Supplemental Materials:

Laser Ablation of Ga-Sb-Te Thin Films Monitored with Quadrupole Ion

Trap Time-of-Flight Mass Spectrometry

Govinda Mandal¹, Magdaléna Gorylová², Virginie Nazabal^{2,3}, Petr Němec², Josef Havel^{1*}

FIGURE S1 Comparison of the experimental and theoretical mass spectra recorded via LA for thin film **F** coated with trehalose. Conditions: negative ion mode, laser energy 140 a.u., m/z range 400-434 was magnified 20 times, 2000 profiles, and 100% intensity corresponds to 320 mV

^{*}Correspondence to: Josef Havel; e-mail: <u>havel@chemi.muni.cz</u>

FIGURE S2 The variation in peaks intensities for selected clusters for: (A) the line 1 chemical composition of thin films (**B-F**), and (B) the line 2 chemical composition of thin films (**G-J**), which were shown in Figure 1. Conditions: negative ion mode, laser energy 150 a.u., and 2000 profiles

FIGURE S3 Structures of (A) the crystalline $Ga_4Sb_6Te_3$ phase change material, as adapted from Baratella et al.,³³ and (B) the structure of GaTe binary phase change alloy, as adapted from Bouzid et al.²³ Analogies between the possible fractions of the phase change material and selected clusters from the fabricated thin films are marked with ellipses

TABLE S1 (A) Overview of $Ga_xSb_yTe_z$ clusters formed via LA from individual Ga-Sb-Te thin films (**A-F**) in both positive and negative ion modes

Thin film	Ga_x	\mathbf{Sb}_{y}	Te_z	Ga_xSb_y	Ga_xTe_z	$\mathbf{Sb}_{y}\mathbf{Te}_{z}$	$Ga_xSb_yTe_z$
A		$ \begin{array}{c} Sb \\ Sb_2 \\ Sb_3 \end{array} $		GaSb ₂			
В	$\operatorname{Ga_2}^+$	\mathbf{Sb}_{3}^{+} \mathbf{Sb}_{3}^{+}	Te ₂	GaSb ⁺	GaTe GaTe ₂	SbTe $^{+/-}$ SbTe $_2$ Sb $_3$ Te $^+$	
C	$\operatorname{Ga_2}^+$	Sb^{+}	Te Te ₂		GaTe GaTe ₂	Sb ₃ Te ⁺ Sb ₂ Te ⁺ Sb ₃ Te ⁺ SbTe ₂	
D	$\operatorname{Ga_2}^+$	$\mathbf{Sb}^{^{+}}$ $\mathbf{Sb}_{9}^{^{+}}$	Te ^{+/-} Te ₂ ^{+/-}	GaSb ₈ +/-	$GaTe_{2}$ $Ga_{2}Te^{+}$	SbTe ^{+/-} Sb ₂ Te ⁺ Sb ₃ Te ⁺ SbTe ₂	GaSbTe ⁺
E	$\operatorname{Ga_2}^{+/-}$	$\operatorname{Sb}^{^{+}}_{9}$	Te ₂ ^{+/-} Te ₂ Te ₃	$\begin{array}{c} \textbf{GaSb_8} \\ \textbf{Ga_2Sb_15} \\ \textbf{Ga_2Sb_{15}} \\ \textbf{Ga_3Sb_{14}} \\ \textbf{Ga_4Sb_{13}} \\ \textbf{Ga_6Sb_5} \\ \textbf{Ga_7Sb_4} \end{array}$	GaTe ₂ ^{+/-} GaTe ₃ GaTe ₄ Ga ₂ Te ₊ Ga ₂ Te ₂	SbTe ₃ SbTe ⁺ Sb ₂ Te ⁺ Sb ₃ Te ⁺ SbTe ₂ SbTe ₃	GaSbTe ⁺
F			$Te_{3}^{+/-}$ $Te_{3}^{+/-}$ $Te_{4}^{+/-}$		GaTe ₂ ^{+/-} GaTe ₂ ^{+/-} GaTe ₃ GaTe ₄ Ga ₂ Te ₊ Ga ₂ Te ₂		

Remarks: The symbols ⁺ and ⁻ mean that clusters were observed in the positive and negative ion modes, respectively, whereas ^{+/-} means that clusters were detected in both the positive and negative ion modes. The clusters highlighted in '**BOLD**' are the most intensive peaks of binary and ternary clusters. Some minor (low-intensity) peaks of "oxidized and hydrogenated or oxidized/hydrogenated" clusters observed are not mentioned here.

TABLE S1 (B) Overview of $Ga_xSb_yTe_z$ clusters formed via LA from individual Ga-Sb-Te thin films (**G-K**) in both positive and negative ion modes

Thin film	Ga_x	\mathbf{Sb}_{y}	Te_z	Ga_xSb_y	Ga_xTe_z	$\mathbf{Sb}_{y}\mathbf{Te}_{z}$	$Ga_xSb_yTe_z$
G	$\operatorname{Ga_2}^+$	Sb ⁺	Te		GaTe	SbTe ^{+/-}	
		Sb_2	Te_2		$GaTe_2$	Sb_2Te^{-}	
		Sb_3				$SbTe_2$	
		Sb_4^+					
H	$\operatorname{Ga_2}^+$	Sb^{+}	Te		GaTe	SbTe ^{+/-}	GaSbTe ⁺
	Ga ₃		Te_2		$GaTe_2$	$\mathrm{Sb}_{2}\mathrm{Te}^{^{+}}$	GaSbTe ₂
					GaTe ₃	$\mathrm{Sb}_{3}\mathrm{Te}^{^{+}}$	Ga_2SbTe_2
					Ga_2Te^+	$SbTe_2$	
					Ga_2Te_2	$SbTe_3$	
						Sb_2Te_2	
I	$\operatorname{Ga_2}^+$		$\mathrm{Te}^{+/-}$		GaTe	$\mathbf{SbTe}^{^{+}}$	$\mathbf{GaSbTe}^{^{+}}$
			Te_2		GaTe ₂	$\mathrm{Sb}_{2}\mathrm{Te}^{^{+}}$	$GaSbTe_2$
					GaTe ₃	Sb_3Te^+	GaSbTe ₃
					Ga_2Te^{-}	$SbTe_2$	
					Ga_2Te_2	SbTe ₃	
J	$\operatorname{Ga}_{2}^{^{+}}$	$Sb^{^{+}}$	$\operatorname{Te}^{+/-}_{2}$		GaTe ^{+/-}	$\mathbf{SbTe}^{^{+}}$	$\mathbf{GaSbTe}^{^{+}}$
			$\mathrm{Te_2}^{+/-}$		$GaTe_2^{+/-}$	$\mathrm{Sb}_{2}\mathrm{Te}^{^{+}}$	$GaSbTe_2^+$
					GaTe ₃ +/-	$\mathrm{Sb_3Te}^{^+}$	$GaSb_2Te^+$
					Ga ₂ Te ⁺	SbTe ₂ ^{+/-}	$GaSb_2Te_2^+$
					$Ga_2Te_2^{+/-}$	SbTe ₃	
					$Ga_3Te^{\stackrel{-}{+}}$	3	
					$Ga_3Te_2^+$		
K			Te ^{+/-}		3 2		
			$\mathrm{Te_2}^{+/-}$				
			$Te_3^{+/-}$				
			$\operatorname{Te}_{4}^{3+/-}$				
			$\operatorname{Te}_{5}^{+/-}$				

Remarks: The symbols ⁺ and ⁻ mean that clusters were observed in the positive and negative ion modes, respectively, whereas ^{+/-} means that clusters were detected in both the positive and negative ion modes. The clusters highlighted in '**BOLD**' are the most intensive peaks of binary and ternary clusters. Some minor (low-intensity) peaks of "oxidized and hydrogenated or oxidized/hydrogenated" clusters observed are not mentioned here.