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Abstract
The conservation ofmigratorymarine species, including pelagic seabirds, is chal-
lenging because theirmovements span vast distances frequently beyond national
jurisdictions. Here, we aim to identify important aggregations of seabirds in the
North Atlantic to inform ongoing regional conservation efforts. Using tracking,
phenology, and population data, we mapped the abundance and diversity of 21
seabird species. This revealed a major hotspot associated with a discrete area
of the subpolar frontal zone, used annually by 2.9–5 million seabirds from ≥56
colonies in the Atlantic: the first time this magnitude of seabird concentrations
has been documented in the high seas. The hotspot is temporally stable and
amenable to site-based conservation and is under consideration as a marine pro-
tected area by the OSPAR Commission. Protection could help mitigate current
and future threats facing species in the area. Overall, our approach provides an
exemplar data-driven pathway for future conservation efforts on the high seas.

KEYWORDS
area beyond national jurisdiction, Atlantic, biologging, conservation, high seas, marine pro-
tected area, regional seas convention

1 INTRODUCTION

Many seabird species are wide-ranging, traveling thou-
sands of kilometers across jurisdictional and international
waters, only returning to land to breed (Harrison et al.,
2018). Such migratory species are increasingly exposed to
the expanding cumulative human impacts in the oceans
(Halpern et al., 2019). Consequently, seabirds are one of
themost threatened groups of vertebrates, with almost half
of all species (47%) experiencing population declines (Dias
et al., 2019).
As higher predators, seabirds play key roles in marine

ecosystems making their conservation critical (Grémillet
et al., 2018). However, their high mobility makes this chal-
lenging, particularly because seabirds rely on multiple,
often geographically distant ecosystems, all of which need
some form of protection for successful conservation (Dunn
et al., 2019). For highly pelagic species, this is further com-
plicated by the lack of an effective governance mecha-
nism for areas beyond national jurisdictions (De Santo
et al., 2019), and often incomplete knowledge of their dis-
tribution throughout all life-history stages (Carneiro et al.,
2020).
Identifying important areas at-sea has been facilitated

through advances in biologging technology (Lascelles
et al., 2016). Individual-based tracking, using animal-
attached devices, is becoming an indispensable tool for
guiding conservation efforts through the identification of
areas of high species diversity and abundance (hereafter,

“hotspots”) that are critical for species survival (e.g., molt-
ing or foraging areas) (Hays et al., 2019). Recent ani-
mal tracking studies have demonstrated that many pelagic
seabird species consistently occur at predictable times and
places at the macroscale (Frederiksen et al., 2016), often
in association with particular habitats or migratory corri-
dors (Dias et al., 2013). This presents an opportunity for
area-based conservation formigratory species, particularly
because many oceanic hotspots (i.e., areas beyond conti-
nental shelves) are often associated with persistent fea-
tures, such as major frontal and upwelling systems (Block
et al., 2011).
The North Atlantic is a priority area for seabird conser-

vation because over the last decade many species in this
region have experienced pronounced population declines,
includingAtlantic Puffin (Fratercula arctica), Black-legged
Kittiwake (Rissa tridactyla), Common Guillemot (Uria
aalge), and Northern Fulmar (Fulmarus glacialis) (Dias
et al., 2019). While colonies in the Northeast Atlantic are
generally afforded good protection, their foraging areas
remain poorly known and protected (Ramirez et al., 2017).
Moreover, many seabird species in the North Atlantic,
such as shearwaters and auks, are impacted by marine-
based threats (e.g., bycatch, pollution, and overfishing;
Dias et al., 2019), indicating an urgent need to identify
and protect important marine areas to address the recent
declines of threatened seabird species.
The Oslo-Paris-Convention on the protection of the

North-East Atlantic (OSPAR) is one of two regional seas

mailto:tammy.davies@birdlife.org
mailto:tedavies23@gmail.com
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F IGURE 1 Location of identified hotspot in the middle of North Atlantic (green) and summary information of species groups at the site.
Arrows indicate the LMEs the birds are traveling from to the site, labeled with LME name and number of species. Dashed arrows are from
LMEs in the South Atlantic (not visible on the map). LMEs are shown by a solid gray line, with a dashed gray line for adapted LMEs (Azores,
Bermuda, Cabo Verde, Madeira; the latter analyzed with the Canary Current LME). Colonies are shown in circles (black = data used in
analysis, white = data considered but not included in final analysis). Figure prepared by Terra Communications

conventions (the other being the Commission for the
Conservation of Antarctic Marine Living Resources) that
have initiated actions within their remit in Areas Beyond
National Jurisdiction (ABNJ), providing a unique oppor-
tunity for conservation action in ABNJ. OSPAR have estab-
lished a number ofmarine protected areas (MPAs) inABNJ
and are working toward improving the ecological coher-
ence of this network––including addressing an identified
gap for seabirds, alongside achieving 10% protection of the
OSPAR Maritime Area (Aichi Target 11) (Johnson et al.,
2014; OSPAR, 2019). At-sea surveys (Bennison & Jessopp,
2015; Boertmann, 2011) and single species tracking stud-
ies (e.g., Dias et al., 2012; Egevang et al., 2010; Fayet et al.,
2017) indicate that important seabird concentrations may
occur around the Mid-Atlantic Ridge (MAR), and suggest-
ing a community-level assessment of available tracking
data is needed, and could help guide current policy and
practice.
Here, we combine tracking, phenology, and population

data on 21 Atlantic seabird species to quantify their dis-
tribution, density, and diversity in the ABNJ of OSPAR
Region V. We reveal an important hotspot of unexpected
extent and temporal stability. We suggest how our find-
ings could guide conservation management, and provide

an exemplar for the use of multispecies tracking to iden-
tify sites suitable for protection in ABNJ.

2 METHODS

2.1 Study area

Our study area is defined as ABNJwithin OSPARRegion V
(www.ospar.org/convention/the-north-east-atlantic). This
encompasses the deeper waters of the North Atlantic,
between 35 and 62◦N and from 10 to 42◦W west of
Iberia/France and west of the 200 m depth contour off the
British Isles (Figure 1).

2.2 Tracking data

We downloaded all available seabird tracking data that
overlapped OSPAR Region V from the BirdLife Seabird
Tracking Database (www.seabirdtracking.org) in 2016.
These data comprised 2188 tracks of 23 species, from 105
colonies within 16 countries and 25 large marine ecosys-
tems (LME), located in both the North and South Atlantic

http://www.ospar.org/convention/the-north-east-atlantic
http://www.seabirdtracking.org
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(Figure S1). We excluded all tracks from colonies that had
less than 2% overlap with the study area, unless other
colonies in the same LME had higher overlap. The final
analyses included 1524 tracked birds of 21 species, from
56 colonies, across 17 LMEs and 16 countries/jurisdictions
(Table 1). Phenology and population data for each species
and colony were obtained from the literature and verified
by experts (Table S1, Figure S2). Following advice from
the scientific community, and in line with other studies
(e.g., Frederiksen et al., 2016; Frederiksen et al., 2012),
colonies of the same species located in the same LMEwere
combined and considered to represent unique populations.
Our data were representative of the species distributions in
the Atlantic (Table S2).

2.3 Identification of marine Important
Bird and Biodiversity Areas

We analyzed tracking data in combination with objective
site selection criteria following the method developed to
delineate marine Important Bird and Biodiversity Areas
(IBAs) (Lascelles et al., 2016) and Key Biodiversity Areas
(“track2kba” R package; Beal et al., 2020). This is a well-
established, standardized approach to identify important
hotspots for foraging seabirds based onkernel density anal-
ysis of tracking data, in combination with abundance esti-
mates of the colonies of origin. The hotspots identified
through this method are key sites for the persistence of
species by regularly holding important numbers of a glob-
ally threatened species, or supporting > 1% of the global
or biogeographic population (Lascelles et al., 2016). This
method has been applied in all oceans, with many resul-
tant sites informing conservation action (e.g., Hays et al.,
2019; Waliczky et al., 2018). We checked tracked birds of
nonthreatened species against the IBA criteria: 1% thresh-
old (i.e., LME represents ≥ 1% of the global [for species
breeding outside Europe] or biogeographic population [EU
number of individuals for European species]). Population
sizes refer to the number of mature individuals.
We conducted all analyses in R, as detailed in the Sup-

porting Methods. In brief, we first grouped tracking data
by species, LME, and breeding stage (i.e., breeding, non-
breeding, migration, e.g., Black-legged Kittiwake, Iceland
Shelf and Sea LME, nonbreeding; Figure S3). We followed
the Lascelles et al. (2016) methodology for each group. We
estimated the “core use area” of each bird in each group,
defined by the 50% utilization distribution contour. We
then calculated the proportion of core use areas occurring
in each cell in a 0.2× 0.2 degree grid (Lascelles et al., 2016).
We then estimated the number of birds in each cell bymul-
tiplying the proportion of the tracked population in each

grid cell by the size of the LME population (Table S1) to
generate one density map/group.

2.4 Species richness and abundance
hotspot identification

To identify areas that are important for multiple species
at the same time of year, we aggregated the density maps
in calendar seasons (Supporting Methods), defined as:
Q1: January–March, Q2: April–June, Q3: July–September,
and Q4: October–December. We weighted each density
map/group by the average number of half months in each
season spent in each breeding stage, based on the species’
phenology (Carneiro et al., 2020) to generate one density
map/species-LME-season.
We combined all density maps/species-LME-season to

produce: (1) density maps/species-season; (2) density maps
for all species combined/season; and (3) overall density map
(all species and seasons) (Figure S3). We also estimated
species richness by binary coding presence/absence raster
density maps and summing across species for each sea-
son. Finally, we combined the richness and density maps
and used the 15% highest values to delimit the most impor-
tant hotspot within the study area. We then excluded areas
within extended shelf claims to facilitate the uptake of con-
servation measures (Ramirez et al., 2017), so the final area
is located solely within ABNJ.

2.5 Interannual consistency of area use

To assess the consistency in area use, we conducted addi-
tional analysis within groups with relatively large sam-
ple sizes (> 20 birds) in multiple years (Supporting Meth-
ods, Figure S4). We conducted an analysis of similarity
(ANOSIM, a measure of relative within-group dissimilar-
ity based on a bootstrap randomization; Oksanen et al.,
2013) to test for differences in the distribution within
and between-years using two metrics of distribution over-
lap (Bhattacharyya’s affinity and HR indexes; Fieberg &
Kochanny, 2005).

3 RESULTS

Our analysis revealed an extensive (∼595,000 km2) hotspot
of seabird diversity and abundance near the western
boundary of OSPAR Region V (Figure 1), extending from
∼41 to 53˚N and 32 to 42˚W. The area is bounded in the
north by the Charlie–Gibbs Fracture Zone, to the west by
the Flemish Cap and the Grand Banks of Newfoundland,
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to the east by the MAR and to the south by the Azores
(Figure 1).
All 21 species used the identified hotspot, including five

globally threatened species (endangered Bermuda Petrel
[Pterodroma cahow], Zino’s Petrel [Pterodroma madeira],
and vulnerable Desertas Petrel [Pterodroma deserta],
Black-legged Kittiwake and Atlantic Puffin; Table 1). We
estimated that 2.9–5 million birds use the area through-
out the year (Table 2) traveling from 56 colonies within 16
countries (Figure 1).
The highest abundance (ca. 4.4–5 million individuals)

occurred during the boreal winter (October–March; Q4–
Q1, Table 2). The highest number of species (n = 21)
occurred in spring–summer (April–September), when ca.
2.9–3.3 million birds were present (Q2–Q3, Table 2). Con-
sistency in area use was demonstrated for all nine species
with multiyear data, with the ANOSIM index [R value]
always lower than 0.12 (Supporting Methods, Figure S4).
The most abundant (2.3 million) species using the

area was the Little Auk (Alle alle) during nonbreeding
(January–March), followed bywintering Great Shearwater
(Ardenna gravis; 1.8 million, July–September; Table 2), a
migrant species breeding in Tristan da Cunha archipelago,
SouthAtlantic.We found three specieswithmore than 50%
of their global population using the area as awinter or stag-
ing ground: South Polar Skua (Catharacta maccormicki;
64.8–68.4%, April–September), Long-tailed Jaeger (Ster-
corarius longicaudus; 63.3%, July–September), and Sooty
Shearwater (Ardenna grisea; 61%, April–June; Figure 2).
Almost 50% of the endangered Bermuda Petrel (45.8%) use
the area during July–September.
Most seabirds used the area during their nonbreed-

ing stage. This included three species of southern hemi-
sphere breeders that winter in the area (Great Shearwa-
ter, Sooty Shearwater, and South Polar Skua), as well as
Long-tailed Jaeger and Arctic Tern (Sterna paradisaea)
that use the area as a staging ground for 1–4 weeks during
their outward and return migrations. Seven species used
the area throughout the year: Zino’s Petrel, Great Skua
(Catharacta skua; peak July–December), and the following
species showing a peak in numbersOctober–March: Cory’s
Shearwater (Calonectris borealis), Northern Fulmar, Black-
legged Kittiwake, Atlantic Puffin, and Thick-billed Murre
(Uria lomvia). Four species also used the area while breed-
ing (Manx Shearwater [Puffinus puffinus], Cory’s Shear-
water, Desertas Petrel, and Bulwer’s Petrel [Bulweria bul-
werii]).

4 DISCUSSION

Our analysis revealed amajor hotspot for foraging seabirds
in the North Atlantic, used by 21 species totaling up to an
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F IGURE 2 Percentage of biogeographic population of each species estimated to be using the hotspot for each year quarter. Colors
indicate if the species breeds in the northern or southern hemisphere

estimated 5 million adults. At-sea surveys previously indi-
cated that relative abundance peaked in this area, but this
is the first time that a seabird aggregation of this absolute
abundance has been robustly quantified anywhere in the
high seas. The hotspot qualifies as an IBA and can be con-
sidered the most important oceanic foraging grounds for
the community of seabirds in the OSPAR maritime high
seas area and one of the most important concentrations
of migratory seabirds in the Atlantic. Seabirds using this
hotspot originated from a minimum of 56 colonies in 16
different countries. Many of these species traveled great
distances to use the area, with some using it year-round,
suggesting that food availability in the area is consistently

high. Boreal breeders, such as Arctic Terns, Long-tailed
Jaegers, Sabine’s Gulls, Manx Shearwaters, and Cory’s
Shearwaters, use the area as a staging area to fuel trans-
equatorial migrations (Egevang et al., 2010; Guilford et al.,
2009; Sittler et al., 2011), or to fuel the last migration leg
to the breeding areas (Egevang et al., 2010; van Bemmelen
et al., 2017) sometimes making detours of > 5000 km to do
so (Dias et al., 2013). Southern Hemisphere breeders, such
as South Polar Skuas, Sooty Shearwaters, and Great Shear-
waters, migrate up to 13,000 km to spend some of the aus-
tral winter in the area (Hedd et al., 2012; Kopp et al., 2011).
Our analysis included tracking data frommajor colonies

of each species in the Atlantic, including those that
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represent more than 90% of the global or Atlantic popula-
tion formany species (e.g., Cory’s Shearwater, Sooty Shear-
water, Great Shearwater; all gadfly petrels, genus Ptero-
droma). We only used tracks of adults, because relatively
few juvenile and immature birds have so far been tracked,
which can have an influence on the overall distribution of
seabirds (Carneiro et al., 2020). Indeed, a recent study also
found the area to be used by immature Cory’s Shearwaters
(Campioni et al., 2020). Thus, our estimates should be con-
sidered a minimum. Population estimates for each colony
are subject to natural variation and recording error, and the
number of birds using the area should ideally be updated
regularly.

4.1 Biodiversity hotspot

Recent studies have found additional seabird species use
the area, including Leach’s Storm-Petrel (Oceanodroma
leucorhoa) (Pollet et al., 2019), Wilson’s Storm-Petrel
(Oceanites oceanicus), Great Black-backed Gull (Larus
marinus), Arctic Jaeger (Stercorarius parasiticus), Poma-
rine Jaeger (S. pomarinus), and Northern Gannet (Morus
bassanus) (Boertmann, 2011; Wakefield, 2018). Tracking
studies also demonstrate that the area is used by many
nonavian,wide-ranging species, includingBlue Shark (Pri-
onace glauca), Shortfin Mako Shark (Isurus oxyrinchus)
(Queiroz et al., 2016), Basking Shark (Cetorhinusmaximus)
(Gore et al., 2008), Atlantic Bluefin Tuna (Thunnus thyn-
nus) (Walli et al., 2009), Sei Whale (Balaenoptera borealis)
(Prieto et al. 2014), and Leatherback Turtle (Dermochelys
coriacea) (Fossette et al., 2014). At-sea surveys in the area
have also found many cetacean species, including Blue
Whale (Balaenoptera musculus), various beaked whales,
Common and Spotted dolphins (Wakefield, 2018). Further
work is needed to understand how these species use and
interact in the area, and the role of oceanographic drivers
in the region.

4.2 Potential drivers of abundance and
diversity

The hotspot is located in an area of complex oceanogra-
phy, dominated by the North-Atlantic Current (NAC) and
the associated Subpolar Frontal system (Belkin & Levitus
1996). These oceanographic drivers are both more intense
and spatially stable due to bathymetric steering by the
continental slope/Grand Banks to the West and Charlie-
Gibbs Fracture Zone in the East (Rossby, 1996). The asso-
ciated mesoscale turbulence creates high rates of primary
production (Longhurst, 2010), and it is likely the com-
bination of high primary production and spatiotemporal

predictability that allows the area to support large num-
bers of higher predators. Studies indicate that prey, such
as zooplankton (e.g., calanoid copepods) and mesopelagic
fish (e.g., myctophids; Fort et al., 2010; Hudson et al.,
2014), are abundant in the area, with the availability to
seabirds further enhanced through both mesoscale tur-
bulence (McGillicuddy, 2016) and the diel vertical migra-
tion of mesopelagic prey (Dias et al., 2012). See Supporting
Information—Oceanography.

4.3 Conservation implications

Most seabirds used the multispecies hotspot during their
nonbreeding stage––a period of their lifecycle that is cur-
rently poorly protected (Ramirez et al., 2017). Conditions
during nonbreeding can directly affect subsequent breed-
ing productivity via carryover effects (Fayet et al., 2017).
This stage includes the mid-winter period, when adverse
weather, food, and light conditions may account for the
highest mortality of some Atlantic seabirds (Mesquita
et al., 2015). Many of the studied seabird species use the
hotspot while molting (Hedd et al., 2012; Wakefield, 2018).
Molt is a critical time for seabirds because it is energetically
demanding and can compromise flight efficiency, poten-
tially increasing the susceptibility to natural and anthro-
pogenic threats (Grissot et al., 2019).
We contend that the identified hotspot deserves year-

round protection as an MPA, given the regular use by a
large number of birds and spatiotemporal stability of the
area (likely caused by stable physical drivers). Seventeen
of the 21 species using the area are impacted by marine-
based threats, including bycatch (65%), overfishing (29%),
energy production andmining (18%), climate change (71%),
pollution (including light pollution; 59%), and are under-
going population declines (Dias et al., 2019). Except for
climate change, these threats can be reduced via area-
based management (Game et al., 2009) and given that
many breeding colonies are already protected, there is an
urgent need formarine spatial protections. Although there
is a debate about the utility of MPAs to protect migratory
species (Game et al., 2009), there are an increasing number
of studies showing their importance, particularly during
spatially limited and vulnerable life-history stages (Péron
et al., 2013; White et al., 2017; Young et al., 2015), and there
have been demonstrated successes for seabirds whenman-
agementmeasures have preserved their prey base (Croxall,
2008; Pichegru et al., 2010). MPAs can help reduce the like-
lihood of mortality, and even though the MPA may only
represent a small portion of a seabirds’ migratory range,
they can serve a vital role in species conservation (Hooker
et al., 2011; Péron et al., 2013). Given that many migra-
tory species have limited protection at sea, even small
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reductions in mortality rates can have decisive demo-
graphic benefits, especially for rare and endangered
species (Caswell et al., 1999; Péron et al., 2013).
The identified hotspot is currently being discussed by

the OSPAR Commission as the North Atlantic Current
and Evlanov Seamount (NACES) MPA. Protection of this
proposed MPA would address an identified gap in the
OSPAR MPA network for seabirds (Johnson et al., 2014),
and improve the coverage of nonbreeding areas more
broadly (Game et al., 2009; Ramirez et al., 2017). Present
threats to seabirds in the area are not fully understood:
shipping lanes are predominantly in the southern part
of the area (risk of disturbance, oil, and light pollution),
some, limited long-line fishing occurs (bycatch risk), and
recent oil exploration west of the hotspot (oil pollution and
light pollution) (Impact Assessment Agency of Canada,
2020). Understanding the threats in the area, alongside
the relevant contribution of other threats––both at breed-
ing sites and across the rest of their migratory journeys–
–that are driving population declines should be evalu-
ated. Understanding the relative contributions of differ-
ent threats, both terrestrial and marine, that are driving
population trends could help direct conservation prior-
ities. However, it is also important to consider protec-
tion of remote areas before they become heavily exploited
(McCauley et al., 2013) and to mitigate against future
threats, particularly because impacts are increasing across
the high seas (Halpern et al., 2019; O’Leary et al., 2020).
MPAs are not a panacea for conserving marine biodiver-
sity, and their capacity to reduce threats differs depend-
ing on their management and level of enforcement (Zupan
et al., 2018). However, MPAs can contribute to biodiver-
sity conservation where effectively managed, and the pro-
posed NACES MPA should include measures to mitigate
current and prevent future threats to seabirds. A research
andmonitoring plan should be adopted alongside theman-
agedMPA, to understandmore about the features support-
ing seabirds and other taxa, to monitor the effectiveness
of the MPA, and to inform additional management mea-
sures if required. There are also increasing opportunities
for monitoring remote areas using satellite and biologging
technologies that could be explored (Harcourt et al., 2019;
Sutherland et al., 2016). The current ABNJ MPAs under
OSPAR are managed through a “Collective Arrangement”
(NEAFC & OSPAR, 2015), and a collaborative approach to
management would also be needed for this proposedMPA.
Overall, our analysis has demonstrated thatmultispecies

tracking data can identify important sites in ABNJ that are
suitable for protection. The ongoing work of the OSPAR
Commission presents a unique opportunity for this study
to inform policy and practice to benefit seabird conserva-
tion on the high seas. Once the newUNTreaty for the high
seas has been adopted, replicating this approach for differ-

ent regions and taxa could provide a data-driven pathway
for marine conservation in ABNJ.
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