Supporting Information

Catalytic Alkyne and Diyne Metathesis with Mixed Fluoroalkoxy-Siloxy Molybdenum Alkylidyne Complexes

Manuel L. Zier,^a Sophie Colombel-Rouen,^b Henrike Ehrhorn,^a Dirk Bockfeld,^a Yann Trolez,^b Marc Mauduit,^b Matthias Tamm^{a,*}

^{*a*} Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany, Fax: +49 (531) 391 5387; Tel: +49 (531) 391 5309; E-Mail: <u>m.tamm@tu-bs.de</u>

^bUniv Rennes; Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France

Experimental Section	S1
General Experimental Considerations	S1
Analytical Methods	S1
Experimental Procedures	S2
NMR Spectra	S5
Van 't Hoff Analysis	S23
XRD details	S28
Alkyne Metathesis	S37
Synthesis of 1,6-bis(benzyloxy)hex-3-yne (2)	S39
Synthesis of hex-3-yne-1,6-diyl bis(4-methoxybenzoate) (4)	S39
Synthesis of 2,9-benzodioxacyclododecin-1,10-dione (6)	S39
Synthesis of 1,2-diphenylacetylene (8)	S39
Diyne Disproportionation	S40
Synthesis of TIPSC=CC=CC=CTIPS (10a)	S41
Synthesis of MesC=CC=CC=CMes (10b)	S42
References	S47

Experimental Section

General Experimental Considerations

Synthesis of the molecular precursors was carried out according to the literature using dry and oxygen free argon glovebox atmosphere (MBraun) or were prepared using high vacuum lines (10^{-5} mbar) . *n*-Pentane, *n*-hexane, THF, and toluene were purified using double MBraun SPS alumina columns and degassed by argon-bubbling for at least 15 min prior to use. Hexamethyldisoloxane (HMDSO) was dried over CaH₂ and refluxed for three days. The solvents were stored over molecular sieves 3-4 Å inside a glovebox. Benzene- d_6 was degassed by three consecutive freeze-pump-thaw cycles and stirred overnight with NaK-alloy. Dichloromethane-d₂ was distilled over CaH₂. 1-Phenyl-1-propyne was distilled over CaH₂ and then filtered through alumina that had been activated under high vacuum at 500 °C (Al₂O₃₋₅₀₀). 1-Phenyl-1-propyne was used immediately after being filtered over Al₂O₃₋₅₀₀. Complexes and catalysts $[MesC \equiv MoBr_3(dme)]^1$, $[MesC \equiv Mo\{OC(CF_3)_n Me_{3-n}\}_3$ (MoF0, n = 0, **MoF3**, n = 1, and **MoF9**, n = 3² and KOSi(OtBu)₃³ were synthesized according to literature methods. The silicate HOSi(OtBu)₂(OMes)⁴ was synthesized according to the literature. Celite was dried over night at 130 °C and then under vacuum for 5 h, before storing it in the glovebox. The powdered molecular sieves Molecular sieves 4 Å (CAS: 70955-01-0; Ref. No. 11424553 Alfa Aesar™) and 5 Å (CAS : 69912-79-4; Ref. No. 10296980 Acros Organics[™]) were heated in oven (~ 400 °C for 24 hours) then vacuum $(10^{-2} \text{ mmbar for } 24\text{h})$ was applied prior to introduction into the glove box.

Analytical Methods

Solution ¹H, ¹³C and ¹⁹F NMR Spectra were obtained on Bruker AV II-300 (300 MHz), Bruker AV II-400 (400 MHz) or Bruker AV II-600 (600 MHz) instruments at room temperature. Variable temperature and 2D NMR experiments were carried out on Bruker AV II-400 (400 MHz) or Bruker AV II-600 (600 MHz). Low temperature measurements where calibrated with CH₃OH in CD₃OD, high temperature measurements where calibrated with HOCH₂CH₂OH in DMSO- d_6 . The ¹H and ¹³C chemical shifts are referenced to the solvent peak, and the ¹⁹F chemical shifts are referenced relative to virtual internal CFCl₃. All ¹³C and ¹⁹F NMR Spectra were measured ¹H decoupled. Spin multiplicity is designated by: s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet. The number of protons (n) for a given resonance is indicated by nH. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (*J*) are reported in Hz. The NMR data were interpreted in first order spectra. Gas chromatography (GC) was performed on a HP 5890 Series II using DB5-HT column (l = 30 m, d = 0.25 mm) with FID detection (310 °C). The sample (1 µL) was injected at 250 °C with a split(splitless ratio of 1:10 and heated in the column from 50 to 300 °C with a heating rate of 10 °C min⁻¹. For calibration, *n*-decane was used as an internal standard. GCMS was performed on a GC-2010 SHIMADZU coupled directly with a QP2010SE mass spectrometer operating in positive EI mode (70 eV, 60 - 700 m/z) with the following conditions: injection temperature 50 °C for 3 min, heating rate 12 °C min⁻¹, end temperature 300 °C for 38 min; column type: ZB-5MS GUARDIAN (l = 30 m, d= 0.25 mm); He carrier gas (1.5 mL min⁻¹). Elemental analyses were performed by using a Vario Micro Cube with WLD and IR detectors.

Experimental Procedures

Synthesis of [MesC=Mo{OC(CF₃)₃}₂{OSi(OtBu)₃}] (MoSiF9)

To a solution of KOSi(O*t*Bu)₃ (56.8 mg, 0.19 mmol) in toluene (4 mL) was added [MesC=Mo{OC(CF₃)₃}₃] (**MoF9**) (174.9 mg, 0.19 mmol), and the reaction mixture was stirred for 16 h at 40 °C. After evaporation of the solvent, the residue was extracted with *n*-pentane (2 mL); the solution was filtered over Celite and stored at -38 °C. The product was obtained as yellow crystals (169.9 mg, 0.18 mmol, 93%).

¹**H NMR** (300 MHz, C₆D₆, 298 K): $\delta = 6.56-6.47$ (m, 2H, H_{Ar}), 2.78 (s, 6H, *o*-C H_3), 2.01 (s, 3H, *p*-C H_3), 1.33 (s, 27H, OSi(OC(C H_3)₃)₃) ppm. ¹³C{¹H} **NMR** (75.5 MHz, C₆D₆, 298 K): $\delta = 320.9$ (s, Mo=C), 143.3 (s, *o*-C_{Ar}), 142.8 (s, *i*-C_{Ar}), 140.5 (s, *p*-C_{Ar}), 128.1 (s, CH_{Ar}), 121.5 (q, ¹J_{C,F} = 292 Hz, OC(CF₃)₃), 85.3 (sept, ²J_{C,F} = 30 Hz, OC(CF₃)₃), 75.3 (s, OSi(OC(CH₃)₃)₃), 31.2 (s, OSi(OC(CH₃)₃)₃), 21.0 (s, *p*-CH₃), 20.4 (s, *o*-CH₃) ppm. ¹⁹F{¹H} **NMR** (376.1 MHz, C₆D₆, 298 K): $\delta = -72.9$ (s, CF₃) ppm. **Elemental analysis** (%) calc. for C₃₀H₃₈F₁₈MoO₆Si: C 37.51, H 3.99; Found: C 37.83, H 4.04.

Synthesis of KOSi(OtBu)₂(OMes)

 $HOSi(OtBu)_2(OMes)$ (1.2 mmol, 0.4 g) was dissolved in diethyl ether (5 mL), and KH (1.2 mmol, 48.12 mg) was added in small portions. After stirring the reaction mixture for 4h at rt, the solvent was evaporated, and the product was isolated as a white solid (0.39 g, 1.09 mmol, 92%).

¹**H** NMR (300 MHz, C₆D₆, 298K): δ = 6.77 (s, 2H, *m*-CH), 2.49 (s, 6H, *m*-CH₃), 2.09 (s, 3H, *p*-CH₃), 1.44 (s, 18H, OC(CH₃)₃) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298K): δ = 152.2 (s, *ipso*-C), 129.7 (s, *o*-C), 129.6 (s, *p*-C), 129.2 (s, *m*-C), 71.3 (s, OC(CH₃)₃), 32.3 (s, OC(CH₃)₃), 20.5 (s, *p*-CH₃), 19.4 (s, *m*-CH₃) ppm. ²⁹Si{¹H} NMR (99 MHz, C₆D₆, 298K): δ = -91.0 (s, *Si*) ppm. Elemental analysis (%) calc. for C₁₇H₂₉KO₄Si: C 56.00, H 8.02; Found: C 56.38, H 8.19.

Synthesis of [MesC=Mo{OC(CF₃)₃}₂{OSi(OMes)(OtBu)₂}] (MoSi*F9)

To a solution of $[MesC \equiv Mo\{OC(CF_3)_3\}_3]$ (MoF9) (100 mg, 0.011 mmol) in toluene (2 mL) was added KOSi(OtBu)₂(OMes) (39.1 mg, 0.11 mmol) and stirred over night at room temperature. After evaporation of the solvent, the crude product was extracted with HMDSO and filtered over Celite. Recrystallization at -38 °C afforded the product as yellow crystals (62.8 mg, 0.06 mmol, 56%).

¹H NMR (500 MHz, C₆D₆, 298 K): δ = 6.72 (m, 2H, SiOMesH_{Ar}), 6.47–6.45 (m, 2H, MoCMesH_{Ar}), 2.70 (s, 6H, MoCMes (*o*-CH₃)), 2.40 (s, 6H, SiOMes (*o*-CH₃)), 2.10 (s, 3H, MoCMes (*p*-CH₃)), 1.95 (s, 3H, SiOMes (*p*-CH₃)), 1.26 (s, 18H, OSi(OC(CH₃)₃) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 323.5 (s, MoC), 149.0 (s, SiOMes *i*-C_{Ar}), 143.2 (s, *i*-C_{Ar}), 142.7 (s, *o*-C_{Ar}), 141.1 (s, *p*-C_{Ar}), 131.6 (s, SiOMes *o*-C_{Ar}), 129.7 (s, SiOMes *m*-C_{Ar}), 128.4 (s, SiOMes *p*-C_{Ar}), 127.9 (s, *m*-C_{Ar}, 121.4 (q, ¹J_{C,F} = 292 Hz, CF₃), 85.3 (sept, ²J_{C,F} = 30 Hz, CCF₃), 75.7 (s, OCCH₃), 30.9 (s, OCCH₃), 21.1 (s, SiOMes *p*-CH₃), 20.6 (s, MoCMes *p*-CH₃), 20.0 (s, MoCMes *o*-CH₃), 17.9 (s, SiOMes *o*-CH₃) ppm. ¹⁹F{¹H} NMR (377 MHz, C₆D₆, 298 K): δ = -73.1 (s, CF₃) ppm. ²⁹Si{¹H} NMR (99 MHz, C₆D₆) 298 K): $\delta = -93.0$ (s, Si) ppm. Elemental analysis (%) calc. for C₃₅H₄₀F₁₈MoO₆Si: C 41.10, H 3.94; Found: C 40.72, H 3.71.

Synthesis of $[(Et_3C_3)Mo{OC(CF_3)_3}_2{OSi(OtBu)_3}]$ (MoSiF9-MCBD)

To a precooled solution of $[MesC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OtBu)_3\}]$ Et Et (MoSiF9) (10 mg, 0.01 mmol) in *n*-pentane (0.1 mL) was added 5-hexyne (12 μL, 8.55 mg, 0.1 mmol). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals, which decompose above -38 °C. ¹H NMR (400 MHz, CD₂Cl₂, 233.55 K): $\delta = 1.40$ (s, 27H, OSi(OC(CH₂)₂)₂). 1.43 (t, 3H, ³*I*_{H,H} = 8 Hz, β-CH₃), 1.71 (t, 6H, ³*I*_{H,H}

OSi(OC(CH₃)₃)₃), 1.43 (t, 3H, ${}^{3}J_{H,H}$ = 8 Hz, β-CH₃), 1.71 (t, 6H, ${}^{3}J_{H,H}$

= 7 Hz, α -CH₂), 3.63 (q, ³J_{H,H} = 7 Hz, 4H, α -CH₂), 3.81 (q, ³J_{H,H} = 8 Hz, 2H, β -CH₂) ppm. ¹³C{¹H} **NMR** (101 MHz, CD₂Cl₂, 233.55 K): δ = 265.5 (s, C_q, α-C), 152.3 (s, C_q, β-C), 121.0 (q, ¹J_{C,F} = 295 Hz, CF₃), 82.8–81.3 (m, C_q, C(CF₃)₃), 73.2 (s, C_q, C(CH₃)₃), 33.5 (s, α-CH₂), 31.3 (s, C(CH₃)₃), 29.0 (s, β-CH₂), 12.7 (s, α-CH₃), 12.3 (s, β-CH₃) ppm. ¹⁹F{¹H} NMR (377 MHz, CD₂Cl₂, 233.55 K): δ = -72.6 (s, CF_3) ppm.

Synthesis of $[(Et_3C_3)Mo{OC(CF_3)_3}_2{OSi(OMes)(OtBu)_2}](MoSi*F9-MCBD)$

3-Hexyne (12 μ L, 8.55 mg, 0.1 mmol) was added to a solution of $\begin{bmatrix} Et & [MesC \equiv Mo\{OC(CF_3)_3\}_2\{OSi(OMes)(OtBu)_2\}] (MoSi*F9) (10 mg, 0.01 mmol) in$ *n*-pentane (0.1 mL). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals. $<math display="block">\begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2\{OSi(OMes)(OtBu)_2\}] (MoSi*F9) (10 mg, 0.01 mmol) in$ *n*-pentane (0.1 mL). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals. $<math display="block">\begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2\{OSi(OMes)(OtBu)_2\}] (MoSi*F9) (10 mg, 0.01 mmol) in$ *n*-pentane (0.1 mL). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals. $<math display="block">\begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2\{OSi(OMes)(OtBu)_2\}] (MoSi*F9) (10 mg, 0.01 mmol) in$ *n*-pentane (0.1 mL). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals. $<math display="block">\begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2\{OSi(OMes)(OtBu)_2\}] (MoSi*F9) (10 mg, 0.01 mmol) in$ *n*-pentane (0.1 mL). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals. $<math display="block">\begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OMes)(OtBu)_2\}] (MoSi*F9) (10 mg, 0.01 mmol) in$ *n* $-pentane (0.1 mL). The mixture was immediately stored in the freezer at -38 °C to slowly grow the product as violet crystals. \\ \begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OMes)(OtBu)_2\}_2 \} (MoSi*F9) (10 mg, 0.01 mmol) in n-pentane (0.1 mL). \\ \begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OMes)(OtBu)_2\}_2 \} (MoSi*F9) (10 mg, 0.01 mmol) in n-pentane (0.1 mL). \\ \begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OMes)(OtBu)_2\}_2 \} (MoSi*F9) (10 mg, 0.01 mmol) in n-pentane (0.1 mL). \\ \begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OMes)(OtBu)_2\}_2 \} (MoSi*F9) (MoSi*F9) (MoSi*F9) (10 mg, 0.01 mmol) in n-pentane (0.1 mL). \\ \begin{bmatrix} HusC \equiv Mo\{OC(CF_3)_3\}_2 \{OSi(OMes)(OtBu)_2\}_2 \} (MoSi*F9) (M$

2H, H_{Ar}), 3.15 (q, ${}^{3}J_{H,H}$ = 7 Hz, 4H, $C_{\alpha}CH_{2}$), 3.05 (q, ${}^{3}J_{H,H}$ = 8 Hz, 2H,

 $C_{\beta}CH_{2}$), 2.58 (s, 6H, o-CH₃), 2.16 (s, 3H, p-CH₃), 1.57 (t, ³J_{H,H} = 7 Hz, 6H, $C_{\alpha}CH_{2}CH_{3}$), 1.39 (s, 18H, $OC(CH_3)_3$, 0.91 (t, ${}^{3}J_{H,H} = 8$ Hz, 3H) ppm. ${}^{13}C{^{1}H}$ NMR (126 MHz, toluene- d_{8} , 298 K): $\delta = 265.1$ (s, C_{α}), 151.1 (s, C_{β}), 150.4 (s, SiOC_q), 130.3 (s, SiOCCCHC), 129.4 (s, SiOCCCH), 128.6 (s, SiOCC), 121.9 (q, ${}^{1}J_{C,F}$ = 295 Hz), 82.8 (m, ${}^{2}J_{C,F}$ = 29 Hz, C(CF₃)₃), 74.1 (s, SiOC(CH₃)₃), 33.0 (s, $C_{\alpha}CH_2$), 31.4 (s, SiOC(CH₃)₃), 28.1 (s, $C_{\alpha}CH_2$), 20.8 (s, p-CH₃), 18.3 (s, o-CH₃), 12.7 (s, $C_{\alpha}CH_{2}CH_{3}$), 12.4 (s, $C_{\beta}CH_{2}CH_{3}$) ppm. ¹⁹F{¹H} NMR (471 MHz, toluene- d_{8} , 298.15 K): $\delta = -72.6$ (s, CF_3) ppm. ²⁹Si{¹H} NMR (99 MHz, toluene- d_8 , 298 K): $\delta = -105.8$ (s, Si) ppm.

Reaction towards $[MesC=Mo{OtBu}_2{OSi(OtBu}_3] (MoSiF0)$

To a solution of $KOSi(OtBu)_3$ (29.5 mg, 0.10 mmol) in toluene (2 mL) was added $[MesC \equiv Mo{OtBu}_3]$ (MoF0) (43.6 mg, 0.10 mmol), and the reaction mixture was stirred four hours at 40 °C. After evaporation of the solvent the residue was extracted with n-pentane (2 mL), filtered over Celite and stored at -38 °C. The product could only be isolated as mixture with the starting material and the corresponding bis- and tris(siloxide)

complexes.

¹**H NMR** (300 MHz, C₆D₆, 298 K): δ = 6.70 (m, 2H, H_{Ar}), 2.89 (s, 6H, o-CH₃), 2.10 (s, 3H, p-CH₃), 1.53 (s, 18H, OC(CH₃)₃), 1.48 (s, 27H, OSi(OC(CH₃)₃)₃) ppm.

Reaction towards [MesC=Mo{OC(CF₃)Me₂}₂{OSi(OtBu)₃}] (MoSiF3)

To a solution of KOSi(OtBu)₃ (37.8 mg, 0.12 mmol) in toluene (2 mL) was added [MesC=Mo{OC(CF₃)Me₂}₃] (MoF3) (76.1 mg, 0.12 mmol) and the reaction mixture was stirred four hours at 40 °C. After filtration over Celite and washing with toluene (1 mL), the solvent was evaporated. The residue was extracted with *n*-pentane (2 mL), filtrated over Celite and stored at -38 °C. The product could

only be isolated as mixture with the corresponding bis- and tris(siloxide) complexes.

¹**H NMR** (300 MHz, C₆D₆, 298 K): δ = 6.71 (m, 2H, H_{Ar}), 2.89 (s, 6H, *o*-CH₃), 2.10 (s, 3H, *p*-CH₃), 1.43 (s, 12H, OC(CH₃)₂CF₃), 1.37 (s, 27H, OSi(OC(CH₃)₃)₃) ppm.

NMR Spectra

Figure S2: Crude ¹H NMR spectrum of **MoSiF3** in C₆D₆.

Figure S3. Crude ${}^{19}F{}^{1}H$ NMR spectrum of **MoSiF3** in C₆D₆.

Figure S4: ${}^{1}HNMR$ spectrum of **MoSiF9** in C₆D₆.

---72.82

Figure S5: ${}^{19}F{H}NMR$ spectrum of **MoSiF9** in C₆D₆.

Figure S6. ${}^{13}C{H}$ NMR spectrum of **MoSiF9** in C₆D₆.

Figure S7. ¹H NMR spectrum of **MoSiF9** in toluene-d₈.

Figure 8. ${}^{19}F{}^{1}H$ NMR spectrum of **MoSiF9** in toluene-d₈.

Figure S9: ${}^{13}C{H}$ NMR spectrum of **MoSiF9** in toluene-d8.

Figure S11. ¹H NMR spectrum of **MoSi*F9** in C₆D₆.

Figure S13. ²⁹Si NMR spectrum of **MoSi*F9** in C_6D_6 .

Figure S15: ¹H variable temperature NMR spectra of $MoSi^*F9$ in toluene- d_8 .

Figure S16.¹H NMR of **MoSiF9-MCBD** from 3.1–0.6 ppm in CD₂Cl₂ at rt. Only 3-hexyne and ^{Et}**MoSiF9** visible.

Figure S17. ¹H NMR of **MoSiF9-MCBD** in CD_2Cl_2 at -39.6 °C.

Figure S19. ¹³C ${}^{1}H$ NMR of **MoSiF9-MCBD** in CD₂Cl₂ at -39.6 °C.

Figure S20. ¹H NMR of **MoSi*F9-MCBD** in toluene- d_8 at rt.

Figure S21. ${}^{13}C{}^{1}H$ NMR of **MoSi*F9-MCBD** in toluene-d₈ at rt.

Figure S23. 29 Si NMR **MoSi*F9-MCBD** in toluene-d_8 at rt.

Figure S24: ¹H and ¹⁹F $\{^{1}H\}$ variable temperature NMR spectra of **MoSi*F9-MCBD** in toluene-d₈.

Figure S25. ${}^{19}F{}^{1}H$ variable temperature NMR in CD₂Cl₂ used for VAN'T HOFF analysis. Left: **MoSiF9-MCBD**; right: **MoSiF9^{Et}**.

Figure S27. HSQC from **MoSiF9-MCBD** at -39.6 °C in CD₂Cl₂.

Figure S29. NOESY from **MoSiF9-MCBD** at -17.0 °C in CD₂Cl₂.

 $Figure \ S30.\ ^{19}F\{^{1}H\} \ variable \ temperature \ NMR \ in \ toluene-d_{8} \ used \ for \ VAN'T \ HOFF \ analysis. \ Left: \ \textbf{MoSiF9-MCBD}; \ right \ \textbf{MoSiF9^{Et}}.$

 $Figure \ S31. \ ^{19}F \{^{1}H\} \ variable \ temperature \ NMR \ in \ toluene-d_{8} \ used \ for \ VAN'T \ HOFF \ analysis. \ Left: \ \textbf{MoF9-MCBD}; \ right: \ \textbf{MoF9^{et}}.$

Figure S32. ¹⁹F{¹H} variable temperature NMR in toluene- d_8 used for VAN'T HOFF analysis. –72.51 ppm: **MoSi*F9-MCBD**, –73.04 ppm: **MoSi*F9^{EI}**.

Van 't Hoff Analysis

Scheme S1. [2+2]-cycloreversion of the respective MCBD.

The metallacycle **MoF9-MCBD**, **MoSiF9-MCBD** or **MoSi*F9-MCBD** were dissolved in toluene- d_8 (also CD₂Cl₂ for **MoSiF9-MCBD**) and transferred to an NMR tube. The NMR tube was inserted into a temperature-controlled NMR spectrometer and ¹H NMR and ¹⁹F{¹H} NMR spectra were recorded in a specific temperature range. The ratio of alkylidyne and MCBD was determined by integration of the ¹⁹F{¹H} NMR resonances and the amount of 3-hexyne must be equal to the respective alkylidyne. The equilibrium constants at different temperatures were calculated according to the following formula:

$$K_{\rm eq} = \frac{[\rm MCBD]}{[\rm Alkylidyne]^2}$$

Subsequently, $\ln(K_{eq})$ was plotted as a function of 1/T and according to the following formula the enthalpy, entropy of the reaction could be extracted from the slope and the y-axis intercept of the linear fit:

$$\ln(K_{eq}) = \frac{-\Delta H}{R} \cdot \frac{1}{T} + \frac{\Delta S}{R}$$

Figure S33. VAN 'T HOFF plot of the [2+2]-cycloreversion of **MoF9-MCBD** derived from ${}^{19}F{}^{1}H$ NMR spectroscopic data in toluene-d₈ from 298.25 K to 355.75 K in ~5 K intervals.

$Table \ S1. \ Data \ points \ used \ for \ the \ van't \ Hoff \ analysis \ of \ the \ [2+2]-cycloreversion \ of \ \textbf{MoF9-MCBD} in \ toluene-density \ begin{tabular}{lllllllllllllllllllllllllllllllllll$	<i>1</i> 8.
--	-------------

	Col(A)	Col(B)	Col(C)	Col(D)	Col(E)	Col(F)	Col(G)
				Integral	Integral		
	temperature [°C]	temperature [K]	1/T	MCBD	Alkylidyne	K	$\ln(K)$
function		(Col(A)) +273.15	1/(Col(B))			$Col(D)/(Col(E)^2)$	$\ln(Col(F))$
1	25.1	298.25	0.00335	9336.36	663.64	0.0212	-3.85381
2	28.2	301.35	0.00332	9092.17	907.83	0.01103	-4.50695
3	33.7	306.85	0.00326	8792.21	1207.79	0.00603	-5.11147
4	39.1	312.25	0.0032	8406.69	1593.31	0.00331	-5.71035
5	44.8	317.95	0.00315	7951.93	2048.07	0.0019	-6.26814
6	50.1	323.25	0.00309	7395.92	2604.08	0.00109	-6.82099
7	55.5	328.65	0.00304	6736.3	3263.7	6.32413E-4	-7.36597
8	60.9	334.05	0.00299	5984.94	4015.06	3.71258E-4	-7.89861
9	66.4	339.55	0.00295	5131.3	4868.7	2.16472E-4	-8.43805
10	71.9	345.05	0.0029	4302.65	5697.35	1.32553E-4	-8.92853
11	77.6	350.75	0.00285	3423.17	6576.83	7.91399E-5	-9.44429
resulti	ng linear plot fu	inction: y = a+ b	x = -40.09	9847 ± 0.37065	and b = 10755.3	39235 ± 120.29497	

Figure S34. VAN 'T HOFF plot of the [2+2] cycloreversion of **MoSiF9-MCBD**, derived from ${}^{19}F{}^{1}H$ NMR spectroscopic data in CD₂Cl₂ from 228.15 K to 298.15 K in ~5 K intervals.

 $Table \ S2. \ Data \ points \ used \ for \ the \ van't \ Hoff \ analysis \ of \ the \ [2+2]-cycloreversion \ of \ \textbf{MoSiF9-MCBD} \ in \ CD_2Cl_2.$

	Col(B)	Col(C)	Col(D)	Col(E)	Col(F)	Col(G)
			Integral	Integral		
emperature [°C]	temperature [K]	1/T	MCBD	Alkylidyne	K	ln(K)
	(Col(A))+273.15	1/(Col(B))			$Col(D)/(Col(E)^2)$	ln(Col(F))
-45.0	228.15	0.00438	9721.84	278.16	0.12565	-2.07426
-39.8	233.35	0.00429	9537.54	462.46	0.0446	-3.11013
-33.9	239.25	0.00418	8936.74	1063.26	0.0079	-4.84026
-28.2	244.95	0.00408	8426.83	1573.17	0.0034	-5.68252
-22.4	250.75	0.00399	7222.13	2777.87	9.35926E-4	-6.97397
-16.3	256.85	0.00389	6102.31	3897.69	4.0168E-4	-7.81986
-10.9	262.25	0.00381	4828.48	5171.52	1.8054E-4	-8.61956
-5.2	267.95	0.00373	3851.46	6148.54	1.01878E-4	-9.19173
6.4	279.55	0.00358	1849.79	8150.21	2.78474E-5	-10.48877
25.0	298.15	0.00335	437.25	9562.75	4.7815E-6	-12.25076
	emperature [°C] -45.0 -39.8 -33.9 -28.2 -22.4 -16.3 -10.9 -5.2 6.4 25.0	con(K) con(B) emperature temperature [K] [°C] (Col(A))+273.15 -45.0 228.15 -39.8 233.35 -33.9 239.25 -28.2 244.95 -22.4 250.75 -16.3 256.85 -10.9 262.25 -5.2 267.95 6.4 279.55 25.0 298.15	con(K) con(C) emperature temperature [K] 1/T [°C] (Col(A))+273.15 1/(Col(B)) -45.0 228.15 0.00438 -39.8 233.35 0.00429 -33.9 239.25 0.00418 -28.2 244.95 0.00408 -22.4 250.75 0.00399 -16.3 256.85 0.00389 -10.9 262.25 0.00373 6.4 279.55 0.00358 25.0 298.15 0.00335	Con(K) Con(D) Con(C) Con(D) Integral Integral emperature temperature [K] 1/T MCBD [°C] (Col(A))+273.15 1/(Col(B)) -45.0 228.15 0.00438 9721.84 -39.8 233.35 0.00429 9537.54 -33.9 239.25 0.00418 8936.74 -28.2 244.95 0.00408 8426.83 -22.4 250.75 0.00399 7222.13 -16.3 256.85 0.00381 4828.48 -5.2 267.95 0.00373 3851.46 6.4 279.55 0.00358 1849.79 25.0 298.15 0.00335 437.25	Con(K) Con(C) Con(C)<	$\begin{array}{c c} \mbox{Col}(K) & \mbox{Col}(C) & \mbox{Col}(K) & \mbox$

resulting linear plot function: $y = a + b^*x$ with $a = -46.19661 \pm 1.68231$ and $b = 9949.85681 \pm 426.90919$

Figure S35. VAN 'T HOFF plot of the [2+2]-cycloreversion of **MoSiF9-MCBD** derived from ${}^{19}F{}^{1}H$ NMR spectroscopic data in toluene-d₈ from 223.15 K to 298.65 K in ~5 K intervals.

Table S3. Data po	oints used for the van	't Hoff analysis of the	[2+2]-cycloreversion	MoSiF9-MCBD in toluene-d8.
	./			

	Col(A)	Col(B)	Col(C)	Col(D)	Col(E)	Col(F)	Col(G)
				Integral	Integral		
	temperature [°C]	temperature [K]	1/T	MCBD	Alkylidyne	K	lnK
function		(Col(A))+ 273.15	1/(Col(B))			Col(D)/(Col(E)^ 2)	ln(Col(F))
1	-50.0	223.15	0.00448	9822.55	177.45	0.31194	-1.16494
2	-44.7	228.45	0.00438	9656.77	343.23	0.08197	-2.50139
3	-40.7	232.45	0.0043	9315.49	684.51	0.01988	-3.91797
4	-34.2	238.95	0.00418	8785.33	1214.67	0.00595	-5.12362
5	-28.3	244.85	0.00408	8167.07	1832.93	0.00243	-6.01948
6	-22.9	250.25	0.004	7277.44	2722.56	9.81802E-4	-6.92612
7	-17.1	256.05	0.00391	6210.94	3789.06	4.32608E-4	-7.74568
8	-10.9	262.25	0.00381	5069.14	4930.86	2.08492E-4	-8.47561
9	-5.2	267.95	0.00373	4064.54	5935.46	1.15373E-4	-9.06734
10	0.7	273.85	0.00365	3048.23	6951.77	6.3075E-5	-9.67119
11	6.6	279.75	0.00357	2156.8	7843.2	3.50609E-5	-10.25842
12	12.1	285.25	0.00351	1484.29	8515.71	2.04681E-5	-10.79664
13	25.5	298.65	0.00335	387.99	9612.01	4.19945E-6	-12.38056
resulting	linear plot functi	on: $y = a + b^*x$ with	ha = -44.15707	± 1.2696 and	d b = 9419.612	.41 ± 332.68096	

Figure S36. VAN 'T HOFF plot of the [2+2]-cycloreversion of **MoSi*F9-MCBD** derived from ${}^{19}F{}^{1}H$ NMR spectroscopic data in toluene-d₈ from 298.15 K to 354.60 K in ~5 K intervals.

Table S4. Data points used for the van 't Hoff analysis of the [2+2]-cycloreversion of MoSi*F9-MCBD in toluene-a

	Col(A)	Col(B)	Col(C)	Col(D)	Col(E)	Col(F)	
				Integral	Integral		
	temperature [°C]	temperatu re [K]	1/T	MCBD	Alkylidyne	K	lnK
function		(Col(A)) +273.15	1/(Col(B))		(Col(D))^2	$Col(D)/(Col(E)^2)$	$\ln(\operatorname{Col}(F))$
1	25.00	298.15	0.00335	9380.85	619.15	0.02447	-3.71027
2	27.96	301.11	0.00332	9150.91	849.09	0.01269	-4.36672
3	33.52	306.67	0.00326	8852.46	1147.54	0.00672	-5.0023
4	38.85	312.00	0.00321	8527.1	1472.9	0.00393	-5.53897
5	44.47	317.62	0.00315	8105.32	1894.68	0.00226	-6.09333
6	50.05	323.20	0.00309	7638.48	2361.52	0.00137	-6.59317
7	55.62	328.77	0.00304	6929.1	3070.9	7.3476E-4	-7.21597
8	60.25	333.40	0.003	6452.99	3547.01	5.12904E-4	-7.57542
9	65.47	338.62	0.00295	5754.03	4245.97	3.19167E-4	-8.0498
10	70.57	343.72	0.00291	5038.38	4961.62	2.04665E-4	-8.49414
11	76.10	349.25	0.00286	4061.75	5938.25	1.15185E-4	-9.06897
12	81.45	354.60	0.00282	3180.12	6819.88	6.83739E-5	-9.59052
result	ing linear plot f	function: y = a	$+b^*x$ with $a = -b^*x$	39.05363 ± 0.50	118 and b = 1047	7.13527 ± 162.42408	

XRD details

Crystals were mounted with per-fluorinated inert oil. Data were recorded on Oxford Diffraction Xcalibur diffractometers with monochromated Mo-Kα radiation and an EOS CCD detector (**MoSiF0**, **MoSiF3**, **MoSi2F9**) or mirror focussed Cu-Kα radiation and an ATLAS CCD detector (**MoSiF9**, **MoSiF9-MCBD**). Additionally, Rigaku XtaLAB Synergy S Single Source diffractometers equipped with a PhotonJet Cu-microfocus source (**MoSi*F9**) or a PhotonJet Mo-microfocus source (**MoSi*F9-MCBD**) and a HyPix-6000HE detector. Data reduction was performed with CrysalisPro⁵. Absorption correction was based on multi-scans and for some crystals (**MoSiF9**, **MoSi*F9**, **MoSiF9-MCBD**, **MoSi*F9-MCBD**) additionally face indexation and integration on a Gaussian grid was applied. The structures were solved by direct methods with SHELXS⁶ (**MoSiF0**, **MoSi*F9-MCBD**) and refined on F² using the program SHELXL-2018/3⁸. H atoms were placed in idealized positions and refined using a riding model.

The crystal structures of **MoSiF3**, **MoSiF9** and **MoSi*F9-MCBD** suffer from disorder and the respective groups were refined with a disorder model where applicable. In case of **MoSi*F9-MCBD** the structure exhibits a fourfold modulation along the *c*-axis. For most of the ligands in this structure we were not able to refine a stable discrete disorder model. The structure of **MoSiF9-MCBD** was refined as an inversion twin with a minor component contribution of ca. 8 %. The crystal of **MoSiF9** decomposed during the measurement possibly because of a phase transition at 100K. Omission of the affected data led to a low completeness.

Molecular structures were pictured with the program *Ortep*⁹. Bond lengths and angles were determined using the programs *Diamond*¹⁰ and *Mercury*¹¹.

Figure S37. Molecular structure of **MoSiFO** with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for *clarity.*

Table S5. crystallographic details of **MoSiF0**.

CCDC	20748	92
Empirical formula	C ₃₀ H ₅₆ M	oO ₆ Si
Formula weight	636.7	7
Temperature	100(2)) K
Wavelength	0.7107	3 Å
Crystal system	monocl	inic
Space group	$P2_{1}/$	с
Unit cell dimensions	a = 9.8096(2) Å	$\alpha = 90^{\circ}$
	b = 19.2702(5) Å	$\beta = 94.181(3)^{\circ}$
	c = 18.5164(5) Å	γ= 90°
Volume	3490.88(15) Å ³
Z	4	
Density (calculated)	1.212 M	g/m ³
Absorption coefficient	0.445 m	nm ⁻¹
F(000)	1360)
Crystal size	0.40 x 0.30 x	0.25 mm^3
Theta range for data collection	2.335 to 3	1.052°
Index ranges	−13≤h≤14, −27≤k	≤27, –25≤l≤25
Reflections collected	9238	5
Independent reflections	10489 [R(int)	= 0.0497]
Completeness to theta = 30.00°	98.7	%
Absorption correction	Semi-empirical fro	om equivalents
Max. and min. transmission	1.00000 and	0.98372
Refinement method	Full-matrix least-	squares on F ²
Data / restraints / parameters	10489 / 0	/ 361
Goodness-of-fit on F ²	1.04	0
Final R indices [I>2sigma(I)]	R1 = 0.0294, wl	R2 = 0.0627
R indices (all data)	R1 = 0.0411, w	R2 = 0.0673
Largest diff. peak and hole	0.474 and -0.	378 e.Å ⁻³

Figure S38. Molecular structure of **MoSiF3** with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for clarity.

Table S6. crystallographic details of **MoSiF3**.

CCDC	207489	3
Empirical formula	$C_{30}H_{50}F_6M_6$	oO ₆ Si
Formula weight	744.73	,
Temperature	100(2)	K
Wavelength	0.71073	Å
Crystal system	tetragon	al
Space group	$I4_1/a$	
Unit cell dimensions	a = 35.4244(6) Å	$\alpha = 90^{\circ}$
	b = 35.4244(6) Å	β= 90°
	c = 11.8026(3) Å	$\gamma = 90^{\circ}$
Volume	14810.9(5) $Å^3$
Z	16	
Density (calculated)	1.336 mg,	/m ³
Absorption coefficient	0.453 mi	n ⁻¹
F(000)	6208	
Crystal size	0.35 x 0.35 x 0	$.25 \text{ mm}^3$
Theta range for data collection	2.30 to 30	.97°
Index ranges	-51≤h≤47, -49≤k≤	50,−16≤l≤17
Reflections collected	116302	2
Independent reflections	11197 [R(int) =	= 0.0502]
Completeness to theta = 30.50°	97.8 %)
Absorption correction	Semi-empirical from	n equivalents
Max. and min. transmission	1.00000 and (0.94363
Refinement method	Full-matrix least-se	quares on F ²
Data / restraints / parameters	11197 / 195	/ 487
Goodness-of-fit on F ²	1.040	
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR	2 = 0.0808

R indices (all data) Largest diff. peak and hole R1 = 0.0554, wR2 = 0.0882 0.723 and -0.651 e.Å⁻³

Figure S39. Molecular structure of **MoSiF9** with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for clarity.

Table S7. crystallographic details of **MoSiF9**.

CCDC		2074894
Empirical formula	C ₃₀ I	H ₃₈ F ₁₈ MoO ₆ Si
Formula weight		960.63
Temperature		100(2) K
Wavelength		1.54184 Å
Crystal system	г	nonoclinic
Space group		$P2_{1}/c$
	a = 16.9928(7) Å	$\alpha = 90^{\circ}$
Unit cell dimensions	b = 18.5398(8) Å	$\beta = 105.389(3)^{\circ}$
	c = 13.2555(5) Å	$\gamma = 90^{\circ}$
Volume	4	026.3(3) Å ³
Z		4
Density (calculated)	1.	$.585 \text{mg/m}^3$
Absorption coefficient	۷	4.081 mm ⁻¹
F(000)		1936
Crystal habitus	irreş	gular (orange)
Crystal size	0.320 x ($0.170 \text{ x} 0.140 \text{ mm}^3$
Theta range for data collection	3.5	99 to 76.251°
Index ranges	–19≤h≤19,	-22≤k≤18, -11≤l≤14
Reflections collected		16244
Independent reflections	6056 [R(int) = 0.0597]
Completeness to theta = 67.684°		76.8 %
Absorption correction		Gaussian
Max. and min. transmission	0.9	79 and 0.954

Figure S40. Molecular structure of **MoSi2F9** with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for clarity.

1 able 30. Crystallographic actails of 1410312F9 .

CCDC	2074895		
Empirical formula	$C_{38}H_{65}F_9MoO_9Si_2$		
Formula weight	989.02		
Temperature	130(2) H	K	
Wavelength	0.71073	Å	
Crystal system	monoclin	ic	
Space group	$P 2_1/c$		
Unit cell dimensions	a = 11.5736(2) Å	$\alpha = 90^{\circ}$	
	b = 21.7942(4) Å	$\beta = 100.760(2)^{\circ}$	
	c = 19.6903(5) Å	$\gamma = 90^{\circ}$	
Volume	4879.29(18) Å ³	
Z	4		
Density (calculated)	1.346 mg/	m ³	
Absorption coefficient	0.398 mm ⁻¹		
F(000)	2064		
Crystal habitus	irregular (orange)		
Crystal size	Crystal size 0.35 x 0.35 x 0.25 mr		
Theta range for data collection	2.304 to 31.	069°	
Index ranges	$-16 \le h \le 15, -31 \le k \le 31, -27 \le l \le 28$		
Reflections collected	128731		
Independent reflections	14665 [R(int) = 0.0490]		
Completeness to theta = 30.00°	99.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	Max. and min. transmission 1.00000 and 0.97935		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	14665 / 348 / 602		

Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0724
R indices (all data)	R1 = 0.0509, wR2 = 0.0800
Largest diff. peak and hole	0.538 and -0.436 e.Å ⁻³

Table S9. Crystallographic details of **MoSi*F9**.

CCDC	2074896			
Empirical formula	$C_{35}H_{40}F_{18}MoO_6Si$			
Formula weight	1022.70			
Temperature		100(2) K		
Wavelength		1.54184 Å		
Crystal system	1	monoclinic		
Space group		$P2_1/n$		
	a = 13.0531(2) Å	$\alpha = 90^{\circ}$		
Unit cell dimensions	b = 10.2588(2) Å	$\beta = 95.337(2)^{\circ}$		
	c = 32.3183(6) Å	$\gamma = 90^{\circ}$		
Volume	43	08.95(13) Å ³		
Z		4		
Density (calculated)	1	$.576 \mathrm{mg/m^3}$		
Absorption coefficient	3.855 mm ⁻¹			
F(000)	2064			
Crystal habitus	block (yellow)			
Crystal size	0.121 x 0.056 x 0.047 mm ³			
Theta range for data collection	2.746 to 77.547°			
Index ranges	–16≤h≤16,	-13≤k≤12, -40≤l≤31		
Reflections collected		70721		
Independent reflections	8988 [R(int) = 0.0401]		
Completeness to theta = 67.684°		99.9 %		
Absorption correction		Gaussian		
Max. and min. transmission	0.979 and 0.758			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	8988 / 0 / 562			
Goodness-of-fit on F ²	1.044			
Final R indices [I>2sigma(I)]	R1 = 0.0363, wR2 = 0.0924			
R indices (all data)	R1 = 0.0402, $wR2 = 0.0946$			
Largest diff. peak and hole	$0.773 \text{ and } -0.532 \text{ e.} \text{Å}^3$			

 $Table \,S10. \, crystallographic \,\, details \,\, of \, {\bf MoSiF9-MCBD}.$

CCDC	20	74896	
Empirical formula	$C_{29}H_{42}$	F ₁₈ MoO ₆ Si	
Formula weight	9	52.65	
Temperature	10	0(2) K	
Wavelength	1.5	54184 Å	
Instrument (scan mode)	Oxford Diffraction Xca	libur, Atlas, Nova (ω scans)	
Crystal system	ortho	orhombic	
Space group		Fdd2	
	a = 39.5833(4) Å	$\alpha = 90^{\circ}$	
Unit cell dimensions	b = 38.8824(4) Å	$\beta = 90^{\circ}$	
	c = 10.0284(2) Å	$\gamma = 90^{\circ}$	
Volume	1543	4.6(4) Å ³	
Z		16	
Density (calculated)	1.64	$0 \mathrm{mg}/\mathrm{m}^3$	
Absorption coefficient	4.249 mm ⁻¹		
F(000)	7712		
Crystal habitus	irregular (violett)		
Crystal size	0.147 x 0.100 x 0.086 mm ³		
Theta range for data collection	3.186 to 76.103°		
Index ranges	-49≤h≤49, -4	8≤k≤48, −12≤l≤12	
Reflections collected	14	42515	
Independent reflections	7889 [R(int) = 0.0692]	
Completeness to theta = 67.684°	1	00 %	
Absorption correction	Ga	aussian	
Max. and min. transmission	0.987 and 0.977		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7889 / 1 / 509		
Goodness-of-fit on F ²	1.073		
Final R indices [I>2sigma(I)]	R1 = 0.0365	5, wR2 = 0.0952	
R indices (all data)	R1 = 0.0379, wR2 = 0.0964		
Largest diff. peak and hole	1.127 and -0.910 e.Å ⁻³		

Figure S41. crystal structure of the four independent molecules from **MoSi*F9-MCBD** with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for clarity.

Table S11. crystallographic de	etails of MoSi*F9-MCBD .
--------------------------------	---------------------------------

CCDC	2074898			
Empirical formula	C ₃₄ H ₄₄ F ₁₈ MoO ₆ Si			
Formula weight	1014.72			
Temperature		100(2) K		
Wavelength		0.71073 Å		
Crystal system		monoclinic		
Space group		$P2_{1}/n$		
	a = 22.4338(3) Å	$\alpha = 90^{\circ}$		
Unit cell dimensions	b = 19.5534(3) Å	$\beta = 97.4393(12)^{\circ}$		
	c = 38.0768(5) Å	$\gamma = 90^{\circ}$		
Volume		16562.1(4) Å ³		
Z		16		
Density (calculated)		$1.628 \mathrm{mg/m^3}$		
Absorption coefficient	0.469 mm ⁻¹			
F(000)	8224			
Crystal habitus	irregular (purple)			
Crystal size	0.243 x 0.191 x 0.119 mm ³			
Theta range for data collection	1	.682 to 36.319°		
Index ranges	-37≤h≤3	7, −32≤k≤32, −63≤l≤63		
Reflections collected		910394		
Independent reflections	8028	9 [R(int) = 0.0816]		
Completeness to theta = 25.242°		100 %		
Absorption correction	Gaussian			
Max. and min. transmission	1.000 and 0.474			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	80289 / 0 / 2297			
Goodness-of-fit on F^2	1.143			
Final R indices [I>2sigma(I)]	R1 = 0.0697, wR2 = 0.1338			
R indices (all data)	R1 = 0.0995, wR2 = 0.1441			
Largest diff. peak and hole	2.792 and -1.762 e.Å ⁻³			

Alkyne Metathesis

General Procedure for Homometathesis. In a glove box, a 50 mL flask was charged with molecular sieve 5 Å (500 mg), *n*-decane (48.7 μ L, 1 eq.) as internal standard and a solution of the substrate (0.5 mmol) in toluene (2.5 mL). Afterwards the precatalyst **MoSiF9** (1 mol%, 2.4 mg) or **MoSi*F9** (1 mol%, 2.6 mg) was added. Samples of 0.05 mL were taken at specific times (0, 1, 2, 3, 4, 5, 10, 20, 30, 60, 120, 240, 1440 min). The samples were filtered through a pad of silica and washed with diethyl ether (1.2 mL) before measuring it in gas chromatographic analysis.

General Procedure for RCAM. In a glove box, a 50 mL flask was charged with molecular sieve 5 Å (500 mg), *n*-decane (48.7 μ L, 1 eq.) as internal standard and a solution of the substrate (0.25 mmol) in toluene (12 mL). Afterwards the precatalyst **MoSiF9** (2 mol%, 4.8 mg) or **MoSi*F9** (1 mol%, 2.6 mg) was added. Samples of 0.1 mL were taken at specific times (0, 1, 2, 3, 4, 5, 10, 20, 30, 60, 120(, 240, 1440)). The samples were filtered through a pad of silica and washed with diethyl ether (1 mL) before measuring it in gas chromatographic analysis.

General Procedure for isolated Yields. In a glove box, a 50 mL flask was charged with molecular sieve 5 Å (500 mg) and a solution of the substrate (0.5 mmol) in toluene (Homometathesis: 2.5 mL, RCAM: 12 mL). Afterwards the precatalyst **MoF9** (1 mol%, 4.7 mg), **MoSiF9** (Homometathesis: 1 mol%, 2.4 mg RCAM: 2 mol%, 4.8 mg) or **MoSi*F9** (1 mol%, 5.1 mg) was added. The solution was stirred for 2 h at rt. The pure products were obtained after filtration over silica, evaporation of the solvent in vacuo and a final column chromatography (*n*-hexane).

Figure S42. Assignment of the alkyne metathesis reactions.

Figure S43. Conversion-time plot of the metathesis with **MoSiF9**. GC-conversion after 2 h: A= 97%, B=97%, C= 99%, D= 97%.

Figure S44. Conversion-time plot of the metathesis with **MoSi*F9**. GC-conversion after 2 h: A = 95%, B = 95%, C = 97%, D = 98%.

Synthesis of 1,6-bis(benzyloxy)hex-3-yne (2)

The reaction took place according to the synthesis above with ((pent-3-yn-1-yloxy)methyl)benzene (91.4 mg, 0.52 mmol). Filtration over silica leaded the product as colorless liquid.

 $Yield_{MoSiF9}: 92\% Yield_{MoSi^*F9}: 97\%.$

Synthesis of hex-3-yne-1,6-diyl bis(4-methoxybenzoate) (4)

The reaction took place according to the synthesis above with pent-3-yn-1-yl 4-methoxybenzoate (112.7 mg, 0.51 mmol). Filtration over silica leaded the product as white solid.

 $Yield_{MoSiF9}: 99\% Yield_{MoSi^*F9}: 99\%.$

Synthesis of 2,9-benzodioxacyclododecin-1,10-dione (6)

The reaction took place according to the synthesis above with di(pent-3-yn-1-yl) phthalate (76.4 mg, 0.26 mmol). Filtration over silica leaded the product as white solid.

 $Yield_{MoSiF9}: 94\% Yield_{MoSi^*F9}: 95\%.$

Synthesis of 1,2-diphenylacetylene (8)

The reaction took place according to the synthesis above with prop-1-yn-1-ylbenzene (62,6 μ L, 0.5 mmol). Filtration over silica leaded the product as white solid. Yield_{MoF9}: 78% Yield_{MoSiF9}: 96% Yield_{MoSi*F9}: 88%.

Diyne Disproportionation

General Procedure for the catalyst examination via GC-experiments. In a glove box, a 25 mL flask was charged with either no molecular sieve, MS 4 Å (250 mg), MS 5 Å (250 mg) or a mixture of MS 4 Å and 5 Å (each 125 mg), *n*-decane (1 eq.) as internal standard and diyne **9a** (0.25 mmol) in DCM or toluene (8 mL). Afterwards the precatalyst **MoF9** (2 mol%), **MoSiF9** (2mol%) or **MoSi*F9** (2 mol%) was added. Samples of 0.05 mL were taken at specific times (0, 1, 2, 3, 4, 5, 10, 20, 30, 60, 120, 240, 360, 480, 1440 min). The samples were filtered through a pad of silica and washed with diethyl ether (1.2 mL) before measuring it in gas chromatographic analysis. Results of these examinations are shown in Table S12.

cat.	MS	solvent	GC-conv. [%]
	-	DCM	54
MaSi*E0	5Å	DCM	9
1031 19	4Å	DCM	44
	4Å+5Å	DCM	46
	4Å+5Å	toluene	92
	-	DCM	35
MaSiEO	5Å	DCM	0
MI031F9	4Å	DCM	23
	4Å+5Å	DCM	42
	4Å+5Å	toluene	86
	-	DCM	41
MaE0	5Å	DCM	11
MOF9	4Å	DCM	30
	4Å+5Å	DCM	25
	4Å+5Å	toluene	89

Table S12. GC-experiments at room temperature, 1 eq. n-decane as internal standard, 2 mol% catalyst-loading.

Figure S45. Conversion-time plot of the diyne disproportionation of **9a** in toluene with MS 4 Å + 5 Å and 2 mol% catalyst loading. GC-conversion after 24h: **MoF9** 89%, **MoSiF9** 86%, **MoSiF9** 92%.

Table S13. Isolated yields for the diyne disproportionation of the substrates **9a** and **9b**.

educt/product	MoF9	MoSiF9	MoSi*F9	
9a/10a ^c	82	79	88	
9b/10b ^c	50	17	71	

Synthesis of TIPSC=CC=CC=CTIPS (10a)

<u>MoF9</u>

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne **9a** (115.1 mg, 0.52 mmol), before MS 4 Å (400 mg) and MS 5 Å (400 mg) were added. Afterwards, the precatalyst **MoF9** (1 mol%, 5.2 mg, 0.0053 mmol) was added. After stirring for four hours at rt, the reaction mixture was filtered through a pad of silica and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid (82.8 mg, 0.21 mmol, 82 %). NMR spectroscopic data is in accordance with the literature.¹²

<u>MoSiF9</u>

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne **9a** (109.3 mg, 0.5 mmol) before MS 4 Å (400 mg) and MS 5 Å (400 mg) were added. Afterwards, the precatalyst **MoSiF9** (1 mol%, 5.1 mg, 0.0053 mmol) was added. After stirring for four hours at rt, the reaction mixture was filtered through a pad of silica and rinsed with DCM and pentane. Evaporation of the solvent and

recrystallization from MeOH yielded the product as white solid (75.4 mg, 0.19 mmol, 79 %). NMR spectroscopic data is in accordance with the literature.¹²

<u>MoSi*F9</u>

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne **9a** (117.0 mg, 0.53 mmol), before MS 4 Å (400 mg) and MS 5 Å (400 mg) were added. Afterwards, the precatalyst **MoSi*F9** (1 mol%, 6.0 mg, 0.0055 mmol) was added. After stirring for four hours at rt, the reaction mixture was filtered through a pad of silica and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid (90.4 mg, 0.23 mmol, 88 %). NMR spectroscopic data is in accordance with the literature.¹²

¹**H NMR** (400 MHz, CDCl₃, 298 K): δ = 1.12–1.09 (m, 42H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃, 298K): δ = 89.9 (TIPSCCC), 84.9 (TIPSCCC), 61.5 (TIPSCCC), 18.7 (CH₃), 11.4 (CH) ppm.

Synthesis of MesC=CC=CMes (10b)

<u>MoF9</u>

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne **9b** (93.4 mg, 0.5 mmol), before MS 4 Å (400 mg) and MS 5 Å (400 mg) were added. Afterwards, the precatalyst **MoF9** (1 mol%, 4.8 mg, 0.005 mmol) was added. After stirring for one hour at rt, the reaction mixture was filtered and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid (38.5 mg, 0.12 mmol, 50 %).

<u>MoSiF9</u>

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne **9b** (91.9 mg, 0.5 mmol), before MS 4 Å (400 mg) and MS 5 Å (400 mg) were added. Afterwards, the precatalyst **MoSiF9** (1 mol%, 4.9 mg, 0.005 mmol) was added. After stirring for one hour at rt, the reaction mixture was filtered and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid (13.6 mg, 0.04 mmol, 17 %).

<u>MoSi*F9</u>

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne **9b** (89 mg, 0.5 mmol), before MS 4 Å (400 mg) and MS 5 Å (400 mg) were added. Afterwards, the precatalyst **MoSi*F9** (1 mol%, 5.1 mg, 0.005 mmol) was added. After stirring for one hour at rt, the reaction mixture was filtered and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid (53.6 mg, 0.17 mmol, 71 %).

¹**H NMR** (400 MHz, CDCl₃, 298 K): δ = 6.87 (s, 4H, H_{Ar}), 2.42 (s, 12H, o-CH₃), 2.29 (s, 6H, p-CH₃) ppm.

¹³C{¹H} **NMR** (101 MHz, CDCl₃, 298K): δ = 142.7, 139.5, 128.0, 118.1, 81.5 (MesCCC), 77.2 (MesCCC), 67.8 (MesCCC), 21.6 (*p*-CH₃), 21.1 (*o*-CH₃) ppm.

HRMS (MALDI): calcd. for $C_{24}H_{22}$ [M]⁺: 310.1716; found: 310.171.

Scheme S2. Diyne disproportionation of **9a**.

==== Shimadzu LabSolutions Analysis Report ====

Sample Name Sample ID Data Filename Method Filename	: SR5-652 : : SR5-652.gcd : GC1-TR5-80-340-M1.gcm		
Batch Filename	: 1-[2020-07-07]-1.gcb		
Vial #	:2	Sample Type	: Unknown
Injection Volume	: 1 uL		
Date Acquired	: 07/07/2020 18:48:06	Acquired by	: System Administrator
Date Processed	: 07/07/2020 19:15:22	Processed by	: System Administrator

<peak< th=""><th>Tab</th><th>le;</th></peak<>	Tab	le;
SFID1		

Peak#	Name	Ret. Time	Area	Height	Area%	Height%	Resolution(USP)
1		3.25	886111	151847	56.9	44.1	
2		7.07	38023	3930	2.4	1.1	25.56
3		13.55	633159	188811	40.7	54.8	46.35
Total			1557294	344587	100.0	100.0	

Figure S46. Raw GC spectrum of the diyne disproportionation of **9a** shown in scheme S2.

Figure S48. ¹³C{¹H} NMR spectrum of **10a** in CDCl₃.

Scheme S3. Diyne disproportionation of **9b**.

Figure S49. Raw GC-MS spectrum of the diyne disproportionation of **9b** shown in scheme S3.

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 fl(ppm)

-2000

References

(1) Haberlag, B.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Efficient metathesis of terminal alkynes. *Angew. Chem. Int. Ed. Engl.* **2012**, *51* (52), 13019–13022. DOI: 10.1002/anie.201207772.

(2) Bittner, C.; Ehrhorn, H.; Bockfeld, D.; Brandhorst, K.; Tamm, M. Tuning the Catalytic Alkyne Metathesis Activity of Molybdenum and Tungsten 2,4,6-Trimethylbenzylidyne Complexes with Fluoroalkoxide Ligands OC(CF 3) n Me 3– n (n = 0-3). *Organometallics* **2017**, *36* (17), 3398–3406. DOI: 10.1021/acs.organomet.7b00519.

(3) Lysenko, S.; Haberlag, B.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Efficient Catalytic Alkyne Metathesis with a Tri(tert-butoxy)silanolate-Supported Tungsten Benzylidyne Complex. *ChemCatChem* **2011**, *3*(1), 115–118. DOI: 10.1002/cctc.201000355.

(4) Docherty, S. R.; Estes, D. P.; Copéret, C. Facile Synthesis of Unsymmetrical Trialkoxysilanols:

(RO) 2 (R'O)SiOH. Helv. Chim. Acta 2018, 101 (3), e1700298. DOI: 10.1002/hlca.201700298.

(5) Rigaku Oxford Diffraction. CrysAlisPRO Software System, versions 1.171.38.43 (2015),

1.171.40.61a (2019) and 1.171.40.81a (2020); Rigaku Corporation.

(6) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, 64 (Pt 1), 112–122. DOI: 10.1107/S0108767307043930. Published Online: Dec. 21, 2007.

(7) Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. A: Found. Adv.* **2015**, *71* (Pt 1), 3–8. DOI: 10.1107/S2053273314026370. Published Online: Jan. 1, 2015.

(8) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* 2015, *71* (Pt 1), 3–8. DOI: 10.1107/S2053229614024218. Published Online: Jan. 1, 2015.
(9) Farrugia, L. J. WinGX and ORTEP for Windows : an update. *J. Appl. Crystallogr.* 2012, *45* (4), 849–854. DOI: 10.1107/S0021889812029111.

(10) K. Brandenburg. Diamond; Crystal Impact GbR.

(11) The Cambridge Crystallographic Data Centre. *Mercury CSD*; CCDC.

(12) Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. *J. Am. Chem. Soc.* **2005**, *127* (8), 2666–2676. DOI: 10.1021/ja044526l.