u1, u3)})

≥ 2 max{dmax12 , dmax23 , dmax13 }

≥ 2

3
cmax(F),

so the maximum worst-case factor is bounded by 3/2. This bound is tight. To see this, one

can look at the case exhibited in the proof of Proposition 8 (U1 = {0}, U2 = {0, 1} and

U3 = {1}). For the 3-cycle, cmax(F) = 3 and c(F) = 2.

5.3.3 Cliques

We now turn to the special case where F contains only cliques. One specificity of a clique F

is that for any matching M of size
⌊
n
2

⌋
, every edge of F belongs to a triangle including one

edge of M . Applying the triangle inequality repeatedly for a well chosen matching provides

the following ratio. The detailed proof is given in Appendix C.4.

Proposition 10. Let F be a clique. Then, cmax(F) ≤ 2 c(F).

We show below that the above bound is asymptotically tight, even for very simple metric

spaces. See Appendix D.3 for a proof.

Proposition 11. If F is a k-clique, there exists an uncertainty set U such that cmax(F) =
2(k−1)
k

c(F) if k is odd and cmax(F) = 2k
k+1

c(F) if k is even.

5.3.4 Stars

In what follows, we consider stars whose center is vertex 1 (meaning that for any i 6= 1,

|N(i)| = 1).

Proposition 12. Let F be a star. Then, assuming that (M, d) is a Ptolemaic space,

cmax(F) ≤ 2 c(F).

Proof. Let {u1
1, u

2
1} such that d(u1

1, u
2
1) = diam(U1). Let i ∈ {2, . . . , n} and ū1 ∈ U1, ūi ∈ Ui

such that d(ū1, ūi) = dmax1i . We follow the same approach as in the proof of Theorem 4 (see

Appendix C.1). We thus set Ū1 = {u1
1, u

2
1} and Ūi = {ūi} for i > 1, and for i ∈ V , we

consider the random variables ũi uniformly distributed on Ui. Since {u1
1, u

2
1} is a diameter

of U1, we can apply Lemma 1 to get

d(u1
1, ūi) + d(u2

1, ūi) ≥ d(ū1, ūi) = dmax1i .

18

This implies E [d(ũ1, ũi)] ≥ 1
2
dmax1i for any i > 1, and thus the claimed ratio.

Corollary 4. Let F be a star. Then, cmax(F) ≤ 3 c(F).

Proof. The result is obtained with the exact same proof as Proposition 12 where we apply

Lemma 2 instead of Lemma 1.

We show below that the bound from Corollary 4 is asymptotically tight. See Ap-

pendix D.4 for a proof.

Proposition 13. Let F be a star on n vertices. There is an uncertainty set U such that

cmax(F) = 3(n−1)
n+1

c(F).

5.3.5 Trees

We conclude our study of specific structures with trees. Our first result combines the bounds

obtained for stars in the previous section with the composition results presented in Sec-

tion 5.3.1 to improve the ratio of 9 obtained in Theorem 5 for general graphs and metric

spaces. See Appendix C.5 for a detailed proof.

Proposition 14. Let F be a tree. Then cmax(F) ≤ 6 c(F).

Next, we show how the bound can be further tightened when considering Euclidean

metric spaces and spherical uncertainty sets, see Appendix C.6 for a proof.

Proposition 15. Assume that M is a Euclidean space with d the associated Euclidean

distance, and assume that for all i ∈ V , Ui is a closed ball with radius ri. Then, for any tree

F , cmax(F) ≤ 2
√

2 c(F).

6. FPTAS for robust shortest path

Up to now, we have mostly focused on general problems robust-Π and provided either

exact algorithms or constant-factor approximation algorithms. The purpose of this section

is to focus on a specific problem, robust-∆-sp. Recall that we proved in Section 3 that

robust-∆-sp isNP-hard. The main goal of the section is to show that robust-∆-sp admits

an FPT AS. We do this by providing a dynamic programming algorithm for robust-sp (a

generalization of robust-∆-sp where d is not required to verify the triangle inequality) in

Section 6.1, which can also be used on its own when the appropriated parameters have small

values. The algorithm is then used in Section 6.2 to derive the FPT AS.

19

6.1 Dynamic programming algorithm

In the robust-sp problem, the input is I = (G, s, t,U ,D) is the same as in the robust-∆-sp

problem, except that D is now a non-negative matrix that is only assumed to be symmetric,

e.g., D(u, v) = D(v, u) for any u, v ∈
⋃
i∈V (G) Ui. In particular, the function associated with

D may not respect the triangle inequality. This level of generality will be useful in the next

section when deriving the FPT AS for robust-∆-sp.

Next, we introduce further notations that are used to derive the dynamic programming

algorithm. Let F i→t denote the set of all i− t simple paths in G, and F i→tκ those having at

most κ edges. Given i ∈ V (G) and a path P ∈ F i→t, we define the worst-case cost given

that ui = u`i for ` ∈ [|Ui|] as

c`(P) = max{c(u, P) | u ∈ U , ui = u`i},

and Pr(P) = (c`(P))`∈[|Ui|] as the profile of P . We also introduce for any κ ∈ [n] the set of

profiles of all i− t paths with at most κ edges as P(i,κ) = {Pr(P) | P ∈ F i→tκ }. We denote

Val(I) = {c`(P) | i ∈ V (G), P ∈ F i→t, ` ∈ [|Ui|]},

nval = |Val(I)|, and nP = |
⋃
i∈V (G),κ∈[n]P(i,κ)| the total number of different profiles.

Our objective is to define an algorithm A(i, κ) that, given any i ∈ V (G) and κ ∈ [n]

computes (P(i,κ), Q(i,κ)) such that

• Q(i,κ) ⊆ F i→tκ ,

• |Q(i,κ)| = |P(i,κ)|,

• for any p ∈ P(i,κ), there exists P ∈ Q(i,κ) such that Pr(P) = p.

Informally, A(i, κ) computes all profiles associated to (i, κ) as well as a representative path

for each one of these profiles. Let us first verify that computing this is enough to solve

robust-sp optimally.

Lemma 3. Given (P(s,n), Q(s,n)), we can find an optimal solution in time polynomial in n

and linear in nP .

Proof. For any p ∈ P(s,n), p = (p`)`∈[|Us|], let xp = max`∈[|Us|] p`. We define pmin =

arg minp∈P(s,n) xp and output Pmin ∈ Q(s,n) such that Pr(Pmin) = pmin. Let P ∗ be an optimal

solution and p∗ = Pr(P ∗). As p∗ ∈ P(s,n), we have c(Pmin) = xpmin ≤ xp∗ = c(P ∗).

20

We provide next the dynamic programming recursion for P(i,κ), leaving aside the compu-

tation of Q(i,κ) to simplify the presentation. Given i ∈ V (G), κ ∈ [n], j ∈ N(i), P ′ ∈ F j→tκ ,

and p′ = Pr(P ′), we consider the i − t path P = iP ′ obtained by concatenating i with

P ′. One readily verifies that Pr(P) = p(i, κ, j, p′), where p(i, κ, j, p′) = (y`)`∈[|Ui|], with

y` = max`′∈[|Uj |] d(u`i , u
`′
j) + p′`′ . We obtain that for any i 6= s and κ > 0

P(i,κ) = {p(i, κ, j, p′) | j ∈ N(i), p′ ∈ P(j,κ−1)}, (8)

and P(s,0) = (0)`∈[|Us|]. Recall that σ = maxi∈V (G) |Ui|. We provide in the next lemma the

complexity of the resulting dynamic programming algorithm. See Appendix E.1 for the

proof.

Lemma 4. Let i ∈ V (G), κ ∈ [n]. Given P(j,κ−1) and Q(j,κ−1) for any j ∈ N(i), we can

compute (P(i,κ), Q(i,κ)) in time O(n× σ2 × nP) and space O(nPn(log(n))).

We are now ready to state the main result of this section.

Theorem 6. robust-sp can be solved in time O(n3σ2nP) and space O(nPn
3log(n)).

Proof. We compute (P(s,n), Q(s,n)) using a DP algorithm based on (8), and obtain an optimal

solution following Lemma 3. As the total number of entries of the associated memöızation

table has size O(n2), we get the claimed complexity.

Let us further elaborate on the value of nP that arises in Theorem 6. First of all, we see

that nP ≤ (nval)
σ, leading to the observation below, used in the next section to derive the

FPTAS.

Observation 3. robust-sp can be solved in time O(n3σ2(nval)
σ)

From a more theoretical viewpoint, recall that the reduction of Proposition 1 proving

the hardness of robust-sp involves a “large” metric space, so a natural question is whether

robust-∆-sp becomes polynomial for “small” metric space, either in terms of diameter

or number of elements. It so happens that the two questions can be answered positively.

Namely, observe that for any value c`(P), we can find some nv,v′ ∈ [n] for each (v, v′) ∈M2

such that c`(P) =
∑

(v,v′)∈M2 nv,v′d(v, v′). Therefore, nval can be bounded by n
|M|(|M|−1)

2 , so

that robust-sp is polynomially solvable if |M| is constant. Alternatively, if all distances

are integer, meaning d has integer values, then nP ≤ n × diam(M), so robust-sp can be

solved in O(n3σ2(n× diam(M))σ) in that case.

21

6.2 FPTAS

We now consider solving robust-∆-sp approximately. More precisely, given any ε > 0,

we want to provide an (1 + ε) approximated solution. Let I = (G, s, t,U ,D) be an input

to robust-∆-sp and A be an upper bound to opt(I) and ε′ > 0. We define a matrix D′

by rounding each element of D to the closest value of the form `ε′A for some ` ∈ N. We

obtain an instance I ′ = (G, s, t,U ,D′) to robust-sp. Having Observation 3 in mind, a

straightforward application of the DP from the previous section to I ′ would yield too many

values nval. Hence, we show in Appendix E.2 how to adapt the DP, and choose A and ε′

(depending of ε) appropriately to obtain the result below.

Theorem 7. robust-∆-sp admits an FPT AS for fixed σ: for any ε, we can compute an

(1 + ε) approximated solution in time O(n3σ2(n
2

ε
)σ).

7. Computational experiments

In this section, we compare numerically the exact algorithm from Section 4, the heuristic

algorithms from Section 5 and the affine decision rules (ADR) approach inspired by Zhen

et al. (2021) and detailed in Appendix H. We compare these algorithms on two of the

applications mentioned in the introduction: a subway network design problem (ND) and a

simple plant location problem (PL). The ADR reformulation is assessed only on ND, because

PL relies on a graph-induced metric, which is not compatible with the reformulation proposed

by Zhen et al. (2021).

The purpose of our experiments is two-fold. First, we wish to assess the numerical

efficiency of the different algorithms in terms of solution times. Second, we measure the

approximation ratios obtained by the heuristic algorithms in practice, by comparing the cost

of their solutions to the optimal solution costs.

The algorithms have been coded in Julia (Bezanson et al. 2012), using JuMP (Dunning

et al. 2017) to interface the mixed integer linear programming (MILP) solver CPLEX. They

have been carried out on a processor Intel(R) Core(TM) i7-10510U CPU1.80GHz. The source

code of every algorithm is publicly available at https://github.com/mjposs/locational_

uncertainty.

In the remainder of the section, we refer to the cutting plane algorithm as exact, the

heuristic based on the barycenters as center, that based on the maximum pairwise distances

22

https://github.com/mjposs/locational_uncertainty
https://github.com/mjposs/locational_uncertainty

as dmax, and that based on affine decision rules as adr. Since the applications involve stars

and trees, the separation problems of exact can be solved using the dynamic programming

recurrence presented in (4).

7.1 Subway network design

We consider the problem of expanding the subway network of a city, modeled as a Euclidean

Steiner tree problem. The compulsory points model the future stops of the subway, while the

other points model the possible knickpoints of the lines. Designing such an expansion plan

is a complex urban planning problem that involve multiple political and economical layers.

In particular, even when the topological design of the network has been decided, the exact

physical location of the stations and knickpoints may still change, be it because of political

constraints (inability to buy the rights of a given location) or physical ones (impossibility to

dig as planned). The lengths of the lines are directly impacted by these uncertainties, and

so is their cost, which can reasonably be assumed proportional to their Euclidean lengths.

Let us model the problem on an undirected graph G = (V,E) where T ⊆ V is the set of

compulsory vertices; we consider an arbitrary root t0 ∈ T and define T0 = T \{t0}. Set F thus

contains all trees of G that cover the vertices of T . Sets Ui ⊆ R2 model the possible locations

for the vertices, which we assume to be polyhedral sets, and we assume that the distance

d(ui, uj) = ‖ui−uj‖2 is the Euclidean distance. We consider the classical disaggregated MILP

formulation for the problem involving two sets of variables (Magnanti and Wong 1984). For

each undirected edge {i, j} ∈ E, binary variable xij takes value 1 if and only if the edge

is used. Then, for each t ∈ T0 and e = {i, j} ∈ E, we consider a fractional variable f tij

stating how much flow related to t is sent on the directed arc (i, j). Defining the incoming

and outgoing stars of i as δ−(i) = {(j, i) : {i, j} ∈ E} and δ+(i) = {(i, j) : {i, j} ∈ E},
respectively, and the balance of vertex i as bti = 0 for i ∈ T0 \ {t}, btt0 = −1 and btt = 1, we

obtain

min

max
u∈U

∑
{i,j}∈E

xij‖ui − uj‖2

∣∣∣∣ ∑(j,i)∈δ−(i) f
t
ji−

∑
(i,j)∈δ+(i) f

t
ij=b

t
i, ∀i∈V,t∈T0

f tij+f
t
ji≤xij , ∀{i,j}∈E,t∈T0

f≥0,x binary

 .

7.1.1 Instances

We assess the different solution algorithms on two groups of instances based on Euclidean

distances that are publicly available at http://steinlib.zib.de/testset.php. Since adr

23

http://steinlib.zib.de/testset.php

(a) format(1) (b) for-
mat(2)

Figure 2: Small instances inspired by the format instance from SteinLib.

does not scale well, we first consider the format instance which includes 7 vertices and 9

edges (the instance is available at http://steinlib.zib.de/format.php). To get larger

instances from the format instance, we remove the central terminal and add layered copies of

the instance. Figure 2 depicts the original structure of the format instance and that obtained

by adding one copy. We denote as format(κ) the instance with κ copies of the original graph.

Then, we consider the smallest instances with Euclidean costs, namely P6E, among which

we keep only those having 100 vertices and 5 terminals. As a result, we get three sparse

instances P6E (p619, p620, and 621), each having 180 edges.

The position of the vertices, denoted ūi hereafter, are not available in the data files P6E,

so we estimate them using a variant of the MDS-MAP algorithm from Shang et al. (2003).

Specifically, we apply classical multidimensional scaling (MDS) from the Julia package Mul-

tivariateStats (see https://github.com/JuliaStats/MultivariateStats.jl) to compute

the positions ū from the distances, completing the distance matrix with the shortest path

values. The uncertainty sets Ui, i ∈ V are then computed randomly based on two param-

eters: µ that scales the diameter of each set Ui, and σ the common number of elements of

all Ui, i ∈ V . To be more precise, we first compute the average distance among pairs of

points in V , d̄ =
∑

i<j
‖ūi−ūj‖
n(n−1)/2

. For each i ∈ V , we then uniformly draw one random value

in ρi ∈ [0, µd̄] and define

Ui =

{(
ūi1 + ρi cos

(
2kπ

σ

)
, ūi2 + ρi sin

(
2kπ

σ

))
, k = 1, . . . , σ

}
.

Following the above procedure, we create 2000 random instances format(κ) for each

κ ∈ [3], and 20 instances for each P6E instance. Notice that adr is only assessed on the

small instances as it was not able to solve any of the larger ones within hours of computing

time.

24

http://steinlib.zib.de/format.php
https://github.com/JuliaStats/MultivariateStats.jl

7.1.2 Results

Figures 3 and 4 report the average solution times for the small and large instances, respec-

tively, illustrating the impact of each parameter. More specifically, Figure 3 highlights the

rapidly increasing solution times of adr along with the values of σ and κ. The three other

approaches, including exact, can solve all these instances within a fraction of second. Fig-

ure 4 further depicts how exact is sensitive to µ for the larger instances, while center and

dmax seem less affected by the value of that parameter.

Figure 5 reports the cumulative distributions of the cost increase of each of the three

heuristic, relatively to the cost of the exact solution. Formally, let z(H) denote the cost of

the solution returned by H ∈ {adr,dmax, center} and z∗ denote the optimal solution cost.

For each H ∈ {adr,dmax, center}, the corresponding curve reports

f(x) = 100
#{instances for which z(H) ≤ (1 + x) · z∗}

#{all instances}
. (9)

These results confirm that dmax and adr provide solutions with values very close to the

optimal one. In contrast, the quality of center becomes rather poor as µ increases, ranging

up to an extra cost 60% for some of these instances, and with nearly half of the instances

with µ = 1 having an extra cost of at least 20%.

0.2 0.4 0.6 0.8 1

0.001

0.1

10

(a) Varying ∆

1 1.5 2 2.5 3

0.001

0.1

10

(b) Varying κ

5 10 15 20

0.001

0.1

10

center
dmax
adr

exact

(c) Varying |U|

Figure 3: ND: Average solution times in seconds on instances format(κ) for each algorithm
when varying one of the parameters.

7.2 Simple plant location

We consider a strategic facility location problem where the exact location of the facility may

be perturbed due to local political and technical considerations, while the exact position of

the clients themselves is subject to uncertainty (Correia and da Gama 2015). The distances

between the facilities and the clients are computed from the shortest path distance on a

25

0.2 0.4 0.6 0.8 1

0.01

1

center
dmax
exact

Figure 4: ND: Average solution times in seconds on large instances (P6E) for each value of
∆.

0 20 40 60
0

20

40

60

80

100

(a) format(1), ∆ = 0.1

0 20 40 60
0

20

40

60

80

100

(b) format(1), ∆ = 0.5

0 20 40 60
0

20

40

60

80

100

center
dmax
adr

(c) format(1), ∆ = 1

0 20 40 60
0

20

40

60

80

100

(d) P6E, ∆ = 0.1

0 20 40 60
0

20

40

60

80

100

(e) P6E, ∆ = 0.5

0 20 40 60
0

20

40

60

80

100

(f) P6E, ∆ = 1

Figure 5: ND: For each heuristic algorithm, the curve plots (9), the cumulative distribution
of the % of instances for which the returned solution has an additional (relative) cost less
than the value of the abscissa.

weighted graph that represents the underlying road network. The problem can then be

modeled with the weighted graph G = (V,E, l), the vertices of which represent the possible

locations for the facilities and clients, while each edge and its weight represent the existence

of a road between two vertices together with its length. The metric is induced by graph G,

so M = V and d(u, v) is equal to the shortest path between u and v for every u, v ∈ V .

Let I ⊆ V and J ⊆ V represent the set of clients and possible locations for the facilities.

We consider the problem of choosing p facilities among J and assigning every client to its

closest facility so as to minimize the total assignment cost. For each j ∈ J, let yj be a binary

variable indicating whether a facility is located at j, and for each i ∈ I, j ∈ J, let xij ∈ {0, 1}
indicate whether client i is assigned to facility j. The robust problem can then be formulated

26

as

min

{
max
u∈U

∑
i∈I,j∈J

xijd(ui, uj)

∣∣∣∣ ∑j∈J xij=1, ∀i∈I
xij≤yj , ∀i∈I,j∈J

x,y binary

}
.

7.2.1 Instances

We construct the graph G = (V,E, l) as follows. For each vertex i, we generate its position

ui uniformly in the square [0, 1]2 and we select edges so that the resulting graph is planar and

connected and shorter edges are more likely to appear. This procedure allows to mimic real

transportation networks (Daskin 1993). More precisely, we first compute a minimum cost

spanning tree based on the weights {wij = ‖ui − uj‖−2
2 } to ensure the graph is connected.

Then, we iteratively select m− n+ 1 additional edges following the probability distribution

pij =
wij∑

{i′,j′} wi′j′
for each i 6= j ∈ V while ensuring the resulting graph is planar. The length

lij of each edge {i, j} ∈ E is then given by ‖ui − uj‖2 and the the distance between every

pair of vertices is given by the shortest path between them in G. For each i ∈ V , we finally

define Ui as the σ vertices that are closest to i.

7.2.2 Results

Figure 6 reports the average solution times, showing that exact is able to solve every instance

to optimality within the time limit. The figure further underlines the impact of parameters

m and σ: larger values for these parameters impact significantly the solution time of exact,

whereas center and dmax solve all the instances in a fraction of a second. Then, following

again formula (9), Figure 7 reports the cumulative distributions of the cost increase of each

of the two heuristics, relatively to the cost of the exact solution. Notice that adr is not

included in this comparison, because this algorithm can handle only the Euclidean distance

whereas these results rely on graph-induced distances. The results illustrate that when σ = 3,

m = 120 and m = 160, dmax returns almost always slightly better quality solutions than

center. The distinction between the two is less marked for the three remaining cases.

Overall, these results illustrate that exact is a useful tool for solving this problem exactly,

while larger instances may be solved to near-optimality by either center or dmax, the latter

being slightly preferable over the former.

27

80 100 120 140 160

0.01

1

(a) Varying m

3 3.5 4 4.5 5

0.01

1

center
dmax
exact

(b) Varying |U|

Figure 6: PL: Average solution times in seconds for each algorithm when varying one of the
parameters.

8. Concluding remarks

This paper has been devoted to the study of general combinatorial optimization problems

defined in spatial graphs with locational uncertainty, thus encompassing applications arising

in transportation, location, and clustering, among others. We have developed a suite of

solution techniques to handle these problems: an exact solution algorithm based on scenario

generation and approximation schemes with theoretical guarantees. We have compared

these algorithms numerically to the affine decision rules conservative approximation proposed

by Zhen et al. (2021) on Steiner tree instances inspired by the scientific literature. Our results

illustrate that, while the approximation provided by Zhen et al. (2021) is particularly tight, it

does not scale well and is limited to solving small problems. In contrast, our exact algorithm

is capable of solving medium-size instances. Moreover, the approximation algorithm based

on maximum pairwise distances scales up very well, and it provides solutions of good quality.

In fact, the costs of these solutions are nearly as good as those provided by Zhen et al. (2021)

and much closer to the optimal value than suggested by theoretical ratios.

Our results also illustrate that while the naive heuristic considering the barycenters can

produce near-optimal solutions on some applications (as for the simple plant location), it may

also be far worse than the heuristic based on maximum pairwise distances (as for the Steiner

tree problem). As a consequence, in the absence of extra knowledge, our tests suggest that

using the worst-case distances is more appropriate if an exact solution cannot be computed

in acceptable time.

From a theoretical point of view, we have determined constant factor approximation

ratios for a variety of problems, singling out metric spaces that are Ptolemaic. We have

also understood the NP-harness of basic problems, including the shortest path problem for

28

0 5 10 15 20
0

20

40

60

80

100

(a) σ = 3

0 5 10 15 20
0

20

40

60

80

100

(b) σ = 4

0 5 10 15 20
0

20

40

60

80

100

center
dmax

(c) σ = 5

0 5 10 15 20
0

20

40

60

80

100

(d) m = 80

0 5 10 15 20
0

20

40

60

80

100

(e) m = 120

0 5 10 15 20
0

20

40

60

80

100

(f) m = 160

Figure 7: PL: For each heuristic algorithm, the curve plots (9), the cumulative distribution
of the % of instances for which the returned solution has an additional (relative) cost less
than the value of the abscissa.

which we have provided an FPT AS. These theoretical results pave the way for several

interesting open questions. First, it is unkown whether the robust minimum spanning tree

(robust-∆-mst) is NP-hard in the 1-dimensional Euclidean space. Furthermore, does

the problem become polynomial whenever |M| is constant, or admits a PT AS when σ

is constant? Another independent open question concerns closing the gaps for the ratios

cmax(F)/c(F) for arbitrary finite sets Ui. Specifically, for general graphs and arbitrary metric

spaces, we have devised an upper bound of 9 for this ratio while the highest lower bound we

could identify, given by the tightness result obtained for stars, is equal to 3. In the case of

Ptolemaic metric spaces, our upper bound is 4 while our strongest lower bound is equal to

2 for paths.

References

Aissi H, Bazgan C, Vanderpooten D (2009) Min-max and min-max regret versions of combinatorial
optimization problems: A survey. Eur. J. Oper. Res. 197(2):427–438, URL http://dx.doi.

org/10.1016/j.ejor.2008.09.012.

Apostol TM (1967) Ptolemy’s Inequality and the Chordal Metric. Mathematics Magazine
40(5):233–235, URL http://dx.doi.org/10.1080/0025570X.1967.11975804.

Ayoub J, Poss M (2016) Decomposition for adjustable robust linear optimization subject to un-
certainty polytope. Comput. Manag. Science 13(2):219–239, URL http://dx.doi.org/10.

1007/s10287-016-0249-2.

29

http://dx.doi.org/10.1016/j.ejor.2008.09.012
http://dx.doi.org/10.1016/j.ejor.2008.09.012
http://dx.doi.org/10.1080/0025570X.1967.11975804
http://dx.doi.org/10.1007/s10287-016-0249-2
http://dx.doi.org/10.1007/s10287-016-0249-2

Ben-Tal A, Goryashko AP, Guslitzer E, Nemirovski A (2004) Adjustable robust solutions of un-
certain linear programs. Math. Program. 99(2):351–376, URL http://dx.doi.org/10.1007/

s10107-003-0454-y.

Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Mathematics of Operations Research
23(4):769–805.

Bertsimas D, Dunning I (2016) Multistage robust mixed-integer optimization with adaptive parti-
tions. Oper. Res. 64(4):980–998, URL http://dx.doi.org/10.1287/opre.2016.1515.

Bertsimas D, Dunning I, Lubin M (2016) Reformulation versus cutting-planes for robust optimiza-
tion. Comput. Manag. Science 13(2):195–217.

Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Mathematical Pro-
gramming 98(1-3):49–71.

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: A fast dynamic language for technical
computing. arXiv preprint arXiv:1209.5145 .

Bodlaender HL, Drange PG, Dregi MS, Fomin FV, Lokshtanov D, Pilipczuk M (2013) A o(cˆk
n) 5-approximation algorithm for treewidth. CoRR abs/1304.6321, URL http://arxiv.org/

abs/1304.6321.

Buchheim C, Kurtz J (2018) Robust combinatorial optimization under convex and discrete cost
uncertainty. EURO J. Computational Optimization 6(3):211–238, URL http://dx.doi.org/

10.1007/s13675-018-0103-0.

Cevallos A, Eisenbrand F, Morell S (2018) Diversity maximization in doubling metrics. CoRR
abs/1809.09521, URL http://arxiv.org/abs/1809.09521.

Christofides N (1976) Worst-case analysis of a new heuristic for the traveling salesman problem.
Symposium on new directions and recent results in algorithms and complexity, 441.

Citovsky G, Mayer T, Mitchell JSB (2017) TSP With Locational Uncertainty: The Adversarial
Model. Aronov B, Katz MJ, eds., 33rd International Symposium on Computational Geometry
(SoCG 2017), volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), 32:1–
32:16 (Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik), ISBN 978-3-
95977-038-5, ISSN 1868-8969, URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.32.

Correia I, da Gama FS (2015) Facility location under uncertainty. Location science, 177–203
(Springer).

Crescenzi P (1997) A short guide to approximation preserving reductions. Proceedings of Compu-
tational Complexity. Twelfth Annual IEEE Conference, 262–273, URL http://dx.doi.org/

10.1109/CCC.1997.612321.

Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M,
Saurabh S (2015) Parameterized Algorithms (Springer), URL http://dx.doi.org/10.1007/

978-3-319-21275-3.

Daskin M (1993) Genrand2: A random network generator. Department of Industrial Engineering
and Management Sciences, Northwestern University, Evanston, IL, USA .

Downey RG, Fellows MR (2013) Fundamentals of Parameterized Complexity. Texts in Computer
Science (Springer), URL http://dx.doi.org/10.1007/978-1-4471-5559-1.

Dunning I, Huchette J, Lubin M (2017) Jump: A modeling language for mathematical optimization.
SIAM Review 59(2):295–320, URL http://dx.doi.org/10.1137/15M1020575.

Eremin I, Gimadi EK, Kel’manov A, Pyatkin A, Khachai MY (2014) 2-approximation algorithm
for finding a clique with minimum weight of vertices and edges. Proceedings of the Steklov
Institute of Mathematics 284(1):87–95.

30

http://dx.doi.org/10.1007/s10107-003-0454-y
http://dx.doi.org/10.1007/s10107-003-0454-y
http://dx.doi.org/10.1287/opre.2016.1515
http://arxiv.org/abs/1304.6321
http://arxiv.org/abs/1304.6321
http://dx.doi.org/10.1007/s13675-018-0103-0
http://dx.doi.org/10.1007/s13675-018-0103-0
http://arxiv.org/abs/1809.09521
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.32
http://dx.doi.org/10.1109/CCC.1997.612321
http://dx.doi.org/10.1109/CCC.1997.612321
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1137/15M1020575

Fischetti M, Monaci M (2012) Cutting plane versus compact formulations for uncertain (integer)
linear programs. Math. Program. Comput. 4(3):239–273.

Gutiérrez-Jarpa G, Obreque C, Laporte G, Marianov V (2013) Rapid transit network design
for optimal cost and origin–destination demand capture. Computers & Operations Research
40(12):3000–3009, ISSN 0305-0548, URL http://dx.doi.org/https://doi.org/10.1016/

j.cor.2013.06.013.

Hanasusanto GA, Kuhn D, Wiesemann W (2015) K-adaptability in two-stage robust binary pro-
gramming. Operations Research 63(4):877–891.

Kasperski A, Zieliński P (2009) On the approximability of minmax (regret) network optimization
problems. Information Processing Letters 109(5):262–266.

Kasperski A, Zieliński P (2016) Robust discrete optimization under discrete and interval uncer-
tainty: A survey. Robustness analysis in decision aiding, optimization, and analytics, 113–143
(Springer).

Kloks T (1994) Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science (Springer-Verlag), URL http://dx.doi.org/10.1007/BFb0045375.

Kouvelis P, Yu G (2013) Robust discrete optimization and its applications, volume 14 (Springer
Science & Business Media).

Magnanti TL, Wong RT (1984) Network design and transportation planning: Models and algo-
rithms. Transportation science 18(1):1–55.

Masson MH, Quost B, Destercke S (2020) Cautious relational clustering: A thresholding approach.
Expert Systems with Applications 139:112837.

Melkote S, Daskin MS (2001) An integrated model of facility location and transportation network
design. Transportation Research Part A: Policy and Practice 35(6):515–538, ISSN 0965-8564,
URL http://dx.doi.org/https://doi.org/10.1016/S0965-8564(00)00005-7.

Naoum-Sawaya J, Buchheim C (2016) Robust critical node selection by benders decomposition.
INFORMS J. Comput. 28(1):162–174, URL http://dx.doi.org/10.1287/ijoc.2015.0671.

Postek K, Hertog Dd (2016) Multistage adjustable robust mixed-integer optimization via iterative
splitting of the uncertainty set. INFORMS Journal on Computing 28(3):553–574.

Roos E, den Hertog D, Ben-Tal A, de Ruiter FJ, Zhen J (2018) Approximation of
hard uncertain convex inequalities. Optimization Online URL http://www.optimization-
online.org/DB HTML/2018/06/6679. html .

Shang Y, Ruml W, Zhang Y, Fromherz MP (2003) Localization from mere connectivity. Proceedings
of the 4th ACM international symposium on Mobile ad hoc networking & computing, 201–212.

Subramanyam A, Gounaris CE, Wiesemann W (2019) K-adaptability in two-stage mixed-integer
robust optimization. Mathematical Programming Computation 1–32.

Yaman H, Karasan OE, Pinar MÇ (2001) The robust spanning tree problem with interval data.
Oper. Res. Lett. 29(1):31–40, URL http://dx.doi.org/10.1016/S0167-6377(01)00078-5.

Zeng B, Zhao L (2013) Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters 41(5):457–461.

Zhen J, de Ruiter FJ, Roos E, den Hertog D (2021) Robust optimization for models with un-
certain second-order cone and semidefinite programming constraints. INFORMS Journal on
Computing .

Zhen J, den Hertog D, Sim M (2018) Adjustable robust optimization via fourier-motzkin elimina-
tion. Operations Research 66(4):1086–1100, URL http://dx.doi.org/10.1287/opre.2017.

1714.

31

http://dx.doi.org/https://doi.org/10.1016/j.cor.2013.06.013
http://dx.doi.org/https://doi.org/10.1016/j.cor.2013.06.013
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/https://doi.org/10.1016/S0965-8564(00)00005-7
http://dx.doi.org/10.1287/ijoc.2015.0671
http://dx.doi.org/10.1016/S0167-6377(01)00078-5
http://dx.doi.org/10.1287/opre.2017.1714
http://dx.doi.org/10.1287/opre.2017.1714

A. Hardness proofs for the robust problem

A.1 Proof of Proposition 1

Given a set of integers {a1, . . . , an}, with A =
∑n

i=1 ai, the NP-complete decision problem

partition asks for a subset S ⊂ {1, . . . , n} such that
∑

i∈S ai = A/2. Let K > 0 be a large

enough integer. The reduction considers the graph G with 2n+2 vertices and 4n edges as il-

lustrated Figure 8; the regions Ui are translated away from vertex o for visibility. Specifically,

our reduction locates vertices s and t at 0 while Ui = [−u−i , u+
i] for each vertex i different

from s and t. The definition of u+ and u− alternates along the vertices vi, vi+1, vi+2, . . . and

similarly for vertices wi: for each i = 2k + 1, we define u+
vi

= K + ai, u
−
vi

= K + A
n
− ai,

u+
wi

= K and u−wi = K + A
n

, while for each i = 2k, we define u+
vi

= K + A
n
− ai, u−vi = K + ai,

u+
wi

= K + A
n

and u−wi = K.

s t

v1

u−v1

u+
v1

w1

u−w1

u+
w1

v2

u−v2

u+
v2

w2

u−w2

u+
w2

vn
u−vn

u+
vn

wn

u−wn

u+
wn

Figure 8: Reduction from partition when U is a Cartesian product of segments.

We first show that for K large enough, the worst-case u ∈ U for any path F from s to

t alternates from the top of an interval to the bottom of the subsequent interval along the

path. To prove this, notice that for any vertex v ∈ G \ {s, t}, u−v ∈ [K − A,K + A] and

u+
v ∈ [K − A,K + A] and the same holds for any vertex w. Hence, if u alternates for the

entire path, the resulting cost is not smaller than c = 2n(K − A). On the contrary, if u

misses one alternation, its cost cannot be greater than c′ = 2(n − 1)(K + A) + 2A. Hence,

taking K > 2nA ensures c > c′.

The reduction works as follow. Let S ⊆ {1, . . . , n} be a subset of integers and S its

complement. We associate to S the path FS from s to t that contains vi for each i ∈ S

and wi for each i ∈ S. From the above, only two scenarios in U must be considered in the

worst-case and each vertex i ∈ {w1, v1, . . . , wn, vn} contributes to the total length with either

32

v0

w0

v1

w1

vn

wn

(a) G

v1
0

w1
0

v1
1

w1
1

v1
n

w1
n

v2
0

w2
0

v2
1

w2
1

v2
n

w2
n

(b) GM.

Figure 9: Graphs used in the reduction for the minimum spanning tree problem.

2u+
i or 2u−i , depending on the scenario considered. We have

c(FS) = max
u∈U

∑
{i,j}∈FS

‖ui − uj‖2

= 2 max

(
nK +

∑
i∈S

ai, n(K +
A

n
)−

∑
i∈S

ai

)

= 2 max

(
nK +

∑
i∈S

ai, A+ nK −
∑
i∈S

ai

)

= 2nK + 2 max

∑
i∈S

ai,
∑
i∈S

ai

 .

Hence, there exists a path FS ∈ F with minimum cost of 2nK +A if and only if there exists

a set S such that
∑

i∈S ai =
∑

i∈S ai = A/2.

A.2 Proof of Proposition 2

We consider the same partition problem as in the proof of Proposition 1. Now G contains

the 2n + 2 vertices and 3n + 1 edges depicted on Figure 9a. We consider the metric space

(M, d) induced by the weighted graph GM = (VM, EM, ω) depicted on Figure 9b. Let K > 0

be a number large enough. The dashed edges and thin edges have their weights equal to K

and 2K, respectively, while ωv1i−1v
1
i

= 3K + ai, ωv2i−1v
2
i

= 3K + A
n
− ai, ωw1

i−1w
1
i

= 3K, and

ωw2
i−1w

2
i

= 3K + A
n

for each i = 1, . . . , n. Weights vector ω satisfies the triangle inequalities,

33

so the metric d induced on VM by the shortest paths in GM satisfies dij = ωij for each

{i, j} ∈ EM. Finally, we define Uvi = {v1
i , v

2
i } and Uwi = {w1

i , w
2
i } for i = 0, . . . , n.

We first observe that the cost of a vertical edge {vi, wi} is equal to K for all positions

of (vi, wi) ∈ Uvi × Uwi . Let us consider any tree F in G that contains nv vertical edges and

nh horizontal edges, where n ≤ nh ≤ 2n. For K large enough, we claim that the worst-case

u ∈ U locates all vertices either in the bottom layer of GM that consists of vertices v1
i and

w1
i for i = 0, . . . , n, or in the top layer that consists of the remaining vertices. To prove the

claim, notice that the weight of any horizontal edge in GM is comprised between 3K−A and

3K+A, while the weight of any diagonal edge is 2K. Hence, if u locates all its vertices either

in the bottom or in the top layer, the resulting cost is not smaller than c = nh(3K−A)+nvK.

On the contrary, if u alternates at least once between the layers, its cost cannot be greater

than c′ = (nh−1)(3K+A)+2K+nvK. Hence, taking K > (4n−1)A ≥ (2nh−1)A ensures

c > c′, proving the claim.

We prove next that forK large enough, any optimal tree F inGmust contain n+1 vertical

edges and n horizontal ones. Following the above claim, the cost of a horizontal edge {vi, vi+1}
or {wi, wi+1} for a worst-case u ∈ U is comprised between 3K −A and 3K +A. Hence, any

tree F with nh ∈ {n+ 1, . . . , 2n} horizontal edges costs at least c = nh(3K−A) +nvK while

any tree having nh − 1 horizontal edges costs at most c = (nh − 1)(3K + A) + (nv + 1)K.

Hence, taking K > 2nA ≥ nhA ensures c > c′, proving nh = n in any optimal solution.

As in the proof of Proposition 1, we let S ⊆ {1, . . . , n} be a subset of integers and S

its complement. We associate to S the tree FS that contains {vi−1, vi} for each i ∈ S and

{wi−1, wi} for each i ∈ S. Following the claim above, only two scenarios in U must be

considered, and following again the reasoning used in the proof of Proposition 1, we have

c(FS) = max

(
3nK +

∑
i∈S

ai, 3nK + A−
∑
i∈S

ai

)
= 3nK + max

∑
i∈S

ai,
∑
i∈S

ai

 .

Hence, there exists a spanning tree FS ∈ F with minimum cost of 3nK +A/2 if and only if

there exists a set S such that
∑

i∈S ai =
∑

i∈S ai = A/2.

Remark 2. The graph GM described in the above proof cannot be embedded isometrically

into an Euclidean space, as can be seen by considering the triangle w1
0 w

1
1 w

2
0 and the fourth

point v2
0. The sides of the triangle have length d(w1

0, w
1
1) = 3K, d(w1

1, w
2
0) = 2K, and

d(w2
0, w

1
0) = 2K. Hence, since d(v2

0, w
1
0) = d(v2

0, w
2
0) = K, any isometric embedding maps v2

0

to the midpoint of segment w1
0 w

2
0, so its Euclidean distance to w1

1 must be
√

11
2
K. This is

34

in contradiction with d(v2
0, w

1
1) = min(ωv20w1

0
+ωw1

0w
1
1
, ωv20v21 +ωv21w1

1
) = min(4K, 4K + A

n
− a1).

The above illustrates that the complexity of problem (2) when F contains all spanning trees

of G is still open when one considers only Euclidean metric spaces.

B. Hardness proofs for the cost evaluation problem

B.1 Proof of Proposition 3

Let us denote the objective function of MAXCUT as cMAX−CUT (V1, V2) = |{e ∈ E(G) |
|e ∩ V1| = 1}|. Further, we denote by optMAX−CUT (G) the value of an optimal solution for

graph G.

Lemma 5. For any input graph G of max-cut, we can compute in polynomial time an

instance I of eval-c such that

• for any solution {V1, V2} of max-cut on G, there exists a solution u of eval-c on I

such that c(u,G) = cMAX−CUT (V1, V2),

• for any solution u of eval-c on I such that c(u,G) = cMAX−CUT (V1, V2), there exists

a solution {V1, V2} of max-cut on G such that cMAX−CUT (V1, V2) = c(u,G) (and this

solution can be computed in polynomial time in |V (G)|),

• the metric space of I is M = {0, 1}, the distance d is defined by d(x, y) = |x− y|, and

for any i ∈ V (G), Ui =M.

Proof. Given G, we simply define I as the graph G itself, and the metric space, distance

and Ui as claimed. Given a solution {V1, V2} (which is a partition) of max-cut, we define

ui = 0 if i ∈ V1, and 1 if i ∈ V2. This implies c(u, I) = cMAX−CUT (V1, V2). For the reverse

direction, given a solution u of EV AL−C, we define V1 = {i | ui = 0} and V2 = V (G) \ V1,

and we also have c(u, I) = cMAX−CUT (V1, V2).

Let us recall that S-reduction (see Crescenzi (1997)) is one of the most restrictive form

of reduction, that preserves in particular approximability. Lemma 5 immediatly implies that

there is an S-reduction from max-cut to eval-c, implying the following Observation and

the proof of Proposition 3.

Observation 4. Let G be a graph. Using M = {0, 1}, d defined by d(x, y) = |x − y|, and

for any i ∈ V (G), Ui =M, we get c(G) = optMAX−CUT (G).

35

B.2 Proof of Proposition 5

Given a graph G, and a set of integers (called colors) L(i) for any i ∈ V (G), problem

list-col aims at deciding whether we can find a color f(i) ∈ L(i) for any i ∈ V (G) such

that for any edge {ij} ∈ E(G), f(i) 6= f(j).

Given a graph G a list of colors L(i) for any i ∈ V (G), we defineM =
⋃
i∈V (G) L(i), and

d(c1, c2) = 0 is c1 = c2, and 1 otherwise. We define the uncertainty set of G as follows: for

any i, we let Ui = L(i). It is now straightforward to verify that we have a YES-instance

of list-col iff c(G) = m. As the reduction can be computed in polynomial time, and the

graph (and thus its treewidth) is unchanged, we get the desired result.

C. Proofs related to the approximation ratio

C.1 Proof of Theorem 4

For all i ∈ {1, . . . , n}, let [u1
i , u

2
i] be a diameter of Ui, i.e., u1

i ∈ Ui, u2
i ∈ Ui and d(u1

i , u
2
i) =

diam(Ui), and let Ũi = {u1
i , u

2
i } and Ũ be the cross product of the Ũi. Let c̃(F) =

maxu∈Ũ
∑
{i,j}∈F d(ui, uj). As Ũ ⊆ U , we get c(F) ≥ c̃(F). Let us now prove that c̃(F) ≥

cmax(F)
4

.

Now, define the random variable ũi taking any value of Ũi with equal probability 1/3.

The worst-case length of the graph is not smaller than its expected edge length, i.e.,

c(F) = max
u∈Ũ

∑
{i,j}∈F

d(ui, uj) ≥ E

 ∑
{i,j}∈F

d(ũi, ũj)

 ,
where, by linearity of expectation,

E

 ∑
{i,j}∈F

d(ũi, ũj)

 =
∑
{i,j}∈F

E [d(ũi, ũj)] .

We then consider some arbitrary edge {i, j} ∈ F :

E [d(ũi, ũj)] =
1

4

(
d(u1

i , u
1
j) + d(u1

i , u
2
j) + d(u2

i , u
1
j) + d(u2

i , u
2
j)
)
.

Let ūi ∈ Ui and ūj ∈ Uj such that d(ūi, ūj) = dmaxij . As u1
ju

2
j is a diameter of Uj, we have

d(u1
j , u

2
j) ≥ max(d(u1

j , ūj), d(u2
j , ūj)), and we can apply Lemma 1 twice in triangle u1

ju
2
j ūj to

get {
d(u1

i , u
1
j) + d(u1

i , u
2
j) ≥ d(u1

i , ūj)

d(u2
i , u

1
j) + d(u2

i , u
2
j) ≥ d(u2

i , ūj).

36

One last application of the lemma in u1
iu

2
i ūi then yields

d(u1
i , ūj) + d(u2

i , ūj) ≥ d(ūi, ūj) = dmaxij .

Summarizing the above, we get to c̃(F) ≥
∑
{i,j}∈F E [d(ũi, ũj)] ≥ 1

4
cmax(F ≥ cmax(F)

4
.

C.2 Proof of Theorem 5

The proof follows exactly the approach followed in the proof of Theorem 4, but we use

Lemma 2 instead of Lemma 1 when needed. We thus use the same notations as in the proof

of Theorem 4. As u1
ju

2
j is a diameter of Uj, we have d(u1

j , u
2
j) ≥ max(d(u1

j , ūj), d(u2
j , ūj)), and

we can apply Lemma 2 twice in triangle u1
ju

2
j ūj to get

d(u1
i , u

1
j) + d(u1

i , u
2
j) ≥

2

3
d(u1

i , ūj)

d(u2
i , u

1
j) + d(u2

i , u
2
j) ≥

2

3
d(u2

i , ūj).

One last application of Lemma 2 in u1
iu

2
i ūi then yields

d(u1
i , ūj) + d(u2

i , ūj) ≥
2

3
d(ūi, ūj) =

2

3
dmaxij .

Summarizing the above, we get to c̃(F) ≥
∑
{i,j}∈F E [d(ũi, ũj)] ≥ 1

4
4
9
cmax(F) ≥ cmax(F)

9
.

C.3 Proof of Proposition 7

We follow the proof of Theorem 4 (and re-use same notations), but using different sets Ũi.
For any edge {i, j} of F , define uji ∈ Ui and uij ∈ Uj such that d(uij, u

j
i) = dmaxij . For

any vertex i, let Ũi = {u`i , ` ∈ N(i)}, and ∆i = |N(i)| be the degree of i. Let c̃(F) =

maxu∈Ũ
∑
{i,j}∈F d(ui, uj). As Ũ ⊆ U , we get c(F) ≥ c̃(F). Let us now prove that c̃(F) ≥

cmax(F)
∆

.

Now, consider random variable ũi taking any value of Ũi with equal probability. As in

the proof of Theorem 4, it is enough to lower bound the following quantity for an arbitrary

edge {i, j} ∈ F :

E [d(ũi, ũj)] =
1

∆i∆j

 ∑
`1∈N(i),`2∈N(j)

d(u`1i , u
`2
j)

 .

Suppose without loss of generality that ∆j ≤ ∆i. Let ∆min = min(∆i,∆j) = ∆j, Xi =

N(i) \ {j}, and Xj = N(j) \ {i} (Xi or Xj may be empty when ∆min = 1). Let us define an

37

arbitrary injective mapping φ : Xj → Xi. Observe that∑
`1∈N(i)`2∈N(j)

d(u`1i , u
`2
j) ≥ dmaxij +

∑
`∈Xj

d(uji , u
`
j) +

∑
`1∈Xi,`2∈Xj

d(u`1i , u
`2
j) +

∑
`∈Xi

d(u`i , u
i
j)

≥ dmaxij +
∑
`∈Xj

d(uji , u
`
j) +

∑
`∈Xj

d(u`j, u
φ(`)
i) +

∑
`∈Xi

d(u`i , u
i
j)

≥ dmaxij +
∑
`∈Xj

d(uji , u
`
j) +

∑
`∈Xj

d(u`j, u
φ(`)
i) +

∑
`∈Xj

d(u
φ(`)
i , uij)

= dmaxij +
∑
`∈Xj

(
d(uji , u

`
j) + d(u`j, u

φ(`)
i) + d(u

φ(`)
i , uij)

)
≥ dmaxij +

∑
`∈Xj

dmaxij = ∆mindmaxij .

We obtain

E [d(ũi, ũj)] ≥
1

∆i∆j

∆mindmaxij =
1

∆i

dmaxij ≥ 1

∆(F)
dmaxij .

C.4 Proof of Proposition 10

Recall that n denotes |V (F)|. It is folklore that χ(F) = n− 1 when n is even, and χ(F) = n

when n is odd, leading to χ(F) ≤ n for any n. This implies that E(F) can be partitioned

into n matchings Mi, each of size bn/2c, and thus that cmax(F) =
∑n

i=1 c
max(Mi). Therefore,

there is a matching of F , denoted M∗, such that

cmax(M∗) ≥ 1

n
cmax(F). (10)

Next, we define u∗ as any element from arg max
u∈U

∑
{i,j}∈M∗

d(ui, uj), and we use the shorter

notation d∗ij = d(u∗i , u
∗
j), and d∗e = d∗ij for any edge e = {i, j}. Observe that because M∗ is a

matching

d∗e = dmaxe (11)

for each e ∈ M∗. For any E ′ ⊆ E(F), let d∗(E ′) =
∑

e∈E′ d
∗
e. Observe that c(F) ≥ d∗(F).

Our objective is to prove that d∗(F) ≥ 1
2
cmax(F).

Assume without loss of generality that M∗ = {{2i − 1, 2i} | i ∈ [bn
2
c]}, so n is the only

vertex not belonging to any edge of M∗ when n is odd. For any i ∈ [bn
2
c], let X(2i− 1, 2i) =

{{2i− 1, l} ∪ {2i, l} | l ∈ V (F) \ {2i− 1, 2i}}. Observe that the triangle inequality yields

d∗(X(2i− 1, 2i)) =
∑

l∈V (F)\{2i−1,2i}

(d∗(2i−1)l + d∗(2i)l) ≥ (n− 2)d∗(2i−1)(2i). (12)

38

Summing up (12) for all i ∈ [bn
2
c], we obtain∑

i∈[bn
2
c]

d∗(X(2i− 1, 2i)) ≥ (n− 2)d∗(M∗) = cmax(M∗),

where the last equality follows from (11). What is more, any edge e ∈ E(F) \M∗ belongs

to at most two sets X(2i− 1, 2i), so that

2d∗(E(F) \M∗) ≥
∑
i∈[bn

2
c]

d∗(X(2i− 1, 2i)).

We obtain

2d∗(F) = 2

[
d∗((E(F)\M∗))+d∗(M∗)

]
≥ (n−2)cmax(M∗)+2cmax(M∗) = ncmax(M∗) ≥ cmax(F),

where the last inequality follows from (10).

C.5 Proof of Proposition 14

Observe first that we can partition E(F) into E1 and E2 such that each Ei induces a star

forest (a graph where any connected component is a star). Indeed, to obtain such a partition

we root the tree at vertex 1, and define Si as the star whose central vertex is i and whose

leaves are the children vertices of i in F . Then, we define E1 (resp. E2) as the union of

E(Si) for vertices i which are an odd (resp. even) distance from vertex 1. By Proposition 6

and Corollary 4, we get the claimed ratio.

C.6 Proof of Proposition 15

We assume without loss of generality that F is rooted at vertex 1. The proof is made by

induction on the height of the tree. For this, we consider the following induction statement:

P(h) : If F has height h, there are two solutions u1, u2 ∈ U such that

• cmax(F) ≤ 2
√

2
∑
{i,j}∈F d(u1

i , u
1
j) =

∑
{i,j}∈F d(u2

i , u
2
j),

• u1
i = u2

i for each vertex i with level l < h,

• [u1
i , u

2
i] is a diameter of Ui for each vertex i with level h.

If h = 0, F has only one vertex which is the root of the tree, so the induction statement

is trivially satisfied with any diameter [u1, u2] of U1.

39

Assume that P (h) is true for some L ≥ 1, and let F be a rooted tree with height h+ 1.

Without loss of generality, we assume that the vertices of V F are sorted by increasing level

and let nh−1, nh and nh+1 be such that the vertices with level h are V F
h = {nh−1 + 1, . . . , nh}

and those with level h + 1 are V F
h+1 = {nh + 1, . . . , nh+1}. Let F≤h = (V F

≤h, F≤h) be the

subtree of F induced by vertices {1, . . . , nh}. Tree F≤h has height h so we can apply the

induction statement to get two solutions u1, u2 ∈ U as described in P(h).

Now, for all i ∈ V F
h , let Si ⊂ F be the set of edges of the star graph whose internal vertex

is i and whose leaves are the children vertices of i (which all belong to V F
h+1). Similarly

to what was done in the proof of Proposition 12, for all {i, j} ∈ Si, we can set u1
j ∈

arg maxu∈Uj d(u, u1
i) and u2

j ∈ arg maxu∈Uj d(u, u2
i), which yields d(u1

i , u
1
j) + d(u2

i , u
2
j) ≥ dmaxij .

We can then assume without loss of generality that 2
∑
{i,j}∈Si d(u1

i , u
1
j) ≥

∑
{i,j}∈Si d(u2

i , u
2
j),

i.e.,

cmax(Si) ≤ 2
∑
{i,j}∈Si

d(u1
i , u

1
j). (13)

Given that we are considering the Euclidean distance with spherical uncertainty sets, the

above implies that segment [u1
i , u

1
j] goes through the center oj of Uj (direct application of the

triangular inequality). Then, let [ū1
j , ū

2
j] be the diameter of Uj that is orthogonal to [u1

i , u
1
j];

it exists because Uj is spherical. We then compute,{
d(u1

i , u
1
j)

2 = d(u1
i , oi)

2 + r2
i + 2rid(u1

i , oj) ≤ 2d(ū1, oi)
2 + r2

i

d(u1
i , ū

1
j)

2 = d(u1
i , ū

2
j)

2 = d(u1
i , oi)

2 + r2
i

As a consequence, d(u1
i , ū

1
j) = d(u1

i , ū
2
j) ≥

√
2d(u1

i , u
1
j). Using (13), we then get

cmax(Si) ≤ 2
√

2
∑
{i,j}∈Si

d(u1
i , ū

1
j) = 2

√
2
∑
{i,j}∈Si

d(u1
i , ū

2
j)

. The same applies to all i, so we build two solutions ũ1, ũ2 ∈ U such that

• ũ1
i = ũ2

i = u1
i for all i ∈ V F

≤h,

• [ũ1
i , ũ

2
i] = [ū1

i , ū
2
i] is a diameter of Ui for all i ∈ V F

h+1.

40

To conclude, we observe that F = F≤h ∪
(⋃

i∈V Fh
Si

)
, so∑

{i,j}∈F

d(ū1
i , ū

1
j) =

∑
{i,j}∈F≤h

d(ū1
i , ū

1
j) +

∑
i∈V Fh

∑
{i,j}∈Si

d(ū1
i , ū

1
j)

=
∑

{i,j}∈F≤h

d(u1
i , u

1
j) +

∑
i∈V Fh

∑
{i,j}∈Si

d(u1
i , ū

1
j)

≥ 1

2
√

2
cmax(F≤h) +

1

2
√

2

∑
i∈V Fh

cmax(Si)

=
1

2
√

2
cmax(F).

D. Tightness proofs

D.1 Proof of Proposition 8

We consider a path F composed of n ≥ 3 vertices, where E(F) = {{i, i+ 1} : i ∈ {1, . . . , n−
1}. The vertices are located on a one-dimensional line where U1 = {0}, U2 = {0, 1} and

U3 = · · · = Un = {1}. We have dmax12 = dmax23 = 1 and dmaxi,i+1 = 0,∀i = 3, . . . , n − 1, so

cmax(F) = 2. There are only two feasible solutions depending on whether u2 = 1 or u2 = 0,

and they have the same cost c(F) = 1.

D.2 Proof of Proposition 9

We consider a cycle F composed of n ≥ 4 vertices, where E(F) = {{i, i+1} : i ∈ {1, . . . , n−
1}∪{{n, 1}}. The vertices are located on a one-dimensional line where U1 = {0}, U2 = {0, 1},
U3 = {1}, U4 = {0, 1} and U5 = · · · = Un = {0} if n ≥ 5. We verify that cmax(F) = 4,

and there are four feasible solutions depending on whether u2 = 1 or u2 = 0 and u4 = 1 or

u4 = 0. These four solutions all have the same cost c(F) = 2.

D.3 Proof of Proposition 11

According to Observation 4, we have c(F) = optmax-cut(F), and notice that cmax(F) = m,

where m = |E(F)| = n(n−1)
2

. Thus, it only remains to compute optmax-cut(F) in both

cases. When n is even, optmax-cut(F) = n2

4
, and when n is odd, optmax-cut(F) = (n−1)

2
(n+1)

2
,

leading in both cases to the claimed ratio.

41

D.4 Proof of Proposition 13

We consider the uncertainty set U =
�n

i=1 Ui where U1 = {u2
1, . . . , u

n
1} and Ui = {ui}, i =

2, . . . , n, such that:

• for all (i, j) ∈ {2, . . . , n}2, i 6= j, d(ui1, u
j
1) = 2/3,

• for all (i, j) ∈ {2, . . . , n}2, i 6= j, d(ui, uj) = 2/3,

• for all i = 2, . . . , n, d(ui1, ui) = 1 and ∀j 6= i, d(uj1, ui) = 1/3.

The triangular inequality is verified, so d is a distance.

By symmetry of the star graph and of the uncertainty set, every solution u ∈ U is optimal

and has the same value 1 + (n− 2) · 1/3. Moreover, the maximum distance between U1 and

Ui is equal to 1 for all i ∈ {2, . . . , n}. As a result, cmax(F) = 3(n− 1)/(n+ 1)c(F).

E. Proofs related to the FPTAS

E.1 Proof of Lemma 4

For complexity issues we assume that P(j,κ−1) and Q(j,κ−1) are represented as arrays AP and

AQ indexed by profiles, where given a profile p, AP [p] is true iff p ∈ P(j,κ−1), and AQ[p]

contains a path P such that Pr(P) = p if p ∈ P(j,κ−1), and ∅ otherwise. This explains the

O(nPn(log(n))) required space for storing Q. As profiles are vectors of length at most σ, we

consider that it takes O(σ) to obtain the value stored at index p of array AP or AQ.

We compute P(i,κ) following the recursion relation (8), and compute Q(i,κ) along the way.

More precisely, we start by initializing two arrays A′P and A′Q of size nP . Then, for all

j ∈ N(i) and p′ ∈ P(j,κ−1), we compute p(i, κ, j, p′) in time O(σ2). Now, we perform the

following operations in O(1). If p(i, κ, j, p′) is not already in P , we add it to P , we find a

path P ′ in Q(j,κ−1) such that Pr(P ′) = p′, and we add the path iP ′ to Q.

E.2 Proof of Theorem 7

Let I = (G, s, t,U ,D) be an instance of robust-∆-sp Our objective is to provide a solution

of cost at most (1 + ε)opt(I). Let ε′ ∈ R+. Using the 2-approximation obtained combining

Theorem 2 and Proposition 7, we start by computing an s − t path PA of cost c(PA) = A,

where opt(I) ≤ A ≤ 2opt(I). For any x, y ∈
⋃
i∈V (G) Ui, we define D′(x, y) by rounding up

42

D(x, y) to the closest value of the form `ε′A for some ` ∈ N. For any path P and u ∈ U we

denote by c′(u, P) =
∑

i,j∈P D′(ui, uj), c′(P) = maxu∈U c
′(u, P). Let I ′ = (G, s, t,U ,D′) be

the instance of robust-sp obtained when using D′ instead of D.

Observe that

• the function d′(u, v) = D′(u, v) may not be a distance,

• for any x, y ∈
⋃
i∈V (G) Ui, we have D(u, v) ≤ D′(u, v) ≤ D(u, v) + ε′A

• for any path P , c(P) ≤ c′(P) ≤ c(P) + nε′A

• opt′ ≤ opt + nε′A.

Let i ∈ V (G) and P be an i − t path. We say that P is useless if it verifies c′(P) >

A(1 + nε′); otherwise, P is said to be good. According to previous observations, we see

that c′(PA) ≤ A(1 + nε′). Thus, for any i ∈ V (G) and useless i − t path P , we have

c′(P) > c′(PA). This implies that P cannot be the suffix of an optimal solution to input I ′

(meaning that there is no optimal solution of I ′ that first goes from s to i, and then uses

P). As a consequence, in the DP algorithm provided in Section 6.1, we can restrict our

attention to the profiles of good paths, without loosing optimality in I ′. More formally, for

any i ∈ V (G) and κ ∈ [n], we adapt the previous definition P(i,κ) to

P(i,κ)
g = {Pr(P) | P ∈ F i→tκ , P is good},

and we now consider that the DP algorithm Ag(i, κ) computes (P(i,κ)
g , Q(i,κ)) instead of

(P(i,κ), Q(i,κ)). We now compute P ∗ an optimal solution on instance I ′ (for cost function c′)

using Theorem 6 (with DP algorithm Ag), and output P ∗.

We have c(P ∗) ≤ c′(P ∗) = opt(I ′) ≤ opt(I) + nε′A ≤ opt(I)(1 + 2nε′). Let us now

consider the complexity of computing P ∗. As c′(P) = max`∈[|Ui|] c
′`(P), observe that for any

good path P we have c′`(P) ≤ A(1 + nε′). Moreover, as for any x, y ∈
⋃
i∈V (G) Ui, D′(u, v) is

a multiple of ε′A, we get that for any good path P , c′`(P) = `ε′A for 0 ≤ l ≤ n+ d 1
ε′
e. This

implies that nval ≤ (n + 2 + 1
ε′

) = O(n
ε′

), so Observation 3 leads to the desired complexity

of O(n3σ2(n
ε′

)σ) to get a ratio 1 + 2nε′. Finally, given a target ratio 1 + ε, we set ε′ = ε
2n

,

obtaining the claimed complexity.

43

F. Definitions related to parameterized complexity and

treewidth

F.1 Parameterized complexity

We refer the reader to Downey and Fellows (2013), Cygan et al. (2015) for basic background

on parameterized complexity, and we recall here only some basic definitions. A parameterized

problem is a language L ⊆ Σ∗ × N, where Σ is some fixed alphabet. For an instance

I = (x, k) ∈ Σ∗×N, k is called the parameter. Given a classical (non-parameterized) decision

problem Lc ⊆ Σ∗ and a function κ : Σ∗ → N, we denote by Lc/κ = {(x, κ(x)} | x ∈ Lc} the

associated parameterized problem.

A parameterized problem L is fixed-parameter tractable (FPT) if there exists an algo-

rithm A, a computable function f , and a constant c such that given an instance I = (x, k),

A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.
For instance, the Vertex Cover problem parameterized by the size of the solution is FPT .

Within parameterized problems, the W-hierarchy may be seen as the parameterized

equivalent to the class NP of classical decision problems. Without entering into details

(see Downey and Fellows (2013), Cygan et al. (2015) for the formal definitions), a parame-

terized problem being W [1]-hard can be seen as a strong evidence that this problem is not

FPT . The canonical example of W [1]-hard problem is Independent Set parameterized

by the size of the solution.

The most common way to transfer W [1]-hardness is via parameterized reductions. A

parameterized reduction from a parameterized problem L1 to a parameterized problem L2 is

an algorithm that, given an instance (x, k) of L1, outputs an instance (x′, k′) of L2 such that

• (x, k) is a yes-instance of L1 if and only if (x′, k′) is a yes-instance of L2,

• k′ ≤ g(k) for some computable function g, and

• the running time is bounded by f(k) · |x|O(1) for some computable function f

If L1 isW [1]-hard and there is a parameterized reduction from L1 to L2, then L2 isW [1]-hard

as well.

44

F.2 Tree decompositions and treewidth.

A tree decomposition of a graph G is a pair D = (T,B), where T is a tree and B = {Xw |
w ∈ V (T)} is a collection of subsets of V (G), called bags, such that:

•
⋃
w∈V (T)X

w = V (G),

• for every edge {i, j} ∈ E, there is a w ∈ V (T) such that {i, j} ⊆ Xw, and

• for every {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T ,

Xx ∩Xy ⊆ Xz.

We call the vertices of T vertices of D and the sets in B bags of D. The width of a tree

decomposition D = (T,B) is maxw∈V (T) |Xw| − 1. The treewidth of a graph G, denoted by

tw(G), is the smallest integer t such that there exists a tree decomposition of G of width at

most t. We need to introduce nice tree decompositions, which will make the presentation of

the algorithm used to proof Theorem 1 much simpler.

Let D = (T,B) be a rooted tree decomposition of G (meaning that T has a special vertex

r called the root). As T is rooted, we naturally define an ancestor relation among bags, and

say that Xw′ is a descendant of Xw if the vertex set of the unique simple path in T from r to

w′ contains w. In particular, every vertex w is a descendant of itself. For every w ∈ V (T),

we define Gw = G[
⋃
{Xw′ | Xw′ is a descendant of Xw in T}].

Such a rooted decomposition is called a nice tree decomposition of G if the following

conditions hold:

• Xr = ∅.

• Every vertex of T has at most two children in T .

• For every leaf ` ∈ V (T), X` = ∅. Each such vertex ` is called a leaf vertex.

• If w ∈ V (T) has exactly one child w′, then either

– Xw = Xw′ ∪{i} for some i 6∈ Xw′ . Each such vertex is called an introduce vertex.

– Xw = Xw′ \ {i} for some i ∈ Xw′ . Each such vertex is called a forget vertex.

• If w ∈ V (T) has exactly two children wL and wR, then Xw = XwL = XwR . Each such

vertex w is called a join vertex.

45

We recall that one of the key property of such a nice decomposition is that for any w ∈ V (T),

Xw is a separator of G. This implies in particular that, in a join vertex, there is no edge

{i, j} in Gw where i ∈ V (GwL) \Xw and j ∈ V (GwR) \Xw.

Given a tree decomposition of a graph G of width t and x vertices, it is possible to

transform it in polynomial time into a nice one of width t and xt vertices (Kloks 1994).

Moreover, it is possible (Bodlaender et al. (2013)) to compute a tree decomposition of width

tw′ = O(tw(G)) and O(n) vertices in time O(ctw(G)n), where n = |V (G)|. By using these

two results, we can compute in time O(ctw(G)n) a nice tree decomposition of width O(tw(G))

with O(tw(G)n) vertices.

G. Computing the objective function on small treewidth

graphs

Throughout this section, we denote by u|X the vector u restricted to components ui such

that i ∈ X, for any X ⊆ V (G).

G.1 Definition of the auxiliary problem

In this section we consider that we are given a fixed input of eval-c, and a nice tree

decomposition D = (T,B) of G. Given w ∈ V (T), we denote Uw = ×i∈V (Gw)Ui. Let us define

the following maximization problem Π. An input of Π is a pair (w, f) where w ∈ V (T), and

f is a function from Xw to M such that for any i ∈ Xw, f(i) ∈ Ui. An output is a vector

u ∈ Uw such that for any i ∈ Xw, ui = f(i), which we denote by u ` (w, f). The objective

is to maximize c(u,Gw). We denote by opt(w, f) the optimal value for instance (w, f). As

usual in DP algorithms, to simplify the presentation we will define an algorithm A that given

an input (w, f) only computes the value opt(w, f). This algorithm could be easily modified

to get an associated optimal solution.

G.2 Join case

Let w be a join vertex with children wL and wR. Given two vectors uL ∈ UwL and uR ∈ UwR ,

such that for any i ∈ Xw, uLi = uRi , we define u = uL � uR by ui = uLi for any i ∈ V (GwL),

and ui = uRi for any i ∈ V (GwR). Observe that u is well defined as for i ∈ Xw, uLi = uRi .

46

Lemma 6. Let (w, f) be an input of Π such that w is a join vertex with children wL and

wR. For any u ∈ Uw, u ` (w, f) iff there exists uL, uR such that the following conditions

hold:

• uL ` (wL, f)

• uR ` (wR, f)

• u = uL � uR

Proof. The ⇒ direction is immediate by defining uL = u|V (GwL) (resp. uR = u|V (GwR)). In

the ⇐ direction, observe that uL � uR is well defined as for any i ∈ Xw, uLi = uRi = f(i), and

u ` (w, f) is also immediate.

Lemma 7. Let (w, f) be an input of Π such that w is a join vertex with children wL and wR.

Then, opt(w, f) = opt(wL, f)+opt(wR, f)−d(w,f), where d(w,f) =
∑

i,j∈Xw,{i,j}∈E(G) d(f(i), f(j)).

Proof. Let us start with the ≤ inequality. Let u such that c(u,Gw) = opt(w, f). Let uL

and uR as defined by Lemma 6. Observe that c(u,Gw) = c(u,GwL) + c(u,GwR) − d(w,f) as

edges inside Xw are counted twice in the first two terms. We have c(u,GwL) = c(uL, GwL),

and c(uL, GwL) ≤ OPT (wL, f) as uL ` (wL, f), and same properties hold for the right side.

This implies opt(w, f) ≤ opt(wL, f) + opt(wR, f)− d(w,f).

Let us now turn to the other inequality. Let uL such that c(uL, GwL) = opt(wL, f), uR

such that c(uR, GwR) = opt(wR, f), and u = uL � uR. According to Lemma 6, u ` (w, f),

and again c(u,Gw) = c(uL, GwL) + c(uR, GwR)− d(w,f), implying the desired inequality.

We are now ready to define the DP algorithm A in the join case. Given an input (w, f) of

Π such that w is a join vertex with children wL and wR, A(w, f) returns A(wL, f)+A(wR, f)−
d(w,f). It is immediate by induction and using Lemma 7 that A(w, f) = opt(w, f).

G.3 Introduce case

Given any input (w, f) of Π and X ⊆ Xw, we denote by f|X function f restricted to X. The

following two lemmas are immediate.

Lemma 8. Let (w, f) be an input of Π such that w is an introduce vertex with children w′.

Let i be such that Xw = Xw′ ∪ {i}. For any u ∈ Uw, u ` (w, f) iff the following conditions

hold:

47

• u|V (Gw′) ` (w′, f|Xw′)

• ui = f(i)

Lemma 9. Let (w, f) be an input of Π such that w is an introduce vertex with children

w′. Let i be such that Xw = Xw′ ∪ {i}. Then, opt(w, f) = opt(w′, f|Xw′) + d(i,w,f), where

d(i,w,f) =
∑

j∈Xw,{i,j}∈E(G) d(f(i), f(j)).

We are now ready to define the DP algorithm A in the introduce case. Given an input

(w, f) of Π such that w is an introduce vertex with children w′, where Xw = Xw′ ∪ {i},
A(w, f) returns A(w′, f|Xw′) + d(i,w,f). It is immediate by induction and using Lemma 9 that

A(w, f) = opt(w, f).

G.4 Forget case

Let (w, f) be an input of Π such that w is a forget vertex with children w′. Let i such that

Xw′ = Xw ∪ {i}. For any x ∈ M, we denote f (i,x) the function from Xw′ to M such that

f (i,x)(j) = f(j) for any j 6= i, and f (i,x)(i) = x. The following Lemma is immediate.

Lemma 10. Let (w, f) be an input of Π such that w is a forget vertex with children w′. Let

i be such that Xw′ = Xw ∪ {i}. For any u ∈ Uw, u ` (w, f) iff u ` (w′, f (i,ui)).

Lemma 11. Let (w, f) be an input of Π such that w is a forget vertex with children w′. Let

i be such that Xw′ = Xw ∪ {i}. Then, opt(w, f) = maxx∈Ui opt(w′, f (i,x)).

Proof. Observe first that Gw = Gw′ . Let us start with the ≤ inequality. Let u such that

c(u,Gw) = opt(w, f). Notice that c(u,Gw) = c(u,Gw′). By Lemma 10, u ` (w′, f (i,ui)),

implying c(u,Gw′) ≤ opt(w′, f (i,ui)) ≤ maxx∈Ui opt(w′, f (i,x)).

Let us now turn to the other inequality. Let x∗ ∈ Ui maximizing the right side. Let

u such that c(u,Gw′) = opt(w′, f (i,x∗)). Notice that as u ` (w′, f (i,x∗)), ui = x∗, and thus

u ` (w′, f (i,ui)). According to Lemma 10, u ` (w, f), implying that c(u,Gw′) = c(u,Gw) ≤
opt(w, f).

We are now ready to define the DP algorithm A in the forget case. Given an input (w, f)

of Π such that w is a forget vertex with children w′, where Xw′ = Xw ∪{i}, A(w, f) returns

maxx∈Ui A(w′, f (i,x)). It is immediate by induction and using Lemma 11 that A(w, f) =

opt(w, f).

48

G.5 Putting pieces together

Theorem 8. eval-c/tw+ σ is FPT . More precisely, we can compute an optimal solution

of eval-c in time O(ntwσO(tw)), where n = |V (G)|, tw = tw(G), and σ = maxi∈V (G) |Ui|.

Proof. Given an input (M, d, G,U) of eval-c, we start (see Appendix F.2) by computing in

time O(ctw(G)n) a nice tree decomposition of width O(tw(G)) with N = O(ntw(G)) vertices.

Remember that this nice tree decomposition is rooted on a vertex r such that Xr = ∅. Then,

we output A(r, ∅). Notice that as Xr = ∅, the second parameter (the function from Xr to

M) is defined nowhere and denoted ∅. As A solves Π optimaly, we have A(r, ∅) = opt(r, ∅).
Moreover, as Gr = G, we have opt(r, ∅) = c(G).

Let us now consider the running time of A. Given a tree decomposition with N vertices

(in the tree of bags) and of width t, the size of the DP table is O(Nσt), the time to compute

one entry is dominated by the forget case where the branching is in O(σ), implying a running

time in O(Nσt+1). Pluging the corresponding values, we get the claimed running time.

H. Affine decision rules for Euclidean metric spaces

In what follows, we assume that (M, d) is the `-dimensional Euclidean space so applying an

epigraphic reformulation to (5) leads to

min ω

s.t. ω ≥
∑
{i,j}∈E

xij‖ui − uj‖2, ∀u ∈ U

x ∈ X .

We provide next a conservative reformulation of the above problem, adapting the techniques

proposed by Zhen et al. (2021). Let Ui = conv(u1
i , . . . , u

σ
i) be defined by its σ extreme points

for each i ∈ V , and denote the unit ball of dimension ` by W`, as well as W = ×i∈VW`. Let

us also direct arbitrarily every edge in E, leading to the set of directed edges ~E. We obtain

that the constraint ∀u ∈ U :
∑

(i,j)∈ ~E xij‖ui − uj‖2 ≤ ω (notice that xij = xji) is equivalent

49

to

∀u ∈ U :
∑

(i,j)∈ ~E

xij max
wij∈W`

wTij(ui − uj) ≤ ω

⇔∀w ∈ W , u ∈ U :
∑

(i,j)∈ ~E

xijw
T
ij(ui − uj) ≤ ω

⇔∀w ∈ W : max

 ∑
(i,j)∈ ~E

xijw
T
ij

(
σ∑
k=1

λki u
k
i −

σ∑
l=1

λljuj

)
:

σ∑
k=1

λki = 1,∀i ∈ V, λ ≥ 0

 ≤ ω

⇔∀w ∈ W : min

∑
i∈V

µi : µi ≥
∑

(i,j)∈ ~E

xijw
T
iju

k
i −

∑
(j,i)∈ ~E

xjiw
T
jiu

k
i ,∀i ∈ V, k = 1, . . . , σ

 ≤ ω

⇔max
w∈W

min

∑
i∈V

µi : µi ≥
∑

(i,j)∈ ~E

xijw
T
iju

k
i −

∑
(j,i)∈ ~E

xjiw
T
jiu

k
i , ∀i ∈ V, k = 1, . . . , σ

 ≤ ω.

Introducing affine decision rules

µi(w) = µ0
i +

∑
e∈ ~E

µTiewe,

we obtain

min ω

s.t. ω ≥
∑
i∈V

µ0
i +

∑
e∈ ~E

µTiewe

 , ∀w ∈ W

µ0
i +

∑
e∈ ~E

µTiewe ≥
∑

(i,j)∈ ~E

xijw
T
iju

k
i −

∑
(j,i)∈ ~E

xjiw
T
jiu

k
i , ∀i ∈ V, k = 1, . . . , σ, w ∈ W

x ∈ X ,

and after dualization

min ω

s.t. ω ≥
∑
i∈V

µ0
i +

∑
(i,j)∈ ~E

∥∥∥∥∥µi,ij + µj,ij +
∑
i′ 6=i,j

µi′,ij

∥∥∥∥∥
2

µ0
i ≥

∑
(i,j)∈ ~E

xij‖uki − µi,ij‖2 +
∑

(j,i)∈ ~E

xji‖uki + µi,ji‖2 +
∑

e∈ ~E\δ(i)

‖µie‖2, ∀i ∈ V, k = 1, . . . , σ

x ∈ X .

50

Noticing that we can set µie = 0 for all e ∈ ~E \ δ(i) without affecting optimally, we obtain

min ω

s.t. ω ≥
∑
i∈V

µ0
i +

∑
(i,j)∈ ~E

νij

µ0
i ≥

∑
(i,j)∈ ~E

xijν
k
i,ij +

∑
(j,i)∈ ~E

xjiν
k
i,ji, ∀i ∈ V, k = 1, . . . , σ

νij ≥ ‖µi,ij + µj,ij‖2, ∀(i, j) ∈ ~E

νki,ij ≥ ‖uki − µi,ij‖2, ∀i ∈ V, (i, j) ∈ δ+(i), k = 1, . . . , σ

νki,ji ≥ ‖uki + µi,ji‖2, ∀i ∈ V, (j, i) ∈ δ−(i), k = 1, . . . , σ

x ∈ X .

We linearize products xijν
k
i,ij and xjiν

k
i,ji by introducing variables πki,ij ≥ 0 and πki,ji ≥ 0

together with constraints πki,ij ≥ νki,ij −Mij(1 − xij) and πki,ji ≥ νki,ij −Mij(1 − xij), with

Mij = dmaxij .

51

	Introduction
	Notations and definitions
	Graphs
	Cost functions
	Robust problems

	Hardness of the robust problem
	Exact solution of the general robust problem
	Hardness and exact solution of the cost evaluation problem
	Negative results
	Positive results

	Cutting plane algorithm for the robust problem

	Approximation algorithm for the general robust problem
	Reduction to a deterministic problem by using worst case distances
	Bounding the approximation ratio on general graphs
	Ptolemaic metric spaces
	Arbitrary metric spaces

	Bounding the approximation ratio on specific structures
	Building blocks
	Graphs with small maximum degree
	Cliques
	Stars
	Trees

	FPTAS for robust shortest path
	Dynamic programming algorithm
	FPTAS

	Computational experiments
	Subway network design
	Instances
	Results

	Simple plant location
	Instances
	Results

	Concluding remarks
	Hardness proofs for the robust problem
	Proof of Proposition 1
	Proof of Proposition 2

	Hardness proofs for the cost evaluation problem
	Proof of Proposition 3
	Proof of Proposition 5

	Proofs related to the approximation ratio
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Proposition 7
	Proof of Proposition 10
	Proof of Proposition 14
	Proof of Proposition 15

	Tightness proofs
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 11
	Proof of Proposition 13

	Proofs related to the FPTAS
	Proof of Lemma 4
	Proof of Theorem 7

	Definitions related to parameterized complexity and treewidth
	Parameterized complexity
	Tree decompositions and treewidth.

	Computing the objective function on small treewidth graphs
	Definition of the auxiliary problem
	Join case
	Introduce case
	Forget case
	Putting pieces together

	Affine decision rules for Euclidean metric spaces

