Supporting Information

Catalytic Alkyne and Diyne Metathesis with Mixed Fluoroalkoxy-Siloxy Molybdenum Alkylidyne Complexes

Manuel L. Zier, ${ }^{a}$ Sophie Colombel-Rouen, ${ }^{b}$ Henrike Ehrhorn, ${ }^{a}$ Dirk Bockfeld,,${ }^{a}$ Yann Trolez, ${ }^{b}$ Marc Mauduit, ${ }^{b}$ Matthias Tamm ${ }^{a, *}$
${ }^{a}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany, Fax: +49 (531) 391 5387; Tel: +49 (531) 391 5309; E-Mail: m.tamm@tu-bs.de
${ }^{b}$ Univ Rennes; Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France

Experimental Section S1
General Experimental Considerations. S1
Analytical Methods S1
Experimental Procedures S2
NMR Spectra S5
Van 't Hoff Analysis. S23
XRD details S28
Alkyne Metathesis S37
Synthesis of 1,6-bis(benzyloxy)hex-3-yne (2) S39
Synthesis of hex-3-yne-1,6-diyl bis(4-methoxybenzoate) (4) S39
Synthesis of 2,9-benzodioxacyclododecin-1,10-dione (6) S39
Synthesis of 1,2-diphenylacetylene (8) S39
Diyne Disproportionation S40
Synthesis of TIPSC $\equiv \mathrm{CC} \equiv \mathrm{CC} \equiv$ CTIPS (10a) S41
Synthesis of MesC $\equiv \mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CMes}(\mathbf{1 0 b})$ S42
References S47

Experimental Section

General Experimental Considerations

Synthesis of the molecular precursors was carried out according to the literature using dry and oxygen free argon glovebox atmosphere (MBraun) or were prepared using high vacuum lines ($10^{-5} \mathrm{mbar}$). n Pentane, n-hexane, THF, and toluene were purified using double MBraun SPS alumina columns and degassed by argon-bubbling for at least 15 min prior to use. Hexamethyldisoloxane (HMDSO) was dried over CaH_{2} and refluxed for three days. The solvents were stored over molecular sieves $3-4 \AA$ inside a glovebox. Benzene- d_{6} was degassed by three consecutive freeze-pump-thaw cycles and stirred overnight with NaK-alloy. Dichloromethane- d_{2} was distilled over CaH_{2}. 1-Phenyl-1-propyne was distilled over CaH_{2} and then filtered through alumina that had been activated under high vacuum at $500^{\circ} \mathrm{C}\left(\mathrm{Al}_{2} \mathrm{O}_{3-500}\right)$. 1-Phenyl-1-propyne was used immediately after being filtered over $\mathrm{Al}_{2} \mathrm{O}_{3-500}$. Complexes and catalysts $\left[\mathrm{MesC} \equiv \mathrm{MoBr}_{3}(\mathrm{dme})\right]^{1},\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}^{2}\left(\mathrm{CF}_{3}\right)_{n} \mathrm{Me}_{3-n}\right\}_{3}\right.$ (MoF0, $n=0$, MoF3, $n=1$, and MoF9, $n=3)^{2}$ and $\mathrm{KOSi}(\mathrm{O} t \mathrm{Bu})_{3}{ }^{3}$ were synthesized according to literature methods. The silicate $\mathrm{HOSi}(\mathrm{O} t \mathrm{Bu})_{2}(\mathrm{OMes})^{4}$ was synthesized according to the literature. Celite was dried over night at $130^{\circ} \mathrm{C}$ and then under vacuum for 5 h , before storing it in the glovebox. The powdered molecular sieves Molecular sieves $4 \AA$ (CAS: 70955-01-0; Ref. No. 11424553 Alfa Aesar ${ }^{\text {T4 }}$) and $5 \AA$ (CAS : 69912-79-4; Ref. No. 10296980 Acros Organics $\left.{ }^{\text {TI }}\right)$ were heated in oven ($\sim 400^{\circ} \mathrm{C}$ for 24 hours) then vacuum ($10^{-2} \mathrm{mmbar}$ for 24 h) was applied prior to introduction into the glove box.

Analytical Methods

Solution ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra were obtained on Bruker AV II-300 (300 MHz), Bruker AV II$400(400 \mathrm{MHz})$ or Bruker AV II-600 (600 MHz) instruments at room temperature. Variable temperature and 2D NMR experiments were carried out on Bruker AV II-400 (400 MHz) or Bruker AV $I I-600(600 \mathrm{MHz})$. Low temperature measurements where calibrated with $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CD}_{3} \mathrm{OD}$, high temperature measurements where calibrated with $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ in DMSO- d_{6}. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are referenced to the solvent peak, and the ${ }^{19} \mathrm{~F}$ chemical shifts are referenced relative to virtual internal CFCl_{3}. $\mathrm{All}^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra were measured ${ }^{1} \mathrm{H}$ decoupled. Spin multiplicity is designated by: s, singlet; d, doublet; t , triplet; q , quartet; sept, septet; m , multiplet. The number of protons (n) for a given resonance is indicated by nH . Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in Hz . The NMR data were interpreted in first order spectra. Gas chromatography (GC) was performed on a HP 5890 Series II using DB5-HT column $(l=30 \mathrm{~m}, d=0.25 \mathrm{~mm})$ with FID detection $\left(310^{\circ} \mathrm{C}\right)$. The sample $(1 \mu \mathrm{~L})$ was injected at $250^{\circ} \mathrm{C}$ with a split(splitless ratio of $1: 10$ and heated in the column from 50 to $300^{\circ} \mathrm{C}$ with a heating rate of $10^{\circ} \mathrm{C}$ min^{-1}. For calibration, n-decane was used as an internal standard. GCMS was performed on a GC-2010 SHIMADZU coupled directly with a QP2010SE mass spectrometer operating in positive EI mode ($70 \mathrm{eV}, 60-700 \mathrm{~m} / \mathrm{z}$) with the following conditions: injection temperature $50^{\circ} \mathrm{C}$ for 3 min , heating rate $12^{\circ} \mathrm{C} \mathrm{min}^{-1}$, end temperature $300^{\circ} \mathrm{C}$ for 38 min ; column type: ZB-5MS GUARDIAN ($l=30 \mathrm{~m}, d$ $=0.25 \mathrm{~mm})$; He carrier gas ($1.5 \mathrm{~mL} \mathrm{~min}^{-1}$). Elemental analyses were performed by using a Vario Micro Cube with WLD and IR detectors.

Experimental Procedures

Synthesis of $\left[\mathrm{MesC}=\mathbf{M o}\left\{\mathbf{O C}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{2}\left\{\mathbf{O S i}(\mathbf{O t B u})_{3}\right\}\right](\mathrm{MoSiF} 9)$

To a solution of $\operatorname{KOSi}(\mathrm{O} t \mathrm{Bu})_{3}(56.8 \mathrm{mg}, 0.19 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{3}\right]$ (MoF9) ($174.9 \mathrm{mg}, 0.19 \mathrm{mmol}$), and the reaction mixture was stirred for 16 h at $40^{\circ} \mathrm{C}$. After evaporation of the solvent, the residue was extracted with n-pentane (2 mL); the solution was filtered over Celite and stored at $-38^{\circ} \mathrm{C}$. The product was obtained as yellow crystals ($169.9 \mathrm{mg}, 0.18 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=6.56-6.47\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 2.78\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.01(\mathrm{~s}, 3 \mathrm{H}, p-$ $\left.\mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right) \mathrm{ppm}{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=320.9(\mathrm{~s}$, $\mathrm{Mo} \equiv \mathrm{C}), 143.3\left(\mathrm{~s}, o-\mathrm{C}_{\mathrm{Ar}}\right), 142.8\left(\mathrm{~s}, i-\mathrm{C}_{\mathrm{Ar}}\right), 140.5\left(\mathrm{~s}, p-\mathrm{C}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{~s}, \mathrm{CH}_{\mathrm{Ar}}\right), 121.5\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=292 \mathrm{~Hz}\right.$, $\left.\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)$, 85.3 (sept, $\left.{ }^{2} \mathrm{~J}_{\mathrm{CF}}=30 \mathrm{~Hz}, \quad \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right)$, $75.3\left(\mathrm{~s}, \operatorname{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right), 31.2$ (s, $\left.\mathrm{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right), 21.0\left(\mathrm{~s}, p-\mathrm{CH}_{3}\right), 20.4\left(\mathrm{~s}, \mathrm{o}-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(376.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right):$ $\delta=-72.9\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$ ppm. Elemental analysis (\%) calc. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~F}_{18} \mathrm{MoO}_{6} \mathrm{Si}: \mathrm{C} 37.51, \mathrm{H} 3.99$; Found: C 37.83, H 4.04.

Synthesis of $\operatorname{KOSi}(\mathbf{O t B u})_{2}(\mathbf{O M e s})$

$\operatorname{HOSi}(\mathrm{OtBu})_{2}(\mathrm{OMes})(1.2 \mathrm{mmol}, 0.4 \mathrm{~g})$ was dissolved in diethyl ether $(5 \mathrm{~mL})$, and $\mathrm{KH}(1.2 \mathrm{mmol}$, 48.12 mg) was added in small portions. After stirring the reaction mixture for 4 h at rt , the solvent was evaporated, and the product was isolated as a white solid ($0.39 \mathrm{~g}, 1.09 \mathrm{mmol}, 92 \%$).
${ }^{1}{ }^{1}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta=6.77(\mathrm{~s}, 2 \mathrm{H}, m-\mathrm{CH}), 2.49\left(\mathrm{~s}, 6 \mathrm{H}, m-\mathrm{CH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right)$, $1.44\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=152.2$ (s, ipso-C), 129.7 $(\mathrm{s}, o-\mathrm{C}), 129.6(\mathrm{~s}, p-\mathrm{C}), 129.2(\mathrm{~s}, m-\mathrm{C}), 71.3\left(\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.3\left(\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.5\left(\mathrm{~s}, p-\mathrm{CH}_{3}\right), 19.4$ ($\mathrm{s}, m-\mathrm{CH}_{3}$) ppm. ${ }^{29} \mathbf{S} \mathbf{i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(99 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=-91.0(\mathrm{~s}, \mathrm{Si})$ ppm. Elemental analysis (\%) calc. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{KO}_{4} \mathrm{Si}$: C 56.00, H 8.02; Found: C 56.38, H 8.19.

Synthesis of $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{2}\left\{\mathrm{OSi}(\mathrm{OMes})(\mathrm{OtBu})_{2}\right\}\right]\left(\mathrm{MoSi}{ }^{*} \mathrm{~F} 9\right)$

To a solution of $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{3}\right]$ (MoF9) (100 mg , 0.011 mmol) in toluene $(2 \mathrm{~mL})$ was added $\mathrm{KOSi}(\mathrm{OtBu})_{2}(\mathrm{OMes})$ ($39.1 \mathrm{mg}, 0.11 \mathrm{mmol}$) and stirred over night at room temperature. After evaporation of the solvent, the crude product was extracted with HMDSO and filtered over Celite. Recrystallization at $-38^{\circ} \mathrm{C}$ afforded the product as yellow crystals ($62.8 \mathrm{mg}, 0.06 \mathrm{mmol}, 56 \%$).
${ }^{1}{ }^{1}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta=6.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SiOMesH}_{\mathrm{Ar}}\right), 6.47-6.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{MoCMesH}_{\mathrm{Ar}}\right)$, $2.70\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{MoCMes}\left(o-\mathrm{CH}_{3}\right)\right), 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiOMes}\left(o-\mathrm{CH}_{3}\right)\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \operatorname{MoCMes}\left(p-\mathrm{CH}_{3}\right)\right), 1.95$ (s, 3H, SiOMes $\left(p-\mathrm{CH}_{3}\right)$), $1.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\right.$ NMR $\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $298 \mathrm{~K}): \delta=323.5(\mathrm{~s}, \mathrm{MoC}), 149.0\left(\mathrm{~s}, \mathrm{SiOMes} i-\mathrm{C}_{\mathrm{Ar}}\right), 143.2\left(\mathrm{~s}, i-\mathrm{C}_{\mathrm{Ar}}\right), 142.7\left(\mathrm{~s}, o-\mathrm{C}_{\mathrm{Ar}}\right), 141.1\left(\mathrm{~s}, p-\mathrm{C}_{\mathrm{Ar}}\right)$,
 $\left.{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=292 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 85.3\left(\mathrm{sept},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 75.7\left(\mathrm{~s}, \mathrm{OCCH}_{3}\right), 30.9\left(\mathrm{~s}, \mathrm{OCCH}_{3}\right), 21.1(\mathrm{~s}$, SiOMes $p-\mathrm{CH}_{3}$), $20.6\left(\mathrm{~s}, \mathrm{MoCMes} p-\mathrm{CH}_{3}\right), 20.0\left(\mathrm{~s}, \mathrm{MoCMes} o-\mathrm{CH}_{3}\right), 17.9\left(\mathrm{~s}\right.$, SiOMes $\left.o-\mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=-73.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right) \mathrm{ppm} .{ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(99 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$,

298 K): $\delta=-93.0(\mathrm{~s}, \mathrm{Si}) \mathrm{ppm}$. Elemental analysis (\%) calc. for $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{18} \mathrm{MoO}_{6} \mathrm{Si}: \mathrm{C} 41.10$, H 3.94; Found: C 40.72, H 3.71.

Synthesis of $\left[\left(\mathrm{Et}_{3} \mathrm{C}_{3}\right) \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{2}\left\{\mathbf{O S i}(\mathrm{OtBu})_{3}\right\}\right](\mathrm{MoSiF9}-\mathrm{MCBD})$

To a precooled solution of $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{2}\left\{\mathrm{OSi}(\mathrm{O} t \mathrm{Bu})_{3}\right\}\right]$ (MoSiF9) ($10 \mathrm{mg}, 0.01 \mathrm{mmol}$) in n-pentane (0.1 mL) was added 3hexyne ($12 \mu \mathrm{~L}, 8.55 \mathrm{mg}, 0.1 \mathrm{mmol}$). The mixture was immediately stored in the freezer at $-38^{\circ} \mathrm{C}$ to slowly grow the product as violet crystals, which decompose above $-38^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 233.55 \mathrm{~K}\right): \delta=1.40(\mathrm{~s}, 27 \mathrm{H}$, $\left.\operatorname{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right), 1.43\left(\mathrm{t}, 3 \mathrm{H},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=8 \mathrm{~Hz}, \beta-\mathrm{CH}_{3}\right), 1.71\left(\mathrm{t}, 6 \mathrm{H},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=7 \mathrm{~Hz}, \alpha-\mathrm{CH}_{2}\right), 3.63\left(\mathrm{q},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=7 \mathrm{~Hz}, 4 \mathrm{H}, \alpha-\mathrm{CH}_{2}\right), 3.81\left(\mathrm{q},{ }^{3}{ }^{3} \mathrm{H}, \mathrm{H}=8 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 233.55 \mathrm{~K}$): $\delta=265.5\left(\mathrm{~s}, \mathrm{C}_{q}, \alpha-\mathrm{C}\right), 152.3\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}, \beta-\mathrm{C}\right), 121.0\left(\mathrm{q}^{1}{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=295\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right)$, 82.8-81.3 ($\left.\mathrm{m}, \mathrm{C}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 73.2\left(\mathrm{~s}, \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.5\left(\mathrm{~s}, \alpha-\mathrm{CH}_{2}\right), 31.3\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.0$ ($\mathrm{s}, \beta-\mathrm{CH}_{2}$), $12.7\left(\mathrm{~s}, \alpha-\mathrm{CH}_{3}\right), 12.3\left(\mathrm{~s}, \beta-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(377 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 233.55 \mathrm{~K}\right): \delta=$ -72.6 ($\mathrm{s}, \mathrm{CF}_{3}$) ppm.

Synthesis of $\left[\left(\mathrm{Et}_{3} \mathrm{C}_{3}\right) \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{2}\left\{\mathrm{OSi}(\mathrm{OMes})(\mathrm{OtBu})_{2}\right\}\right]\left(\mathrm{MoSi}^{*} \mathbf{F 9} 9 \mathrm{MCBD}\right)$

3-Hexyne ($12 \mu \mathrm{~L}, 8.55 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to a solution of $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3}\right\}_{2}\left\{\mathrm{OSi}(\mathrm{OMes})(\mathrm{O} t \mathrm{Bu})_{2}\right\}\right]\left(\mathbf{M o S i}{ }^{*} \mathrm{~F} 9\right)(10 \mathrm{mg}$, $0.01 \mathrm{mmol})$ in n-pentane $(0.1 \mathrm{~mL})$. The mixture was immediately stored in the freezer at $-38^{\circ} \mathrm{C}$ to slowly grow the product as violet crystals.
${ }^{1} \mathbf{H}$ NMR (500 MHz , Toluene- $\left.d_{8}, 298.15 \mathrm{~K}\right): \delta=6.80\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, H_{\mathrm{Ar}}\right), 3.15\left(\mathrm{q},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C} \alpha \mathrm{CH}_{2}\right), 3.05\left(\mathrm{q},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{C}_{\beta} \mathrm{CH}_{2}\right), 2.58\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 1.57\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}_{\alpha} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(\mathrm{t},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=8 \mathrm{~Hz}, 3 \mathrm{H}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz}\right.$, toluene- $\left.d_{8}, 298 \mathrm{~K}\right): \delta=265.1$ ($\mathrm{s}, \mathrm{C}_{\alpha}$), $151.1\left(\mathrm{~s}, \mathrm{C}_{\beta}\right), 150.4\left(\mathrm{~s}, \mathrm{SiOC}_{q}\right), 130.3$ ($\left.\mathrm{s}, \mathrm{SiOCCCHC}\right), 129.4$ ($\left.\mathrm{s}, \mathrm{SiOCCCH}\right), 128.6$ (s , $\mathrm{SiOCC}), 121.9\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=295 \mathrm{~Hz}\right), 82.8\left(\mathrm{~m},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}\right), 74.1\left(\mathrm{~s}, \mathrm{SiOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.0(\mathrm{~s}$, $\mathrm{C} \alpha \mathrm{CH}_{2}$), $31.4\left(\mathrm{~s}, \mathrm{SiOC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.1\left(\mathrm{~s}, \mathrm{C}_{\alpha} \mathrm{CH}_{2}\right), 20.8\left(\mathrm{~s}, \mathrm{p}-\mathrm{CH}_{3}\right), 18.3\left(\mathrm{~s}, o-\mathrm{CH}_{3}\right), 12.7$ (s , $\left.\mathrm{C}_{\alpha} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 12.4\left(\mathrm{~s}, \mathrm{C}_{\beta} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(471 \mathrm{MHz}\right.$, toluene- $\left.d_{8}, 298.15 \mathrm{~K}\right): \delta=-72.6$ ($\mathrm{s}, \mathrm{CF}_{3}$) $\mathrm{ppm} .{ }^{29} \mathbf{S i}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(99 \mathrm{MHz}\right.$, toluene- $\left.d_{8}, 298 \mathrm{~K}\right): \delta=-105.8(\mathrm{~s}, \mathrm{Si}) \mathrm{ppm}$.

Reaction towards $\left[\mathrm{MesC} \equiv \mathbf{M o}\{\mathrm{OtBu}\}_{2}\left\{\mathbf{O S i}(\mathrm{OtBu})_{3}\right\}\right](\mathrm{MoSiFO})$

To a solution of $\mathrm{KOSi}(\mathrm{OtBu})_{3}(29.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\left[\mathrm{MesC} \equiv \mathrm{Mo}\{\mathrm{O} t \mathrm{Bu}\}_{3}\right]$ (MoF0) $(43.6 \mathrm{mg}, 0.10 \mathrm{mmol})$, and the reaction mixture was stirred four hours at $40^{\circ} \mathrm{C}$. After evaporation of the solvent the residue was extracted with n-pentane (2 mL), filtered over Celite and stored at $-38^{\circ} \mathrm{C}$. The product could only be isolated as mixture with the starting material and the corresponding bis- and tris(siloxide) complexes.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=6.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 2.89\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right)$, $1.53\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right) \mathrm{ppm}$.

Reaction towards $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right) \mathrm{Me}_{2}\right\}_{2}\left\{\mathbf{O S i}(\mathbf{O} t \mathrm{Bu})_{3}\right\}\right](\mathrm{MoSiF} 3)$

To a solution of $\mathrm{KOSi}(\mathrm{OtBu})_{3}(37.8 \mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\left[\mathrm{MesC} \equiv \mathrm{Mo}\left\{\mathrm{OC}\left(\mathrm{CF}_{3}\right) \mathrm{Me}_{2}\right\}_{3}\right](\mathbf{M o F} 3)(76.1 \mathrm{mg}$, 0.12 mmol) and the reaction mixture was stirred four hours at $40^{\circ} \mathrm{C}$. After filtration over Celite and washing with toluene (1 mL), the solvent was evaporated. The residue was extracted with n-pentane $(2 \mathrm{~mL})$, filtrated over Celite and stored at $-38^{\circ} \mathrm{C}$. The product could only be isolated as mixture with the corresponding bis- and tris(siloxide) complexes.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta=6.71\left(\mathrm{~m}, 2 \mathrm{H}, H_{\mathrm{Ar}}\right), 2.89\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right)$, $1.43\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CF}_{3}\right), 1.37\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{OSi}\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)_{3}\right) \mathrm{ppm}$.

NMR Spectra

Figure S1: Crude ${ }^{1}$ H NMR spectrum of MoSiF0 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S2: Crude ${ }^{1}$ H NMR spectrum of MoSiF3 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3. Crude ${ }^{19}{ }^{5}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of MoSiF3 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4: ${ }^{1}$ H NMR spectrum of MoSiF9 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S5: ${ }^{19} F\{H\}$ NMR spectrum of MoSiF9 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6. ${ }^{13} \mathrm{C}\{H\}$ NMR spectrum of MoSiF9 in $\mathrm{C}_{6} D_{6}$.

Figure S7. ${ }^{1}$ H NMR spectrum of MoSiF9 in toluene- d_{8}.
(10

Figure 8. ${ }^{19}$ F $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of MoSiF9 in toluene- d_{8}.

Figure S9: ${ }^{13} C\{H\}$ NMR spectrum of MoSiF9 in toluene-d8.

Figure S10: ${ }^{1} \mathrm{H}$ variable temperature $N M R$ spectrum of MoSiF9 in toluene-d 8.

Figure S11. ${ }^{1} H$ NMR spectrum of $\mathbf{M o S i}{ }^{*} \mathbf{F 9}^{\text {in }} \mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S12. ${ }^{19} \mathrm{~F}\left\{{ }^{1} H\right\}$ NMR spectrum of $\mathbf{M o S i} \boldsymbol{F}^{*} \mathbf{F 9}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S13. ${ }^{29}$ Si NMR spectrum of MoSi*F9 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14. ${ }^{13} C\left\{{ }^{1} H\right\}$ NMR spectrum of MoSi* ${ }^{*} \mathbf{F}$ in $\mathrm{C}_{6} D_{6}$.

Figure S15: ${ }^{1} \mathrm{H}$ variable temperature NMR spectra of $\mathbf{M o S} \mathbf{i}^{*} \mathbf{F 9}$ in toluene-d ${ }_{8}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{M o S i F 9 - M C B D}$ from 3.1-0.6 ppm in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at rt. Only 3-hexyne and ${ }^{\text {Et }} \mathbf{M o S i F 9}$ visible.

Figure S17. ${ }^{1} \mathrm{H}$ NMR of MoSiF9-MCBD in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-39.6^{\circ} \mathrm{C}$.

Figure S18. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of MoSiF9-MCBD in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-39.6^{\circ} \mathrm{C}$.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of MoSiF9-MCBD in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-39.6^{\circ} \mathrm{C}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{M o S i}^{*}$ F9-MCBD in toluene- d_{8} at r.

Figure S21. ${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of MoSi* ${ }^{*}$ 9-MCBD in toluene- d_{8} at r t.

Abstract

Figure S22. ${ }^{19} F\left\{{ }^{1} H\right\}$ NMR of MoSi*F9-MCBD in toluene- d_{8} at r t.
※

Figure S23. 29 Si NMR MoSi*F9-MCBD in toluene-d d_{8} at r.

Figure S24: ${ }^{1} \mathrm{H}$ and ${ }^{19} F\left\{{ }^{1} \mathrm{H}\right\}$ variable temperature $N M R$ spectra of $\mathbf{M o S i}{ }^{*} \mathbf{F} 9-\mathbf{M C B D}$ in toluene- d_{8}.

Figure S25. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ variable temperature NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ used for VAN'T HOFF analysis. Left: MoSiF9-MCBD; right: MoSiF9 ${ }^{\text {Et }}$.

Figure S26. HMBC from MoSiF9-MCBD at $-39.6^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S27. HSQC from MoSiF9-MCBD at $-39.6^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S28. NOESY from MoSiF9-MCBD at $-39.6^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S29. NOESY from MoSiF9-MCBD at $-17.0^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S30. ${ }^{19}{ }^{[}\left\{{ }^{1} H\right\}$ variable temperature NMR in toluene-d d_{8} used for VAN'T HOFF analysis. Left: MoSiF9-MCBD; right MoSiF9 ${ }^{\text {Et }}$.

Figure S31. ${ }^{19}{ }^{2}\left\{{ }^{1} H\right\}$ variable temperature NMR in toluene-d used for VAN'T HOFF analysis. Left: MoF9-MCBD; right: MoF9 ${ }^{\text {Et }}$.

Figure S32. ${ }^{19} F\left\{{ }^{1} H\right\}$ variable temperature NMR in toluene- d_{8} used for VAN'T HOFF analysis. $-72.51 \mathrm{ppm}:$ MoSi$^{*} \mathbf{F} 9-\mathbf{M C B D},-73.04 \mathrm{ppm}$: MoSi*F9 ${ }^{\text {Et }}$.

Van 't Hoff Analysis

alkylidyne	MCBD	R
MoF9Et	MoF9-MCBD	$\mathrm{C}\left(\mathrm{CF}_{3}\right)_{3}$
MoSiF9Et $^{\text {Et }}$	MoSiF9-MCBD	$\mathrm{Si}(\mathrm{OtBu})_{3}$
MoSi*F9Et $^{\text {Et }}$	MoSi*F9-MCBD	$\mathrm{Si}(\mathrm{OtBu})_{2}(\mathrm{OMes})$

Scheme S1. [2+2]-cycloreversion of the respective MCBD.
The metallacycle MoF9-MCBD, MoSiF9-MCBD or MoSi*F9-MCBD were dissolved in toluene- d_{8} (also $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ for MoSiF9-MCBD) and transferred to an NMR tube. The NMR tube was inserted into a temperature-controlled NMR spectrometer and ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded in a specific temperature range. The ratio of alkylidyne and MCBD was determined by integration of the ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances and the amount of 3-hexyne must be equal to the respective alkylidyne. The equilibrium constants at different temperatures were calculated according to the following formula:

$$
K_{\mathrm{eq}}=\frac{[\mathrm{MCBD}]}{[\text { Alkylidyne }]^{2}}
$$

Subsequently, $\ln \left(K_{\mathrm{eq}}\right)$ was plotted as a function of $1 / T$ and according to the following formula the enthalpy, entropy of the reaction could be extracted from the slope and the y-axis intercept of the linear fit:

$$
\ln \left(K_{\text {eq }}\right)=\frac{-\Delta H}{R} \cdot \frac{1}{T}+\frac{\Delta S}{R}
$$

Figure S33. VAN 'T HOFF plot of the [2+2]-cycloreversion of MoF9-MCBD derived from ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data in toluene-d d_{8} from 298.25 K to 355.75 K in ~ 5 K intervals.

Table S1. Data points used for the van't Hoff analysis of the [2+2]-cycloreversion of MoF9-MCBD in toluene- d_{8}.

	$\operatorname{Col}(\mathrm{A})$	Col(B)	$\operatorname{Col}(\mathrm{C})$	Col(D)	Col(E)	$\operatorname{Col}(\mathrm{F})$	$\operatorname{Col}(\mathrm{G})$
				Integral	Integral		
	temperature $\left[{ }^{\circ} \mathrm{C}\right]$	temperature [K]	1/T	MCBD	Alkylidyne	K	$\ln (\mathrm{K})$
function		$\begin{gathered} (\operatorname{Col}(\mathrm{A})) \\ +273.15 \end{gathered}$	$1 /(\operatorname{Col}(\mathrm{B}))$			$\operatorname{Col}(\mathrm{D}) /\left(\operatorname{Col}(\mathrm{E})^{\wedge} 2\right)$	$\ln (\operatorname{Col}(\mathrm{F})$)
1	25.1	298.25	0.00335	9336.36	663.64	0.0212	-3.85381
2	28.2	301.35	0.00332	9092.17	907.83	0.01103	-4.50695
3	33.7	306.85	0.00326	8792.21	1207.79	0.00603	-5.11147
4	39.1	312.25	0.0032	8406.69	1593.31	0.00331	-5.71035
5	44.8	317.95	0.00315	7951.93	2048.07	0.0019	-6.26814
6	50.1	323.25	0.00309	7395.92	2604.08	0.00109	-6.82099
7	55.5	328.65	0.00304	6736.3	3263.7	$6.32413 \mathrm{E}-4$	-7.36597
8	60.9	334.05	0.00299	5984.94	4015.06	$3.71258 \mathrm{E}-4$	-7.89861
9	66.4	339.55	0.00295	5131.3	4868.7	$2.16472 \mathrm{E}-4$	-8.43805
10	71.9	345.05	0.0029	4302.65	5697.35	$1.32553 \mathrm{E}-4$	-8.92853
11	77.6	350.75	0.00285	3423.17	6576.83	$7.91399 \mathrm{E}-5$	-9.44429
resulting linear plot function: $y=a+b^{*} x$ with $a=-40.09847 \pm 0.37065$ and $b=10755.39235 \pm 120.29497$							

Figure S34. VAN'T HOFF plot of the $[2+2]$ cycloreversion of MoSiF9-MCBD, derived from ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ from 228.15 K to 298.15 K in ~5 Kintervals.

Table S2. Data points used for the van't Hoff analysis of the [2+2]-cycloreversion of MoSiF9-MCBD in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

	$\mathbf{C o l}(\mathbf{A})$	$\mathbf{C o l}(\mathbf{B})$	$\mathbf{C o l}(\mathbf{C})$	$\mathbf{C o l}(\mathbf{D})$ Integral	$\boldsymbol{C o l}(\mathbf{E})$ Integral	$\mathbf{C o l}(\mathbf{F})$	$\mathbf{C o l (\mathbf { G })}$
	temperature	temperature $[\mathrm{K}]$	$1 / \mathrm{T}$	MCBD	Alkylidyne	K	$\ln (\mathrm{K})$

Figure S35. VAN 'T HOFF plot of the [2+2]-cycloreversion of MoSiF9-MCBD derived from ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data in toluene- d_{8} from 223.15 K to 298.65 K in ~ 5 Kintervals.

Table S3. Data points used for the van't Hoff analysis of the [2+2]-cycloreversion MoSiF9-MCBD in toluene-d . $^{\text {. }}$

	$\operatorname{Col}(\mathrm{A})$	$\operatorname{Col}(\mathrm{B})$	$\operatorname{Col}(\mathrm{C})$	Col(D)	$\operatorname{Col}(\mathrm{E})$	$\operatorname{Col}(\mathrm{F})$	$\mathbf{C o l}(\mathrm{G})$
				Integral	Integral		
	temperature $\left[{ }^{\circ} \mathrm{C}\right]$	temperature $[\mathrm{K}]$	$1 / \mathrm{T}$	MCBD	Alkylidyne	K	$\ln \mathrm{K}$
function		$\begin{gathered} (\mathrm{Col}(\mathrm{~A}))+ \\ 273.15 \end{gathered}$	$1 /(\operatorname{Col}(\mathrm{B}))$			$\begin{gathered} \operatorname{Col}(\mathrm{D}) /\left(\operatorname{Col}(\mathrm{E})^{\wedge}\right. \\ 2) \end{gathered}$	$\ln (\operatorname{Col}(\mathrm{F})$)
1	-50.0	223.15	0.00448	9822.55	177.45	0.31194	-1.16494
2	-44.7	228.45	0.00438	9656.77	343.23	0.08197	-2.50139
3	-40.7	232.45	0.0043	9315.49	684.51	0.01988	-3.91797
4	-34.2	238.95	0.00418	8785.33	1214.67	0.00595	-5.12362
5	-28.3	244.85	0.00408	8167.07	1832.93	0.00243	-6.01948
6	-22.9	250.25	0.004	7277.44	2722.56	$9.81802 \mathrm{E}-4$	-6.92612
7	-17.1	256.05	0.00391	6210.94	3789.06	$4.32608 \mathrm{E}-4$	-7.74568
8	-10.9	262.25	0.00381	5069.14	4930.86	$2.08492 \mathrm{E}-4$	-8.47561
9	-5.2	267.95	0.00373	4064.54	5935.46	$1.15373 \mathrm{E}-4$	-9.06734
10	0.7	273.85	0.00365	3048.23	6951.77	$6.3075 \mathrm{E}-5$	-9.67119
11	6.6	279.75	0.00357	2156.8	7843.2	$3.50609 \mathrm{E}-5$	-10.25842
12	12.1	285.25	0.00351	1484.29	8515.71	$2.04681 \mathrm{E}-5$	-10.79664
13	25.5	298.65	0.00335	387.99	9612.01	4.19945E-6	-12.38056
resulting linear plot function: $\mathrm{y}=\mathrm{a}+\mathrm{b}^{*} \mathrm{x}$ with $\mathrm{a}=-44.15707 \pm 1.2696$ and $\mathrm{b}=9419.61241 \pm 332.68096$							

FigureS36. VAN 'T HOFF plot of the [2+2]-cycloreversion of MoSi* ${ }^{*}$ 9-MCBD derived from ${ }^{19}{ }^{\prime}\left\{{ }^{1} H\right\}$ NMR spectroscopic data in toluene-d d_{8} from 298.15 K to 354.60 K in $\sim 5 \mathrm{~K}$ intervals.

Table S4. Data points used for the van't Hoff analysis of the [2+2]-cycloreversion of MoSi*F9-MCBD in toluene-ds.

	$\operatorname{Col}(\mathrm{A})$	Col(B)	$\operatorname{Col}(\mathrm{C})$	$\operatorname{Col}(\mathrm{D})$	Col(E)	$\operatorname{Col}(\mathrm{F})$	
				Integral	Integral		
	temperature $\left[{ }^{\circ} \mathrm{C}\right]$	temperatu re [K]	$1 / \mathrm{T}$	MCBD	Alkylidyne	K	$\ln \mathrm{K}$
function		$\begin{gathered} (\operatorname{Col}(\mathrm{A})) \\ +273.15 \end{gathered}$	1/(Col(B))		$(\operatorname{Col}(\mathrm{D}))^{\wedge} 2$	$\operatorname{Col}(\mathrm{D}) /\left(\operatorname{Col}(\mathrm{E})^{\wedge} 2\right)$	$\ln (\operatorname{Col}(\mathrm{F}) \times$
1	25.00	298.15	0.00335	9380.85	619.15	0.02447	-3.71027
2	27.96	301.11	0.00332	9150.91	849.09	0.01269	-4.36672
3	33.52	306.67	0.00326	8852.46	1147.54	0.00672	-5.0023
4	38.85	312.00	0.00321	8527.1	1472.9	0.00393	-5.53897
5	44.47	317.62	0.00315	8105.32	1894.68	0.00226	-6.09333
6	50.05	323.20	0.00309	7638.48	2361.52	0.00137	-6.59317
7	55.62	328.77	0.00304	6929.1	3070.9	$7.3476 \mathrm{E}-4$	-7.21597
8	60.25	333.40	0.003	6452.99	3547.01	$5.12904 \mathrm{E}-4$	-7.57542
9	65.47	338.62	0.00295	5754.03	4245.97	$3.19167 \mathrm{E}-4$	-8.0498
10	70.57	343.72	0.00291	5038.38	4961.62	$2.04665 \mathrm{E}-4$	-8.49414
11	76.10	349.25	0.00286	4061.75	5938.25	$1.15185 \mathrm{E}-4$	-9.06897
12	81.45	354.60	0.00282	3180.12	6819.88	$6.83739 \mathrm{E}-5$	-9.59052

XRD details

Crystals were mounted with per-fluorinated inert oil. Data were recorded on Oxford Diffraction Xcalibur diffractometers with monochromated Mo-K α radiation and an EOS CCD detector (MoSiF0, MoSiF3, MoSi2F9) or mirror focussed $\mathrm{Cu}-\mathrm{K} \alpha$ radiation and an ATLAS CCD detector (MoSiF9, MoSiF9-MCBD). Additionally, Rigaku XtaLAB Synergy S Single Source diffractometers equipped with a PhotonJet Cu-microfocus source (MoSi*F9) or a PhotonJet Mo-microfocus source (MoSi*F9-MCBD) and a HyPix-6000HE detector. Data reduction was performed with CrysalisPro ${ }^{5}$. Absorption correction was based on multi-scans and for some crystals (MoSiF9, MoSi*F9, MoSiF9-MCBD, MoSi*F9-MCBD) additionally face indexation and integration on a Gaussian grid was applied. The structures were solved by direct methods with SHELXS ${ }^{6}$ (MoSiF0, MoSiF3, MoSi2F9) or intrinsic phasing with SHELXT ${ }^{7}$ (MoSiF9, MoSi*F9, MoSiF9-MCBD, MoSi*F9-MCBD) and refined on F^{2} using the program SHELXL$2018 / 3^{8}$. H atoms were placed in idealized positions and refined using a riding model.

The crystal structures of MoSiF3, MoSiF9 and MoSi*F9-MCBD suffer from disorder and the respective groups were refined with a disorder model where applicable. In case of MoSi*F9MCBD the structure exhibits a fourfold modulation along the c-axis. For most of the ligands in this structure we were not able to refine a stable discrete disorder model. The structure of MoSiF9-MCBD was refined as an inversion twin with a minor component contribution of ca. 8%. The crystal of MoSiF9 decomposed during the measurement possibly because of a phase transition at 100 K . Omission of the affected data led to a low completeness.

Molecular structures were pictured with the program Ortep ${ }^{9}$. Bond lengths and angles were determined using the programs Diamond ${ }^{10}$ and Mercury ${ }^{11}$.

Figure S37. Molecular structure of MoSiF0 with thermal displacement parameters drawn at 50\% probability; hydrogen atoms are omitted for clarity.

Table S5. crystallographic details of MoSiFO.

CCDC

2074892
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=30.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{MoO}_{6} \mathrm{Si}$
636.77
$100(2) \mathrm{K}$
$0.71073 \AA$
monoclinic
$P 2_{1} / c$

$$
\begin{array}{cc}
a=9.8096(2) \AA & \alpha=90^{\circ} \\
b=19.2702(5) \AA & \beta=94.181(3)^{\circ} \\
c=18.5164(5) \AA & \gamma=90^{\circ} \\
3490.88(15) \AA^{3} &
\end{array}
$$

4
$1.212 \mathrm{Mg} / \mathrm{m}^{3}$
$0.445 \mathrm{~mm}^{-1}$
1360
$0.40 \times 0.30 \times 0.25 \mathrm{~mm}^{3}$
2.335 to 31.052°
$-13 \leq h \leq 14,-27 \leq k \leq 27,-25 \leq 1 \leq 25$
92385
$10489[\mathrm{R}(\mathrm{int})=0.0497]$
98.7 \%

Semi-empirical from equivalents
1.00000 and 0.98372

Full-matrix least-squares on F^{2}
10489 / 0 / 361
1.040
$\mathrm{R} 1=0.0294, \mathrm{wR} 2=0.0627$
$\mathrm{R} 1=0.0411, \mathrm{wR} 2=0.0673$
0.474 and -0.378 e. \AA^{-3}

Figure S38. Molecular structure of MoSiF3 with thermal displacement parameters drawn at 50\% probability; hydrogen atoms are omitted for clarity.

Table S6. crystallographic details of MoSiF3.

CCDC	2074893
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{MoO}_{6} \mathrm{Si}$
Formula weight	744.73
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	tetragonal
Space group	$I 4_{1} / a$
Unit cell dimensions	$a=35.4244(6) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=35.4244(6) \AA \quad \beta=90^{\circ}$
	$c=11.8026(3) \AA \quad \gamma=90^{\circ}$
Volume	$14810.9(5) \AA^{3}$
Z	16
Density (calculated)	$1.336 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.453 \mathrm{~mm}^{-1}$
F(000)	6208
Crystal size	$0.35 \times 0.35 \times 0.25 \mathrm{~mm}^{3}$
Theta range for data collection	2.30 to 30.97°
Index ranges	$-51 \leq h \leq 47,-49 \leq \mathrm{k} \leq 50,-16 \leq \mathrm{l} \leq 17$
Reflections collected	116302
Independent reflections	$11197[\mathrm{R}($ int $)=0.0502]$
Completeness to theta $=30.50^{\circ}$	97.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.94363
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	11197 / 195 / 487
Goodness-of-fit on F^{2}	1.040
Final R indices [I>2sigma (I)]	$\mathrm{R} 1=0.0382, \mathrm{wR} 2=0.0808$

$$
\begin{gathered}
\mathrm{R} 1=0.0554, \mathrm{wR} 2=0.0882 \\
0.723 \text { and }-0.651 \mathrm{e} . \AA^{-3}
\end{gathered}
$$

Figure S39. Molecular structure of MoSiF9 with thermal displacement parameters drawn at 50\% probability; hydrogen atoms are omitted for clarity.

Table S7. crystallographic details of MoSiF9.

CCDC
2074894

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~F}_{18} \mathrm{MoO}_{6} \mathrm{Si}$
Formula weight	960.63
Temperature	100(2) K
Wavelength	1.54184 A
Crystal system	monoclinic
Space group	$P 2_{1} / \mathrm{c}$
	$a=16.9928(7) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=18.5398(8) \AA \quad \beta=105.389(3)^{\circ}$
	$\mathrm{c}=13.2555(5) \AA \quad \gamma=90^{\circ}$
Volume	4026.3(3) \AA^{3}
Z	4
Density (calculated)	$1.585 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.081 \mathrm{~mm}^{-1}$
F(000)	1936
Crystal habitus	irregular (orange)
Crystal size	$0.320 \times 0.170 \times 0.140 \mathrm{~mm}^{3}$
Theta range for data collection	3.599 to 76.251°
Index ranges	$-19 \leq h \leq 19,-22 \leq k \leq 18,-11 \leq l \leq 14$
Reflections collected	16244
Independent reflections	$6056[\mathrm{R}(\mathrm{int})=0.0597]$
Completeness to theta $=67.684^{\circ}$	76.8 \%
Absorption correction	Gaussian
Max. and min. transmission	0.979 and 0.954

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
Rindices (all data)
Largest diff. peak and hole

Full-matrix least-
$6056 / 0$

Figure S40. Molecular structure of MoSi2F9 with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for clarity.

Table S8. Crystallographic details of MoSi2F9.

CCDC

CCDC	2074895
Empirical formula	$\mathrm{C}_{38} \mathrm{H}_{65} \mathrm{~F}_{9} \mathrm{MoO}_{9} \mathrm{Si}_{2}$
Formula weight	989.02
Temperature	130(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group	P2 $1_{1} / \mathrm{c}$
Unit cell dimensions	$\begin{array}{cc} \mathrm{a}=11.5736(2) \AA & \alpha=90^{\circ} \\ \mathrm{b}=21.7942(4) \AA & \beta=100.760(2)^{\circ} \\ \mathrm{c}=19.6903(5) \AA & \gamma=90^{\circ} \end{array}$
Volume	4879.29(18) \AA^{3}
Z	4
Density (calculated)	$1.346 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.398 \mathrm{~mm}^{-1}$
F(000)	2064
Crystal habitus	irregular (orange)
Crystal size	$0.35 \times 0.35 \times 0.25 \mathrm{~mm}^{3}$
Theta range for data collection	2.304 to 31.069°
Index ranges	$-16 \leq h \leq 15,-31 \leq k \leq 31,-27 \leq 1 \leq 28$
Reflections collected	128731
Independent reflections	$14665[\mathrm{R}(\mathrm{int})=0.0490]$
Completeness to theta $=30.00^{\circ}$	99.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.97935
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14665 / 348 / 602

Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
$\mathrm{R} 1=0.0342, \mathrm{wR} 2=0.0724$
$\mathrm{R} 1=0.0509, \mathrm{wR} 2=0.0800$
0.538 and -0.436 e. \AA^{-3}

CCDC	2074896
Empirical formula	$\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~F}_{18} \mathrm{MoO}_{6} \mathrm{Si}$
Formula weight	1022.70
Temperature	$100(2) \mathrm{K}$
Wavelength	1.54184 A
Crystal system	monoclinic
Space group	$P 2_{1} / n$
	$a=13.0531(2) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=10.2588(2) \AA \quad \beta=95.337(2)^{\circ}$
	$\mathrm{c}=32.3183(6) \AA \quad \gamma=90^{\circ}$
Volume	$4308.95(13) \AA^{3}$
Z	4
Density (calculated)	$1.576 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.855 \mathrm{~mm}^{-1}$
$F(000)$	2064
Crystal habitus	block (yellow)
Crystal size	$0.121 \times 0.056 \times 0.047 \mathrm{~mm}^{3}$
Theta range for data collection	2.746 to 77.547°
Index ranges	$-16 \leq h \leq 16,-13 \leq \mathrm{k} \leq 12,-40 \leq 1 \leq 31$
Reflections collected	70721
Independent reflections	8988 [R(int) $=0.0401$]
Completeness to theta $=67.684^{\circ}$	99.9 \%
Absorption correction	Gaussian
Max. and min. transmission	0.979 and 0.758
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8988 / 0 / 562
Goodness-of-fit on F^{2}	1.044
Final R indices [$\mathrm{I}>2$ sigma(I) $]$	$\mathrm{R} 1=0.0363, \mathrm{wR} 2=0.0924$
R indices (all data)	$\mathrm{R} 1=0.0402, \mathrm{wR} 2=0.0946$
Largest diff. peak and hole	0.773 and -0.532 e. \AA^{-3}

Table S10. crystallographic details of MoSiF9-MCBD.

CCDC	2074896
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~F}_{18} \mathrm{MoO}_{6} \mathrm{Si}$
Formula weight	952.65
Temperature	100(2) K
Wavelength	1.54184 A
Instrument (scan mode)	Oxford Diffraction Xcalibur, Atlas, Nova (ω scans)
Crystal system	orthorhombic
Space group	$F d d 2$
	$a=39.5833(4) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=38.8824(4) \AA \quad \beta=90^{\circ}$
	$\mathrm{c}=10.0284(2) \AA \quad \gamma=90^{\circ}$
Volume	15434.6(4) \AA^{3}
Z	16
Density (calculated)	$1.640 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.249 \mathrm{~mm}^{-1}$
F(000)	7712
Crystal habitus	irregular (violett)
Crystal size	$0.147 \times 0.100 \times 0.086 \mathrm{~mm}^{3}$
Theta range for data collection	3.186 to 76.103°
Index ranges	$-49 \leq h \leq 49,-48 \leq k \leq 48,-12 \leq l \leq 12$
Reflections collected	142515
Independent reflections	7889 [$\mathrm{R}(\mathrm{int})=0.0692]$
Completeness to theta $=67.684^{\circ}$	100%
Absorption correction	Gaussian
Max. and min. transmission	0.987 and 0.977
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7889 / 1 / 509
Goodness-of-fit on F^{2}	1.073
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0365, \mathrm{wR} 2=0.0952$
R indices (all data)	$\mathrm{R} 1=0.0379, \mathrm{wR} 2=0.0964$
Largest diff. peak and hole	1.127 and -0.910 e. \AA^{-3}

Figure S41. crystal structure of the four independent molecules from MoSi*F9-MCBD with thermal displacement parameters drawn at 50% probability; hydrogen atoms are omitted for clarity.

Table S11. crystallographic details of MoSi*F9-MCBD.
CCDC 2074898

CCDC	2074898
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~F}_{18} \mathrm{MoO}_{6} \mathrm{Si}$
Formula weight	1014.72
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group	$P 2_{1} / \mathrm{n}$
	$a=22.4338(3) \AA \quad \alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=19.5534(3) \AA \quad \beta=97.4393(12)^{\circ}$
	$\mathrm{c}=38.0768(5) \AA \quad \gamma=90^{\circ}$
Volume	$16562.1(4) \AA^{3}$
Z	16
Density (calculated)	$1.628 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.469 \mathrm{~mm}^{-1}$
F(000)	8224
Crystal habitus	irregular (purple)
Crystal size	$0.243 \times 0.191 \times 0.119 \mathrm{~mm}^{3}$
Theta range for data collection	1.682 to 36.319°
Index ranges	$-37 \leq h \leq 37,-32 \leq k \leq 32,-63 \leq 1 \leq 63$
Reflections collected	910394
Independent reflections	$80289[\mathrm{R}(\mathrm{int})=0.0816]$
Completeness to theta $=25.242^{\circ}$	100%
Absorption correction	Gaussian
Max. and min. transmission	1.000 and 0.474
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	80289 / 0/2297
Goodness-of-fit on F^{2}	1.143
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0697, \mathrm{wR} 2=0.1338$
R indices (all data)	$\mathrm{R} 1=0.0995, \mathrm{wR} 2=0.1441$
Largest diff. peak and hole	2.792 and -1.762 e. \AA^{-3}

Alkyne Metathesis

General Procedure for Homometathesis. In a glove box, a 50 mL flask was charged with molecular sieve $5 \AA(500 \mathrm{mg})$, n-decane $(48.7 \mu \mathrm{~L}, 1 \mathrm{eq}$.$) as internal standard and a solution of the substrate$ (0.5 mmol) in toluene $(2.5 \mathrm{~mL})$. Afterwards the precatalyst MoSiF9 ($1 \mathrm{~mol} \%, 2.4 \mathrm{mg}$) or MoSi*F9 $(1 \mathrm{~mol} \%, 2.6 \mathrm{mg})$ was added. Samples of 0.05 mL were taken at specific times $(0,1,2,3,4,5,10,20$, $30,60,120,240,1440 \mathrm{~min})$. The samples were filtered through a pad of silicaand washed with diethyl ether (1.2 mL) before measuring it in gas chromatographic analysis.

General Procedure for RCAM. In a glove box, a 50 mL flask was charged with molecular sieve $5 \AA$ $(500 \mathrm{mg})$, n-decane $(48.7 \mu \mathrm{~L}, 1 \mathrm{eq}$.$) as internal standard and a solution of the substrate (0.25 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$. Afterwards the precatalyst MoSiF9 ($2 \mathrm{~mol} \%, 4.8 \mathrm{mg}$) or MoSi${ }^{*}$ F9 ($1 \mathrm{~mol} \%$, 2.6 mg) was added. Samples of 0.1 mL were taken at specific times ($0,1,2,3,4,5,10,20,30,60,120$ (, $240,1440)$). The samples were filtered through a pad of silica and washed with diethyl ether (1 mL) before measuring it in gas chromatographic analysis.

General Procedure for isolated Yields. In a glove box, a 50 mL flask was charged with molecular sieve $5 \AA(500 \mathrm{mg})$ and a solution of the substrate $(0.5 \mathrm{mmol})$ in toluene (Homometathesis: 2.5 mL , RCAM: 12 mL). Afterwards the precatalyst MoF9 ($1 \mathrm{~mol} \%, 4.7 \mathrm{mg}$), MoSiF9 (Homometathesis: $1 \mathrm{~mol} \%, 2.4 \mathrm{mg}$ RCAM: $2 \mathrm{~mol} \%, 4.8 \mathrm{mg}$) or MoSi${ }^{*}$ F9 $(1 \mathrm{~mol} \%, 5.1 \mathrm{mg})$ was added. The solution was stirred for 2 h at rt . The pure products were obtained after filtration over silica, evaporation of the solvent in vacuo and a final column chromatography (n-hexane).

Figure S42. Assignment of the alkyne metathesis reactions.

Figure S43. Conversion-time plot of the metathesis with MoSiF9. GC-conversion after $2 \mathrm{~h}: A=97 \%, B=97 \%, C=99 \%, D=97 \%$.

Figure S44. Conversion-time plot of the metathesis with MoSi*F9. GC-conversion after $2 \mathrm{~h}: A=95 \%, B=95 \%, C=97 \%, D=98 \%$.

Synthesis of 1,6-bis(benzyloxy)hex-3-yne (2)

The reaction took place according to the synthesis above with ((pent-3-yn-1-yloxy)methyl)benzene $(91.4 \mathrm{mg}, 0.52 \mathrm{mmol})$. Filtration over silica leaded the product as colorless liquid.

Yield $_{\text {MoSiFg }}: 92 \%$ Yield $_{\text {MoSi }^{*} F 9}: 97 \%$.

Synthesis of hex-3-yne-1,6-diyl bis(4-methoxybenzoate) (4)

The reaction took place according to the synthesis above with pent-3-yn-1-yl 4-methoxybenzoate $(112.7 \mathrm{mg}, 0.51 \mathrm{mmol})$. Filtration over silica leaded the product as white solid.

Yield $_{\text {MosiF9: }}$: 99% Yield $_{\text {Mosi* }^{*} \text { F9: }}$ 99\%.

Synthesis of 2,9-benzodioxacyclododecin-1,10-dione (6)

The reaction took place according to the synthesis above with di (pent-3-yn-1-yl) phthalate (76.4 mg , 0.26 mmol). Filtration over silica leaded the product as white solid.

Yield $_{\text {MoSiFg: }}$: 94% Yield $_{\text {Mosi*Fg: }}$: 95%.
Synthesis of 1,2-diphenylacetylene (8)
The reaction took place according to the synthesis above with prop-1-yn-1-ylbenzene $(62,6 \mu \mathrm{~L}$, 0.5 mmol). Filtration over silica leaded the product as white solid.

Yield $_{\text {MoF9: }}: 78 \%$ Yield $_{\text {MoSiF9: }}$: 96% Yield $_{\text {MoSi }^{*} F 9}$: 88%.

Diyne Disproportionation

General Procedure for the catalyst examination via GC-experiments. In a glove box, a 25 mL flask was charged with either no molecular sieve, MS $4 \AA(250 \mathrm{mg})$, MS $5 \AA(250 \mathrm{mg})$ or a mixture of MS $4 \AA$ and $5 \AA$ (each 125 mg), n-decane (1 eq.) as internal standard and diyne 9 a $(0.25 \mathrm{mmol})$ in DCM or toluene $(8 \mathrm{~mL})$. Afterwards the precatalyst MoF9 ($2 \mathrm{~mol} \%$), MoSiF9 ($2 \mathrm{~mol} \%$) or MoSi*F9 ($2 \mathrm{~mol} \%$) was added. Samples of 0.05 mL were taken at specific times $(0,1,2,3,4,5,10,20,30,60$, $120,240,360,480,1440 \mathrm{~min})$. The samples were filtered through a pad of silica and washed with diethyl ether (1.2 mL) before measuring it in gas chromatographic analysis. Results of these examinations are shown in Table S12.

Table S12. GC-experiments at room temperature, 1 eq. n-decane as internal standard, 2 mol\% catalyst-loading.

cat.	MS	solvent	GC-conv. $[\%]$
MoSi*F9	-	DCM	54
	$5 \AA$	DCM	9
	$4 \AA$	DCM	44
	$4 \AA+5 \AA$	DCM	46
	$\mathbf{4 \AA + 5 \AA}$	toluene	$\mathbf{9 2}$
	-	DCM	35
$\mathbf{M o S i F 9}$	$5 \AA$	DCM	0
	$4 \AA$	DCM	23
	$4 \AA+5 \AA$	DCM	42
	$\mathbf{4 \AA + 5 \AA}$	toluene	$\mathbf{8 6}$
	-	DCM	41
	$5 \AA$	DCM	11
	$4 \AA$	DCM	30
	$4 \AA+5 \AA$	DCM	25
	$\mathbf{4 \AA + 5 \AA}$	toluene	$\mathbf{8 9}$

Figure S45. Conversion-time plot of the diyne disproportionation of $\mathbf{9 a}$ in toluene with $M S 4 \AA+5 \AA$ and 2 mol\% catalyst loading. GC-conversion after 24h: MoF9 89\%, MoSiF9 86\%, MoSi*F9 92\%.

Table S13. Isolated yields for the diyne disproportionation of the substrates $\mathbf{9 a}$ and $\mathbf{9 b}$.

educt/product	MoF9	MoSiF9	MoSi $^{*} \mathbf{F 9}$
$\mathbf{9 a} / \mathbf{1 0 a}^{c}$	82	79	88
$\mathbf{9 b} / \mathbf{1 0 b}^{c}$	50	17	71

Synthesis of TIPSC \equiv CC \equiv CC \equiv CTIPS (10a)

MoF9

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne $9 \mathrm{a}(115.1 \mathrm{mg}, 0.52 \mathrm{mmol}$), before MS $4 \AA(400 \mathrm{mg})$ and MS $5 \AA(400 \mathrm{mg})$ were added. Afterwards, the precatalyst MoF9 ($1 \mathrm{~mol} \%, 5.2 \mathrm{mg}, 0.0053 \mathrm{mmol}$) was added. After stirring for four hours at rt , the reaction mixture was filtered through a pad of silica and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid ($82.8 \mathrm{mg}, 0.21 \mathrm{mmol}, 82 \%$). NMR spectroscopic data is in accordance with the literature. ${ }^{12}$

MoSiF9

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne $9 \mathbf{9}(109.3 \mathrm{mg}, 0.5 \mathrm{mmol})$ before MS $4 \AA(400 \mathrm{mg})$ and MS $5 \AA(400 \mathrm{mg})$ were added. Afterwards, the precatalyst MoSiF9 ($1 \mathrm{~mol} \%, 5.1 \mathrm{mg}, 0.0053 \mathrm{mmol}$) was added. After stirring for four hours at rt , the reaction mixture was filtered through a pad of silica and rinsed with DCM and pentane. Evaporation of the solvent and
recrystallization from MeOH yielded the product as white solid ($75.4 \mathrm{mg}, 0.19 \mathrm{mmol}, 79 \%$). NMR spectroscopic data is in accordance with the literature. ${ }^{12}$

$\underline{\text { MoSi }}{ }^{*}$ F9

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne $9 \mathbf{9}(117.0 \mathrm{mg}, 0.53 \mathrm{mmol})$, before MS $4 \AA(400 \mathrm{mg})$ and MS $5 \AA(400 \mathrm{mg})$ were added. Afterwards, the precatalyst MoSi${ }^{*}$ F9 ($1 \mathrm{~mol} \%, 6.0 \mathrm{mg}, 0.0055 \mathrm{mmol}$) was added. After stirring for four hours at rt , the reaction mixture was filtered through a pad of silica and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid ($90.4 \mathrm{mg}, 0.23 \mathrm{mmol}, 88 \%$). NMR spectroscopic data is in accordance with the literature. ${ }^{12}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=1.12-1.09(\mathrm{~m}, 42 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=89.9$ (TIPSCCC), 84.9 (TIPSCCC), 61.5 (TIPSCCC), $18.7\left(\mathrm{CH}_{3}\right), 11.4(\mathrm{CH}) \mathrm{ppm}$.

Synthesis of MesC $\equiv \mathbf{C C} \equiv \mathbf{C C} \equiv$ CMes (10b)

MoF9

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne $\mathbf{9 b}(93.4 \mathrm{mg}, 0.5 \mathrm{mmol}$), before MS $4 \AA(400 \mathrm{mg})$ and MS $5 \AA(400 \mathrm{mg})$ were added. Afterwards, the precatalyst MoF9 ($1 \mathrm{~mol} \%, 4.8 \mathrm{mg}, 0.005 \mathrm{mmol}$) was added. After stirring for one hour at rt , the reaction mixture was filtered and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid $(38.5 \mathrm{mg}, 0.12 \mathrm{mmol}, 50 \%)$.

MoSiF9

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne $\mathbf{9 b}$ ($91.9 \mathrm{mg}, 0.5 \mathrm{mmol}$), before MS $4 \AA(400 \mathrm{mg})$ and MS $5 \AA(400 \mathrm{mg})$ were added. Afterwards, the precatalyst MoSiF9 ($1 \mathrm{~mol} \%, 4.9 \mathrm{mg}, 0.005 \mathrm{mmol}$) was added. After stirring for one hour at rt , the reaction mixture was filtered and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid ($13.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 17 \%)$.

MoSi ${ }^{*}$ F9

In a glove box, a 25 mL flask was charged with toluene (2.5 mL) and diyne $\mathbf{9 b}(89 \mathrm{mg}, 0.5 \mathrm{mmol})$, before MS $4 \AA(400 \mathrm{mg})$ and MS $5 \AA(400 \mathrm{mg})$ were added. Afterwards, the precatalyst MoSi${ }^{*}$ F9 ($1 \mathrm{~mol} \%, 5.1 \mathrm{mg}, 0.005 \mathrm{mmol}$) was added. After stirring for one hour at rt , the reaction mixture was filtered and rinsed with DCM and pentane. Evaporation of the solvent and recrystallization from MeOH yielded the product as white solid ($53.6 \mathrm{mg}, 0.17 \mathrm{mmol}, 71 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=6.87\left(\mathrm{~s}, 4 \mathrm{H}, H_{\mathrm{Ar}}\right), 2.42\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.29(\mathrm{~s}, 6 \mathrm{H}, p-$ CH_{3}) ppm.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=142.7,139.5,128.0,118.1,81.5$ (MesCCC), 77.2 (MesCCC), $67.8(\mathrm{MesCCC}), 21.6\left(p-\mathrm{CH}_{3}\right), 21.1\left(o-\mathrm{CH}_{3}\right) \mathrm{ppm}$.

HRMS (MALDI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{22}[\mathrm{M}]^{+}: 310.1716$; found: 310.171 .

Scheme S2. Diyne disproportionation of 9 a.

==== Shimadzu LabSolutions Analysis Report

Sample Name			
Sample ID			
Data Filename	$\begin{aligned} & \text { SR5-652.gcd } \\ & \text { : GC1-TR5-80-340-M1.gcm } \end{aligned}$		
Method Filename			
Batch Filename	$\begin{aligned} & \text { : GC1-TR5-80-340-M1.gcm } \\ & \text { 1-[2020-07-07]-1.gcb } \end{aligned}$		
Vial \#	: 2	Sample Type	: Unknown
Injection Volume	: 1 uL		
Date Acquired	: 07/07/2020 18:48:06	Acquired by	: System Administrator
Date Processed	: 07/07/2020 19:15:22	Processed by	: System Administrator

<Peak Table>

SFID1							
Peak\#	Name	Ret. Time	Area	Height	Area\%	Height\%	Resolution(USP)
1		3.25	886111	151847	56.9	44.1	-
2		7.07	38023	3930	2.4	1.1	25.56
3		13.55	633159	188811	40.7	54.8	46.35
Total			1557294	344587	100.0	100.0	

Figure S46. Raw GC spectrum of the diyne disproportionation of 9 a shown in scheme S2.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0 a}$ in CDCl_{3}.

Figure S48. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0 a}$ in CDCl_{3}.

71% isolated yield

Scheme S3. Diyne disproportionation of $\mathbf{9 b}$.

Figure S49. Raw GC-MS spectrum of the diyne disproportionation of $\mathbf{9 b}$ shown in scheme S3.

Figure $S 50 .{ }^{1} H N M R$ spectrum of $\mathbf{1 0 b}$ in CDCl_{3}.

Figure $\mathrm{S} 51 .{ }^{13} \mathrm{C}\left\{{ }^{11} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 0 b}$ in CDCl_{3}.

References

(1) Haberlag, B.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Efficient metathesis of terminal alkynes. Angew. Chem. Int. Ed. Engl. 2012, 51 (52), 13019-13022. DOI:
10.1002/anie. 201207772.
(2) Bittner, C.; Ehrhorn, H.; Bockfeld, D.; Brandhorst, K.; Tamm, M. Tuning the Catalytic Alkyne Metathesis Activity of Molybdenum and Tungsten 2,4,6-Trimethylbenzylidyne Complexes with Fluoroalkoxide Ligands OC(CF 3) n Me 3-n ($\mathrm{n}=0-3$). Organometallics 2017, 36 (17), 33983406. DOI: 10.1021/acs.organomet.7b00519.
(3) Lysenko, S.; Haberlag, B.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Efficient Catalytic Alkyne Metathesis with a Tri(tert-butoxy)silanolate-Supported Tungsten Benzylidyne Complex.
ChemCatChem 2011, 3 (1), 115-118. DOI: 10.1002/cctc. 201000355.
(4) Docherty, S. R.; Estes, D. P.; Copéret, C. Facile Synthesis of Unsymmetrical Trialkoxysilanols:
(RO) 2 (R'O)SiOH. Helv. Chim. Acta 2018, 101 (3), e1700298. DOI: 10.1002/hlca. 201700298.
(5) Rigaku Oxford Diffraction. CrysAlisPRO Software System, versions 1.171.38.43 (2015),
1.171.40.61a (2019) and 1.171.40.81a (2020); Rigaku Corporation.
(6) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64
(Pt 1), 112-122. DOI: 10.1107/S0108767307043930. Published Online: Dec. 21, 2007.
(7) Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta

Crystallogr., Sect. A: Found. Adv. 2015, 71 (Pt 1), 3-8. DOI: 10.1107/S2053273314026370.
Published Online: Jan. 1, 2015.
(8) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct.

Chem. 2015, 71 (Pt 1), 3-8. DOI: 10.1107/S2053229614024218. Published Online: Jan. 1, 2015.
(9) Farrugia, L. J. WinGX and ORTEP for Windows : an update. J. Appl. Crystallogr. 2012, 45 (4), 849-854. DOI: 10.1107/S0021889812029111.
(10) K. Brandenburg. Diamond; Crystal Impact GbR.
(11) The Cambridge Crystallographic Data Centre. Mercury CSD; CCDC.
(12) Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 2005, 127 (8), 2666-2676. DOI: 10.1021/ja0445261.

