Supplemental Materials: Laser Ablation of Ga-Sb-Te Thin Films Monitored with Quadrupole Ion Trap Time-of-Flight Mass Spectrometry Govinda Mandal¹, Magdaléna Gorylová², Virginie Nazabal^{2,3}, Petr Němec², Josef Havel^{1*} **FIGURE S1** Comparison of the experimental and theoretical mass spectra recorded via LA for thin film **F** coated with trehalose. Conditions: negative ion mode, laser energy 140 a.u., m/z range 400-434 was magnified 20 times, 2000 profiles, and 100% intensity corresponds to 320 mV ^{*}Correspondence to: Josef Havel; e-mail: <u>havel@chemi.muni.cz</u> **FIGURE S2** The variation in peaks intensities for selected clusters for: (A) the line 1 chemical composition of thin films (**B-F**), and (B) the line 2 chemical composition of thin films (**G-J**), which were shown in Figure 1. Conditions: negative ion mode, laser energy 150 a.u., and 2000 profiles **FIGURE S3** Structures of (A) the crystalline $Ga_4Sb_6Te_3$ phase change material, as adapted from Baratella et al.,³³ and (B) the structure of GaTe binary phase change alloy, as adapted from Bouzid et al.²³ Analogies between the possible fractions of the phase change material and selected clusters from the fabricated thin films are marked with ellipses **TABLE S1** (A) Overview of $Ga_xSb_yTe_z$ clusters formed via LA from individual Ga-Sb-Te thin films (**A-F**) in both positive and negative ion modes | Thin film | Ga_x | \mathbf{Sb}_{y} | Te_z | Ga_xSb_y | Ga_xTe_z | $\mathbf{Sb}_{y}\mathbf{Te}_{z}$ | $Ga_xSb_yTe_z$ | |-----------|-----------------------------|---|--|--|---|---|---------------------| | A | | $ \begin{array}{c} Sb \\ Sb_2 \\ Sb_3 \end{array} $ | | GaSb ₂ | | | | | В | $\operatorname{Ga_2}^+$ | \mathbf{Sb}_{3}^{+} \mathbf{Sb}_{3}^{+} | Te ₂ | GaSb ⁺ | GaTe GaTe ₂ | SbTe $^{+/-}$ SbTe $_2$ Sb $_3$ Te $^+$ | | | C | $\operatorname{Ga_2}^+$ | Sb^{+} | Te Te ₂ | | GaTe GaTe ₂ | Sb ₃ Te ⁺ Sb ₂ Te ⁺ Sb ₃ Te ⁺ SbTe ₂ | | | D | $\operatorname{Ga_2}^+$ | $\mathbf{Sb}^{^{+}}$ $\mathbf{Sb}_{9}^{^{+}}$ | Te ^{+/-} Te ₂ ^{+/-} | GaSb ₈ +/- | $GaTe_{2}$ $Ga_{2}Te^{+}$ | SbTe ^{+/-} Sb ₂ Te ⁺ Sb ₃ Te ⁺ SbTe ₂ | GaSbTe ⁺ | | E | $\operatorname{Ga_2}^{+/-}$ | $\operatorname{Sb}^{^{+}}_{9}$ | Te ₂ ^{+/-} Te ₂ Te ₃ | $\begin{array}{c} \textbf{GaSb_8} \\ \textbf{Ga_2Sb_15} \\ \textbf{Ga_2Sb_{15}} \\ \textbf{Ga_3Sb_{14}} \\ \textbf{Ga_4Sb_{13}} \\ \textbf{Ga_6Sb_5} \\ \textbf{Ga_7Sb_4} \end{array}$ | GaTe ₂ ^{+/-} GaTe ₃ GaTe ₄ Ga ₂ Te ₊ Ga ₂ Te ₂ | SbTe ₃ SbTe ⁺ Sb ₂ Te ⁺ Sb ₃ Te ⁺ SbTe ₂ SbTe ₃ | GaSbTe ⁺ | | F | | | $Te_{3}^{+/-}$ $Te_{3}^{+/-}$ $Te_{4}^{+/-}$ | | GaTe ₂ ^{+/-} GaTe ₂ ^{+/-} GaTe ₃ GaTe ₄ Ga ₂ Te ₊ Ga ₂ Te ₂ | | | **Remarks:** The symbols ⁺ and ⁻ mean that clusters were observed in the positive and negative ion modes, respectively, whereas ^{+/-} means that clusters were detected in both the positive and negative ion modes. The clusters highlighted in '**BOLD**' are the most intensive peaks of binary and ternary clusters. Some minor (low-intensity) peaks of "oxidized and hydrogenated or oxidized/hydrogenated" clusters observed are not mentioned here. **TABLE S1** (B) Overview of $Ga_xSb_yTe_z$ clusters formed via LA from individual Ga-Sb-Te thin films (**G-K**) in both positive and negative ion modes | Thin film | Ga_x | \mathbf{Sb}_{y} | Te_z | Ga_xSb_y | Ga_xTe_z | $\mathbf{Sb}_{y}\mathbf{Te}_{z}$ | $Ga_xSb_yTe_z$ | |-----------|--------------------------------|-------------------------|--------------------------------|------------|---------------------------------|-------------------------------------|--------------------------| | G | $\operatorname{Ga_2}^+$ | Sb ⁺ | Te | | GaTe | SbTe ^{+/-} | | | | | Sb_2 | Te_2 | | $GaTe_2$ | Sb_2Te^{-} | | | | | Sb_3 | | | | $SbTe_2$ | | | | | Sb_4^+ | | | | | | | H | $\operatorname{Ga_2}^+$ | Sb^{+} | Te | | GaTe | SbTe ^{+/-} | GaSbTe ⁺ | | | Ga ₃ | | Te_2 | | $GaTe_2$ | $\mathrm{Sb}_{2}\mathrm{Te}^{^{+}}$ | GaSbTe ₂ | | | | | | | GaTe ₃ | $\mathrm{Sb}_{3}\mathrm{Te}^{^{+}}$ | Ga_2SbTe_2 | | | | | | | Ga_2Te^+ | $SbTe_2$ | | | | | | | | Ga_2Te_2 | $SbTe_3$ | | | | | | | | | Sb_2Te_2 | | | I | $\operatorname{Ga_2}^+$ | | $\mathrm{Te}^{+/-}$ | | GaTe | $\mathbf{SbTe}^{^{+}}$ | $\mathbf{GaSbTe}^{^{+}}$ | | | | | Te_2 | | GaTe ₂ | $\mathrm{Sb}_{2}\mathrm{Te}^{^{+}}$ | $GaSbTe_2$ | | | | | | | GaTe ₃ | Sb_3Te^+ | GaSbTe ₃ | | | | | | | Ga_2Te^{-} | $SbTe_2$ | | | | | | | | Ga_2Te_2 | SbTe ₃ | | | J | $\operatorname{Ga}_{2}^{^{+}}$ | $Sb^{^{+}}$ | $\operatorname{Te}^{+/-}_{2}$ | | GaTe ^{+/-} | $\mathbf{SbTe}^{^{+}}$ | $\mathbf{GaSbTe}^{^{+}}$ | | | | | $\mathrm{Te_2}^{+/-}$ | | $GaTe_2^{+/-}$ | $\mathrm{Sb}_{2}\mathrm{Te}^{^{+}}$ | $GaSbTe_2^+$ | | | | | | | GaTe ₃ +/- | $\mathrm{Sb_3Te}^{^+}$ | $GaSb_2Te^+$ | | | | | | | Ga ₂ Te ⁺ | SbTe ₂ ^{+/-} | $GaSb_2Te_2^+$ | | | | | | | $Ga_2Te_2^{+/-}$ | SbTe ₃ | | | | | | | | $Ga_3Te^{\stackrel{-}{+}}$ | 3 | | | | | | | | $Ga_3Te_2^+$ | | | | K | | | Te ^{+/-} | | 3 2 | | | | | | | $\mathrm{Te_2}^{+/-}$ | | | | | | | | | $Te_3^{+/-}$ | | | | | | | | | $\operatorname{Te}_{4}^{3+/-}$ | | | | | | | | | $\operatorname{Te}_{5}^{+/-}$ | | | | | **Remarks:** The symbols ⁺ and ⁻ mean that clusters were observed in the positive and negative ion modes, respectively, whereas ^{+/-} means that clusters were detected in both the positive and negative ion modes. The clusters highlighted in '**BOLD**' are the most intensive peaks of binary and ternary clusters. Some minor (low-intensity) peaks of "oxidized and hydrogenated or oxidized/hydrogenated" clusters observed are not mentioned here.