Table of Contents

NMR spectra of compounds 1, 3, 4, 5, 6, 7, 7', 8, 9, 10 and 1-(<i>N</i> -pyrrolidino)sulfonyl-2- (trimethylsilyl)ferrocene	p. S2
Selected NOESY correlations observed	p. S40
HPLC Chromatograms	p. S41
Electrochemical measurements	p. S48
Full tables of electronic properties	p. S64
Hammett constant values	p. S65
Plot of experimental vs. predicted half-wave potential values	p. S65

O-Isopropylferrocenesulfonate (1) SO₃iPr ¹H NMR (300 MHz, CDCl₃) werb WE-475-1-bis-ana 1 (1D 1H) CDCl3 300MHz 240 Ppm 1,239 4,752 4,751 4,731 4,709 4,698 4,698 4,698 4,627 4,428 4,422 4,416 4,422 4,416 4,422 4,416 4,402 ,260 Í 8 8-80 8 6 20 8 8 8-. 8-剾 櫑 6.0 % -20 5,5 4,5 3,5 2,5 1,5 0,5 0 7.5 6,5 5 4 2 3

¹³C NMR (75 MHz, CDCl₃)

COSY (300 MHz, CDCl₃)

HSQC (300 MHz, CDCl₃)

HMBC (300 MHz, CDCl₃)

2-Iodo-*O*-isopropylferrocenesulfonate (3, racemic mixture)

¹H NMR (300 MHz, CDCl₃)

SO₃iPr

¹³C NMR (75 MHz, CDCl₃)

COSY (300 MHz, CDCl₃)

HSQC (300 MHz, CDCl₃)

HMBC (300 MHz, CDCl₃)

*O***-Isopropyl-2-(trimethylsilyl)ferrocenesulfonate (4, racemic mixture)**

¹H NMR (300 MHz, CDCl₃)

SiMe₃ [∽]SO₃iPr

¹³C NMR (75 MHz, CDCl₃)

COSY (300 MHz, CDCl₃)

HSQC (300 MHz, CDCl₃)

HMBC (300 MHz, CDCl₃)

NOESY (300 MHz, CDCl₃)

2-Iodo-*O*-isopropyl-5-(trimethylsilyl)ferrocenesulfonate (5, racemic mixture)

¹H NMR (500 MHz, CDCl₃)

SO₃iPr 1e

iMe₃

¹³C NMR (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

4-Iodo-*O*-isopropyl-2-(trimethylsilyl)ferrocenesulfonate (6, racemic mixture)

¹H NMR (300 MHz, CDCl₃)

²SiMe₃ SO₃iPr

¹³C NMR (75 MHz, CDCl₃)

COSY (300 MHz, CDCl₃)

HSQC (300 MHz, CDCl₃)

HMBC (300 MHz, CDCl₃)

NOESY (300 MHz, CDCl₃)

3-Iodo-O-isopropyl-2,5-bis(trimethylsilyl)ferrocenesulfonate (7, racemic mixture)

¹H NMR (500 MHz, CDCl₃)

∫SiMe₃ 1____SO₃iPr

'SiMe₃

¹³C NMR (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

O-Isopropyl-2,5-bis(trimethylsilyl)ferrocenesulfonate (7')

ppm 70

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

3-Iodo-*O***-isopropylferrocenesulfonate (8, racemic mixture)**

¹H NMR (500 MHz, CDCl₃)

SO₃iPr

¹³C NMR (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

4-(4-Fluorophenyl)-*O*-isopropyl-2-(trimethylsilyl)ferrocenesulfonate (9, racemic mixture)

¹H NMR (500 MHz, CDCl₃)

²_SiMe₃

SO₃iPr

¹³C NMR (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

¹⁹F (282 MHz, CDCl₃)

O-Isopropyl-3-[4,4,5,5-tetramethyl-2-(1,3,2-dioxaborolyl)]ferrocenesulfonate (10, racemic mixture)

¹H NMR (500 MHz, CDCl₃)

0

¹³C NMR (126 MHz, CDCl₃)

COSY (500 MHz, CDCl₃)

HSQC (500 MHz, CDCl₃)

HMBC (500 MHz, CDCl₃)

¹¹B (96 MHz, CDCl₃)

1-(*N*-Pyrrolidino)sulfonyl-2-(trimethylsilyl)ferrocene (racemic mixture)

-SiMe₃ ¹H NMR (300 MHz, CDCl₃) SO₂N Fe werb MW-035-1-ana 1 (1D 1H) CDCl3 300MHz 1,751 1,764 1,774 1,774 1,774 1,774 1,774 .260 74,811 4,805 4,806 4,519 4,519 4,512 3,230 3,199 3,184 3,184 3,184 3,185 3,1153,115 3,115 3,115 3,115 3,1153,115 3,115 3,115 3,1153,115 3,115 3,1153,115 3,115 3,1153,115 3,1153,115 3,115 0,350 4 bpm λĥ 120 8-8 8 **Ş**. ର-0 0 0 0 0 0

3,5

3

2,5

2

1,5

1

4

----,

0,5

¹³C NMR (75 MHz, CDCl₃)

°° + PP

7,5

6,5

5,5

6

5

4,5

COSY (300 MHz, CDCl₃)

HSQC (300 MHz, CDCl₃)

HMBC (300 MHz, CDCl₃)

Selected NOESY correlations observed

HPLC Chromatograms

O-Isopropylferrocenesulfonate (1)

Compound (±)-O-isopropyl-2-(trimethylsilyl)ferrocenesulfonate (4)

Deprotonation of *O*-isopropylferrocenesulfonate (1) with *s*BuLi·TMCDA using chlorotrimethylsilane as electrophile

Deprotonation of *O*-isopropylferrocenesulfonate (1) with PEALi using chlorotrimethylsilane as *in situ* trap

Compound (±)-2-iodo-O-isopropylferrocenesulfonate (3)

Deprotonation of O-isopropylferrocenesulfonate (1) with PEALi using (PEA)₂Zn as in situ trap

	Chromatogram and Results								
Inject	ion Details								
Injecti	on Name:	WE-1440-1 - enam	t - IA3 - 99-1 - 0.4	ml-min - 20deg	Run Time (min):	50.00			
Vial N	umber:	RC6			Injection Volume:	3.00			
Injecti	on Type:	Unknown			Channel:	UV_VIS_1			
Calibra	ation Level:				Wavelength:	220			
Instru	ment Method:	Enantio Fc Will			Bandwidth:	n.a.			
Proce	ssing Method:	Quantitative			Dilution Factor:	1.0000			
Injecti	on Date/Time:	06/avr./21 05:4/			Sample Weight:	1.0000			
Chror	natogram			-	·		-		
100	2021-04-05 #22 [mar	nually integrated]				UV_VIS_1 W	VL:220 nm		
100									
87 75 62 (NYW) = 50 97 97 97 97 97 97 97 97 97 97 97 97 97	.5 .0 .5				1 - 31.465	13 - 41.270			
						\bigvee			
`									
-10									
	0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 Time [min]								
Integ	ration Results								
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
		min	mAU*min	mĂU	%	%	n.a.		
1		31.465	31.486	23.532	12.72	14.57	n.a.		
2		36.968	145.273	93.309	58.67	57.76	n.a.		
3		41.270	70.837	44.717	28.61	27.68	n.a.		
Total:			247.595	161.557	100.00	100.00			

Deprotonation of O-isopropylferrocenesulfonate (1) with PEALi using (PEA)₂Zn as in situ trap

Chromatogram and Results								
Inject	tion Details							
Injecti Vial N	ion Name: lumber:	WE-1440-1 - enan RC6	t - IA3 - 99-1 - 0.4	ml-min - 20deg	Run Time (min): Injection Volume:	50.00 3.00		
Injecti	ion Type:	Unknown			Channel:	UV_VIS_1		
Calibr	ation Level:	-			Wavelength:	220		
Instru	ment Method:	Enantio Fc Will			Bandwidth:	n.a.		
Proce	ssing Methoa: ion Dato/Timo:	Quantitative			Sample Weight	1.0000		
ngeou	on Dater nine.	00/41./21 03.4/			Sample Weight.	1.0000		
Chror	matogram							
100).0 - 🗑 2021-04-05 #22 [mar	nually integrated]				UV_VIS_1 W	VL:220 nm	
					12 -	36.968		
	, _ 1				Λ ²	30.300		
0/	·••-							
]				11			
75	5.0-							
	1							
62	2.5-							
N								
È 50	En							
92								
Lpai						Λ		
osq 3/	.5-				11	1		
Ā]							
25	5.0-				1 - 31.465			
					\wedge			
12	2.5-							
	1							
						\vee		
1								
-10).o.1							
	0.0 5.0	10.0 15.0	20.0 Tin	25.0 30.0 ne [min]	35.0	40.0 45.0	50.0	
Inter	ration Results			ne funul				
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		31.465	31.486	23.532	17.81	20.14	n.a.	
2		36.968	145.273	93.309	82.19	79.86	n.a.	
Total:	:		176.759	116.840	100.00	100.00		

Electrochemical measurements

Ferrocene

Cyclic voltammetry

(Trimethylsilyl)ferrocene

Cyclic voltammetry

Differential pulse voltammetry

O-Isopropylferrocenesulfonate (1)

Differential pulse voltammetry

2-Iodo-O-isopropylferrocenesulfonate (3)

Differential pulse voltammetry

O-Isopropyl-2-(trimethylsilyl)ferrocenesulfonate (3)

Differential pulse voltammetry

2-Iodo-O-isopropyl-5-(trimethylsilyl)ferrocenesulfonate (5)

Differential pulse voltammetry

4-Iodo-*O*-isopropyl-2-(trimethylsilyl)ferrocenesulfonate (6)

Cyclic voltammetry

Differential pulse voltammetry

3-Iodo-O-isopropylferrocenesulfonate (8)

Differential pulse voltammetry

N,*N*-Dimethylferrocenesulfonamide

Differential pulse voltammetry

2-Iodo-N,N-dimethylferrocenesulfonamide

Cyclic voltammetry

Differential pulse voltammetry

N,*N*-Dimethyl-2-(trimethylsilyl)ferrocenesulfonamide

Differential pulse voltammetry

2-Iodo-*N*,*N*-dimethyl-5-(trimethylsilyl)ferrocenesulfonamide

Cyclic voltammetry

Differential pulse voltammetry

4-Iodo-*N*,*N*-dimethyl-2-(trimethylsilyl)ferrocenesulfonamide

Differential pulse voltammetry

3-Iodo-N,N-dimethylferrocenesulfonamide

Cyclic voltammetry

Differential pulse voltammetry

(N-pyrrolidino)sulfonylferrocene

Cyclic voltammetry

Differential pulse voltammetry

1-(*N*-pyrrolidino)sulfonyl-2-(trimethylsilyl)ferrocene

Differential pulse voltammetry

Full tables of electrochemical properties

(potentials values relative to FcH/FcH⁺)

Substrate	R	Cpd	E _{pa}	E _{pc}	E _{1/2}	i _{pa} /i _{pc} [a]	<i>i</i> _{pa} / <i>i</i> _{pc} ^[b]	$\Delta E^{[c]}$ (mV)
	Н	1	0.48	0.38	0.43	0.85	0.99	90
R√SO3iPr	2-1	3	0.59	0.50	0.55	0.81	0.94	90
	2-SiMe ₃	4	0.46	0.37	0.41	0.95	1.10	85
Fe	2-I-5-SiMe ₃	5	0.58	0.49	0.53	0.83	0.96	85
	4-I-2-SiMe ₃	6	0.60	0.51	0.55	0.80	0.93	80
	3-1	8	0.62	0.52	0.57	0.83	0.96	90

Table S1. Electrochemical properties of ferrocenesulfonates.

[a] Measured value. [b] Corrected value, taking ipa/ipc for ferrocene (0.86) equal to 1. [c] Epa - Epc.

Table S2. Electrochemical properties of *N*,*N*-dimethylferrocenesulfonamides.

Substrate	R	$E_{ m pa}$	$E_{\rm pc}$	E _{1/2}	i _{pa} /i _{pc} [a]	i _{pa} /i _{pc} [b]	$\Delta E^{[c]}$ (mV)
	Н	0.36	0.27	0.31	0.90	1.04	80
R SO ₂ NMe ₂	2-1	0.50	0.42	0.45	0.90	1.02	85
	2-SiMe ₃	0.39	0.31	0.33	0.88	1.02	95
Fe	2-I-5-SiMe ₃	0.49	0.41	0.44	0.87	1.01	80
	4-I-2-SiMe ₃	0.55	0.46	0.51	0.90	1.04	85
	3-1	0.56	0.47	0.52	0.84	0.97	90

[a] Measured value. [b] Corrected value, taking i_{pa}/i_{pc} for ferrocene (0.86) equal to 1. [c] $E_{pa} - E_{pc}$.

Table S3. Electrochemical properties of (*N*-pyrrolidino)sulfonylferrocenes.

Substrate	R	$E_{ m pa}$	Epc	E1/2	i _{pa} /i _{pc} [a]	ipa/ipc ^[b]	$\Delta E^{[c]}$ (mV)
~	н	0.34	0.25	0.27	0.87	1.01	90
SO ₂ N	2-1	-	-	-	-	-	-
	2-SiMe ₃	0.42	0.26	0.28	0.77	0.89	90
Fe	2-I-5-SiMe ₃	-	-	-	-	-	-
	4-I-2-SiMe ₃	-	-	-	-	-	-
	3-1	-	-	-	-	-	-

[a] Measured value. [b] Corrected value, taking i_{pa}/i_{pc} for ferrocene (0.86) equal to 1. [c] $E_{pa} - E_{pc}$.

Hammett constant values

Table S4. Hammett constant values¹ tried for description of electrochemical properties.

R	σ_m	σρ	F	R
н	0.00	0.00	0.00	0.00
I	0.35	0.18	0.42	-0.24
SiMe ₃	-0.04	-0.07	0.01	-0.08

Figure S1. Plot of experimental *vs.* predicted half-wave potential values for (a) *O*-isopropylferrocenesulfonates and (b) *N*,*N*-dimethylferrocenesulfonamides

Reference

1. C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195..