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A modified form of BGK source terms is proposed for modeling two-phase flows with thermodynamical disequilibrium. The novelty is that three independent time-scales allow to manage the return to the thermodynamical equilibrium while remaining in agreement with the second law of thermodynamics. This is achieved thanks to the definition of a "local-in-time" equilibrium state which tends towards the asymptotic equilibrium state when time increases. The thermodynamical paths of the system are then modified with respect to the classical BGK source terms used for two-phase flow modeling, and the relaxation process of the system towards the asymptotic equilibrium state can be defined with additional degrees of freedom. In a numerical point of view, both the classical and the modified BGK source terms have advantages. The choice between these two forms strongly depends on the numerical strategy used to perform simulations.

Introduction

A wide range of two-phase flow models have been proposed in the literature in order to account for the thermodynamical disequilibrium between the phases, see for instance [START_REF] Baer | A two-phase mixture theory for the Deflagration-To-Detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: Reduced equations[END_REF][START_REF] Stewart | Two-Phase Flows : models and methods[END_REF][START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF] among many others. These models can be roughly split into two classes: the two-fluid models for which each phase possesses its own velocity field, and the homogeneous models assuming that both phases share the same velocity. In a thermodynamical point of view, the disequilibrium are taken into account in the systems of equations by the mean of source terms that rule the return to the thermodynamical equilibrium defined by the equality of the phasic pressures, the phasic temperatures and phasic chemical potentials. We focus herein on the source terms that take a BGK form (BGK stands for Bhatnagar-Gross-Krook). These form of source terms are classically used in Boltzmann methods for modeling collision terms. They are a linearized form of the exact terms for collisions that is highly non-linear. When dealing with two-phase flows, the BGK source terms are widely used in homogeneous models [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF][START_REF] Faucher | Computation of flashing flows in variable crosssection ducts[END_REF][START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF]. Besides, it should be noted that such source terms can also be used for two-fluid models [START_REF] Hurisse | Various choices of source terms for a class of two-fluid two-velocity models[END_REF][START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF] and that other forms of source terms (i.e. not of BGK type) have been applied to homogeneous models as in [START_REF] Ghazi | Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables[END_REF][START_REF] Ghazi | Vapour-liquid phase transition and metastability[END_REF][START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF].

The BGK source terms have two main advantages. Firstly, they are defined on the basis of an entropy for the mixture and they can thus easily be defined in agreement with the second law of thermodynamics. Secondly, the ODE system of equations associated with the BGK source terms is linear with respect to the primitive variables of the system. This allows to propose efficient and simple schemes on the basis of fractional step methods, as in [START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF] for instance. The difficulty then lies in the computation of the thermodynamical equilibrium state that is defined by a system of three non-linear equations. An efficient scheme has been proposed for two-phase flows with general EoS (Equation Of State) [START_REF] Faccanoni | Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium[END_REF][START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF]. With the latter, the 3 × 3 system is reduced to a single non-linear equation involving one unknown. Nevertheless, when turning to settings involving more than two phases this simplification is no more possible [START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] and computing the thermodynamical equilibrium becomes tricky.

In addition to this numerical difficulty for more than two phases, the classical BGK source terms are associated with a unique time scale for the return to the asymptotic equilibrium. This strongly couples the relaxation effect towards pressure, temperature and chemical potential equilibrium. Indeed, one could wish to manage separately these three relaxation processes by defining three different time-scales. The aim of the present work is to propose a modified form for the BGK source terms that enables to bypass the two drawback mentioned above. A new thermodynamical path is then proposed by using a "local-in-time" equilibrium state which tends towards the asymptotic thermodynamical equilibrium. This modified source terms agree with the second law of thermodynamics, whatever the three time-scales are. Moreover, the "local-in-time" thermodynamical equilibrium can be computed by solving three independent non-linear equations.

The outline of the paper is the following. In section 2, the homogeneous model proposed in [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF] is shortly described and the link between the thermodynamical disequilibrium and the exchanges between the phases is recalled in section 3. Then the derivation of the classical BGK source terms is described in section 4 while modified BGK source terms are proposed in section 5. In these two sections, some properties of the source terms are given, even if only very basic ones can be proved. An effort has also been made in order to try to describe the pressure and temperature relaxation process for both sets of source terms.

A homogeneous model accounting for the disequilibrium between the phases

The aim of the present section is not to present the complete derivation of the model proposed in [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF]. This has been done in several references, see [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF][START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF][START_REF] Jung | Numerical simulations of two-fluid flow on multicores accelerator[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] for instance. The model is introduced and its main properties are highlighted, in particular those associated with the exchanges between the phases. Some of these results will be useful in the following sections.

Let us consider two phases whose thermodynamical behaviors are described by their EoS, given through the phasic specific entropies s k , k = 1, 2:

(τ k , e k ) → s k (τ k , e k ),
where τ k and e k respectively stand for the specific volume and the specific energy. It is assumed that the entropies s k are in C 2 (R + * × R + * ), that they are strictly concave with respect to (τ k , e k ), and that the partial derivative of s k with respect to the energy is strictly positive: ∂ e k (s k ) τ k > 0. Moreover, it is assumed that within each of these phases the Gibbs relation holds:

T k ds k = de k + P k dτ k , (1) 
allowing to define the phasic pressure P k and the phasic temperature T k thanks to the entropy s k :

1

T k = ∂ e k (s k ) |τ k , and 
P k T k = ∂ τ k (s k ) |e k . (2) 
Following [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF][START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF][START_REF] Jung | Numerical simulations of two-fluid flow on multicores accelerator[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF], an immiscible mixture of these two phases is described by the mean of three fractions: the volume fraction α k of phase k, the mass fraction y k of phase k and the fraction z k of energy of phase k. Obviously, conservation of volume, mass and energy leads to the relations:

α 1 + α 2 = 1, y 1 + y 2 = 1 and z 1 + z 2 = 1. (3) 
We assume here that the phasic EoS are such that these three fractions belong to [0, 1], see also remark 2. Remark 0. It should be noted that for miscible phases, when one assumes that both phases occupy the same volume, the volume fraction does not make sense and the volume conservation leads to α 1 = α 2 = 1, see [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF][START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF][START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF].

By defining the mixture density ρ and the mixture specific energy e as:

ρ = α 1 ρ 1 + α 2 ρ 2 , and ρe = α 1 ρ 1 e 1 + α 2 ρ 2 e 2 ,
with ρ k = 1/τ k , the specific volume and the specific energy of phase k can be obtained through the relations:

τ k = α k τ y k
, and

e k = z k e y k , (4) 
with τ = 1/ρ. The specific mixture entropy s for the mixture is defined as:

ρs = α 1 ρ 1 s 1 (τ 1 , e 1 ) + α 2 ρ 2 s 2 (τ 2 , e 2 ).
It can thus be written as a function of the fractions and the mixture specific volume and energy: (α 1 , y 1 , z 1 , τ, e) → s(α 1 , y 1 , z 1 , τ, e) by using relations (3) and (4). Moreover, thanks to the phasic Gibbs relations (1), a Gibbs relation for the mixture can be exhibited:

T ds = de + Pdτ + τ P 1 T 1 - P 2 T 2 dα 1 - µ 1 T 1 - µ 2 T 2 dy 1 + e 1 T 1 - 1 T 2 dz 1 , (5) 
where µ k = e k + P k τ k -T k s k is the chemical potential, and where the mixture pressure and the mixture temperature read:

P T = α 1 P 1 T 1 + α 2 P 2 T 2
, and 1

T = z 1 1 T 1 + z 2 1 T 2 . ( 6 
)
Remark 1. EoS may be defined in other thermodynamical planes, leading to different closures for the mixture pressure and temperature, see [START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF]. For instance, if one chooses the thermodynamical plane (τ k , s k ), the Gibbs relation reads:

de k (τ k , s k ) = T k ds k -P k dτ k ,
and thus we get:

P k = -∂ τ k (e k ) |s k and T k = ∂ s k (e k ) |τ k .
The Gibbs relation for the mixture then gives the following definitions for the mixture pressure and for the mixture temperature:

P = α 1 P 1 + α 2 P 2 and T = β 1 T 1 + β 2 T 2 ,
where β k = y k s k /s is the entropic fraction. More details may be found in [START_REF] Faccanoni | Admissible Equations of State for Immiscible and Miscible Mixtures[END_REF].

The system of partial derivative equations used for simulating such mixtures is then based on the Euler system of equations. It is thus assumed that both phases have the same velocity field U. In one-dimensional setting, the system reads:

       ∂ t (ρY ) + ∂ x (ρUY ) = ρS , ∂ t (ρ) + ∂ x (ρU) = 0, ∂ t (ρU) + ∂ x ρU 2 + P = 0, ∂ t (ρE) + ∂ x (U(ρE + P)) = 0, (7) 
where Y = t (α 1 , y 1 , z 1 ) is a vector containing the three fractions, E = e + u 2 /2 is the total energy of the mixture and P is the pressure of the mixture as described in equation [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF]. The vector S = t (S α 1 , S y 1 , S z 1 ) gathers the source terms that rule the exchanges of volume, mass and energy between the two phases. It should be noted that in system [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF] no external forces or heat exchange has been accounted for. We indeed intend to focus in this work on the source terms S which define the internal exchanges between the two phases.

Remark 2. It should be noted that system of equations ( 7) is strictly hyperbolic provided that the mixture temperature is strictly positive [START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF]. This is the case here if the phasic energies are positive. For the Generalized Stiffened Gas EoS, phasic energies may become negative, which might lead to negative energy fractions and to a negative mixture temperature T , even if the phasic temperature T k are positive. In such cases, hyperbolicity can be lost.

Let us denote by D t (•) the material derivative ∂ t (•) + U∂ x (•). For regular solutions of system (7): the mass equation can be written D t ρ + ρ∂ x (U) = 0, and the momentum equation can be written ρD t U + ∂ x (P) = 0. The latter then gives the following equation for kinetic energy: ρD t (U 2 /2) + U∂ x (P) = 0. When turning to the total energy E = e +U 2 /2, the energy equation of system [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF] reads:

ρD t E + ∂ x (UP) = ρD t (e +U 2 /2) + ∂ x (UP) = 0.
Then, using the equation for the kinetic energy, we get:

ρD t e + P∂ x (U) = 0,
and by introducing the mass equation it yields:

ρD t e - P ρ D t ρ = 0,
or equivalently (since ρ > 0):

D t e + PD t τ = 0, (8) 
Hence, by introducing the material derivative into equation [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] and by using equation [START_REF] Faccanoni | Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium[END_REF] we get:

T D t s = τ P 1 T 1 - P 2 T 2 S α 1 - µ 1 T 1 - µ 2 T 2 S y 1 + e 1 T 1 - 1 T 2 S z 1 , (9) 
or equivalently, by reintroducing the mixture entropy:

T D t s = ∂ α 1 (s) |y 1 ,z 1 ,τ,e S α 1 + ∂ y 1 (s) |α 1 ,z 1 ,τ,e S y 1 + ∂ z 1 (s) |α 1 ,y 1 ,τ,e S z 1 . (10) 
Equations ( 9) and ( 10) are equivalent since we have:

∂ α 1 (s) |y 1 ,z 1 ,τ,e = τ P 1 T 1 - P 2 T 2 , (11) 
∂ y 1 (s) |α 1 ,z 1 ,τ,e = - µ 1 T 1 - µ 2 T 2 , (12) 
∂ z 1 (s) |α 1 ,y 1 ,τ,e = e 1 T 1 - 1 T 2 . ( 13 
)
Both forms ( 9) and (10) will be useful in the following sections. Since S define exchanges between the two phases, they should agree with the second law of thermodynamics. When the two phasic entropies (τ k , e k ) → s k (τ k , e k ) are strictly concave, it has been proved in [START_REF] Jung | Numerical simulations of two-fluid flow on multicores accelerator[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF] that (α 1 , y 1 , z 1 ) → s(α 1 , y 1 , z 1 , τ, e) is strictly concave. Hence, in order to fulfill the second law of thermodynamics, the source terms S should be chosen so that the mixture entropy increases along a streamline:

T D t s ≥ 0.
The following sections are dedicated to the study of possible source terms S . We thus consider a closed mixture of two phases at rest and with a constant mixture energy e and a constant mixture specific volume τ. The whole model [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF] has been presented for the sake of completeness. The following sections rely on equations ( 9)-( 10) and the convective part of system [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF] will not be considered.

The thermodynamical disequilibrium and the exchange between the phases

As mentioned at the end of the previous section, we consider here the source terms when the system composed of the mixture of the two phases is thermodynamically closed. That is: there is no mass exchange and no heat exchange between the mixture and its surrounding, and no external force acts on the mixture. This implies that e and τ are constant. The time evolution of the entropy of the mixture is thus given by equation ( 9) or equation [START_REF] Faucher | Computation of flashing flows in variable crosssection ducts[END_REF]. Moreover, degenerate cases involving single phase situations are excluded from the present work: (α 1 , y 1 , z 1 ) ∈ ]0, 1[ 3 , despite model [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF] allows to handle single phase flows as shown in [START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF].

In the following, we then consider system of equations ( 7) at rest, i.e. U = 0, and with constant τ and e. We get an ODE system whose variables are the fractions:

       d t Y = S , d t ρ = 0, U = 0, d t e = 0, (14) 
For the sake of readability, τ and e will be omitted in the arguments of the different functions and the argument (α 1 , y 1 , z 1 ) will be replaced by Y . Moreover, the source term vector S = t (S α 1 , S y 1 , S z 1 ) will be denoted by S = t (S 1 , S 2 , S 3 ).

Remark 3.

The assumption U = 0 could be replaced by U = U 0 , with U 0 = 0 constant and uniform.

Modeling the thermodynamical disequilibrium

Since the mixture entropy Y → s(Y ) is strictly concave [START_REF] Jung | Numerical simulations of two-fluid flow on multicores accelerator[END_REF][START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF][START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF], it possesses a unique maximum which is reached for a set of fractions:

Y = (α 1 , y 1 , z 1 ),
which only depends on (τ, e). The vector Y is thus constant here and we get:

∀Y = Y , s(Y ) < s,
where s denotes the maximum value of the mixture entropy: s = s(Y ). Since we have assumed that single phase flows do not occur, i.e. Y ∈]0, 1[ 3 , then the first order conditions for the optimality of Y hold:

(∇ Y s)(Y ) = t (0, 0, 0).
Thanks to equations ( 11), ( 12) and ( 13), the latter can be expressed as pressure, temperature and chemical potential equilibrium:

P 1 (Y ) = P 2 (Y ), (15) 
T 1 (Y ) = T 2 (Y ), (16) 
µ 1 (Y ) = µ 2 (Y ). (17) 
Hence, for a given (τ, e), the fraction vector Y is the unique vector that allows to recover the thermodynamical equilibrium defined by ( 15), ( 16) and [START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF]. In other words, if the system is such that Y = Y , then the associated thermodynamical state is out-of-equilibrium: at least one of the three equilibrium ( 15), ( 16) or ( 17) is not reached.

As mentioned in the previous section, the source terms S should be chosen in agreement with the second law of thermodynamics which states that T d t s ≥ 0. Since Y → s(Y ) is strictly concave, this means that the time evolution of the thermodynamical system through [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] tends to increase the entropy s and thus to decrease the gap between the state of the system Y and the thermodynamical equilibrium state Y . In that sense, the fractions Y characterize the thermodynamical disequilibrium between the phases and the source terms S determine the thermodynamical path of the system towards the equilibrium state defined by Y . Let us now study different ways for defining S .

Two-fluid-like source terms

First of all, a short point is proposed in this section on a class of source terms that are classically used for two-fluid models, see among others [START_REF] Baer | A two-phase mixture theory for the Deflagration-To-Detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Glimm | Two-pressure two-phase flow[END_REF][START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF][START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF][START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF][START_REF] Hantke | News on baer-nunziato-type model at pressure equilibrium[END_REF]. They are not in a BGK form and they have been recently studied in the framework of homogeneous models in [START_REF] Ghazi | Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables[END_REF][START_REF] Ghazi | Vapour-liquid phase transition and metastability[END_REF][START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF]. For these source terms, equation ( 9) should be considered. A natural way of defining S so that T d t s ≥ 0 is to choose:

S α 1 = K α 1 λ α 1 P 1 T 1 - P 2 T 2 , (18) 
S y 1 = - K y 1 λ y 1 µ 1 T 1 - µ 2 T 2 , (19) 
S z 1 = K z 1 λ z 1 1 T 1 - 1 T 2 , (20) 
where K α 1 , K y 1 and K z 1 are normalization terms that should be positive and may depend on (α 1 , y 1 , z 1 , τ, e). The advantage of these source terms is that the three (positive) time scales λ α 1 , λ y 1 and λ z 1 can be chosen independently and can depend on (α 1 , y 1 , z 1 , τ, e). This choice gives a lot of freedom in defining the paths followed by the system towards the equilibrium states. It will be seen in section (4) that the classical form of BGK source terms do not offer such a possibility. Nevertheless, source terms of the form ( 18)-( 20) have a known drawback when turning to numerical simulation. Building efficient and robust schemes for these source terms can be tricky, see for instance [START_REF] Ghazi | Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables[END_REF][START_REF] Hérard | A fractional step method to compute a class of compressible gas-liquid flows[END_REF][START_REF] Lochon | Modélisation et simulation d'écoulements transitoires eau-vapeur en approche bifluide[END_REF][START_REF] Liu | Contribution to the verification and the validation of an unsteady two-phase flow model[END_REF][START_REF] Boukili | Relaxation and simulation of a barotropic three-phase flow model[END_REF][START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF][START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF]. In these references, pressure relaxation, temperature relaxation and chemical potential relaxation are treated separately through a fractional step approach. Each of these steps is generally solved using an implicit (in time) method that requires to compute the solution of a non-linear equation. This fractional step approach does not enable a strong coupling between these three relaxation effects. Building numerical scheme for solving the three effects in a coupled manner would require to solve a system of three non-linear equations using for instance (quasi-)Newton methods. The latter are not always robust enough, in particular when the three relaxation effects are associated with very different time-scales. This has motivated the works [START_REF] Hurisse | Various choices of source terms for a class of two-fluid two-velocity models[END_REF][START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF]: BGK-like source terms have been proposed for two-fluid models in order to avoid such difficulties . Indeed, it will be seen in the next section that the form of the BGK source terms render their numerical discretization easier.

Classical BGK source terms

In this section, classical BGK source terms associated with model ( 7) are first studied. They have been proposed in [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF] and they strongly rely on the property of concavity of the mixture entropy.

A classical BGK model for the source terms

The classical form of source terms for model [START_REF] Downar-Zapolski | The non-equilibrium relaxation model for onedimensional flashing liquid flow[END_REF] relies on the Gibbs relation [START_REF] Faucher | Computation of flashing flows in variable crosssection ducts[END_REF] and on the remark that the mixture entropy Y → s(Y ) is strictly concave. Indeed, the concavity of s implies that the plane tangent to s at a point Y is always above s. In other words, for all Y = (α 1 , y 1 , z 1 ), we have:

∀Y = t (α 1 , y 1 , z 1 ), s(Y ) ≤ s(Y ) + t (∇ Y s)(Y ) • (Y -Y ).
So that, setting Y = Y we get thanks to the definition of Y that for all Y :

0 ≤ s -s(Y ) = s(Y ) -s(Y ) ≤ t (∇ Y s)(Y ) • (Y -Y ).
Equation ( 10) can be written:

T d t s = t (∇ Y s)(Y ) • S ,
hence, by choosing S = (Y -Y )/λ , with λ a positive time-scale, we obtain from the previous inequality that:

T d t s = t (∇ Y s)(Y ) • (Y -Y )/λ ≥ 0 ( 21 
)
We can conclude that the source terms defined as:

S = Y -Y λ , Y = argmax Y (s(Y )), (22) 
comply with the second law of thermodynamics.

It is an important point to be quoted that, on the contrary to the source terms of section 3.2, source terms (22) only involve a unique time scale λ for all the fractions.

Some basic properties

System (14) associated with BGK source terms ( 22) is a quasi-linear set of ODE which can be easily integrated. Indeed, since Y only depends on (τ, e), it is constant. Thus we get for each component Y i , i = 1..3, of the vector Y :

Y i (t) = Y i + Y i (0) -Y i exp - t 0 dζ λ (ζ ) . ( 23 
)
Several very basic properties arise from formula [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF].

Proposition 1. If the initial fraction Y i (0) and if the equilibrium fraction Y i belong to ]0, 1[, then t → Y i (t) is bounded and remains in ]0, 1[ for all t ≥ 0.

Proof. First, since λ > 0, equation [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF] states that:

∀t ≥ 0, min Y i (0), Y i ≤ Y i (t) ≤ max Y i (0), Y i . (24) 
If we assume that the initial fraction Y i (0) and the equilibrium fraction Y i belong to ]0, 1[, inequality [START_REF] Jung | Numerical simulations of two-fluid flow on multicores accelerator[END_REF] means that t → Y i (t) is bounded and remains in ]0, 1[ for all t ≥ 0. Moreover, [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF] implies that Y i (t) is an increasing (resp. decreasing) function of

t if Y i (0) ≥ Y i (resp. Y i (0) ≤ Y i ).
This ends the proof of proposition 1.

Proposition 2. If t → λ (t) fulfills: t 0 dζ λ (ζ ) -→ t→+∞ +∞,
then the equilibrium state is asymptotically reached by the system:

lim t→+∞ Y i (t) = Y i , i = 1..3.
Proof. Let us focus on the integral term in relation [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF]. If its limit tends to +∞:

t 0 dζ λ (ζ ) -→ t→+∞ +∞, (25) 
then the exponential term in [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF] tends to zero when t → +∞. In such cases, the equilibrium state is asymptotically reached by the system: lim

t→+∞ Y i (t) = Y i , i = 1..3.
This ends the proof of proposition 2.

This is for instance the case when for all t ≥ 0 the time-scale remains bounded. On the contrary, if the integral remains bounded the system tends to a limit state that is different from the equilibrium state. The latter is thus not asymptomatically reached. Such situations occur for instance when the relaxation time-scale is a function that "quickly" increases to +∞. If one chooses for instance: λ (t) = exp(t), the system tends to:

lim t→+∞ Y i (t) = Y i + Y i (0) -Y i exp(-1) = Y i , i = 1..3.
For such time-scales, the relaxation of the fraction to the equilibrium fraction is partial and the thermodynamical equilibrium can not be reached.

These remarks clearly show that the equilibrium state defined by Y is a stable equilibrium state for system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF]. It is asymptotically reached when condition ( 25) is fulfilled by the relaxation time-scale. Remark 4. In fact, a Lyapunov function can be built for system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] on the basis of the mixture entropy, L : Y → ss(Y ). Such a Lyapunov function has been used in [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] in order to study the stability of the source terms of section 3.2. Indeed, system (14) associated with these source terms leads to a highly non-linear system which can not be studied as easily as system (14) associated with BGK source terms [START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF].

Relaxation process for the phasic pressures and temperatures

It has been shown in section (4.2) that the fractions Y exponentially relax to the equilibrium fractions Y provided that condition [START_REF] Kapila | Two-phase modeling of deflagrationto-detonation transition in granular materials: Reduced equations[END_REF] holds for the time scale. The equilibrium state is clearly defined as the unique state for which pressure, temperature and chemical potential of the two phases are equal, see section 3.1. So it seems natural to study how the relaxation process for the fractions translates in terms of phasic pressures and temperatures. For the sake of simplicity, relaxation for chemical potentials will not be studied here. The latter is associated with the mass fraction through relation [START_REF] Ghazi | Modélisation d'écoulements compressibles avec transition de phase et prise en compte des états métastables[END_REF]. We then consider the specific case where mass fractions y k are constant. Typically, if one sets y 1 (0) = y 1 , equation [START_REF] Jin | Compressible two-pressure two-phase flow models[END_REF] states that for all t ≥, y 1 (t) = y 1 (0) = y 1 and that d t y 1 = 0.

Let us consider a function φ k defined for phase k: φ k : (τ k , e k ) → φ k (τ k , e k ). Thanks to system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] and to defnitions (4), we get that its derivative is:

d t φ k = ∂ τ k (φ k ) τ k α k d t α k -∂ τ k (φ k ) τ k y k + ∂ e k (φ k ) e k y k d t y k + ∂ e k (φ k ) e k z k d t z k ,
which for constant mass fraction can be simplified in:

d t φ k = ∂ τ k (φ k ) τ k α k d t α k + ∂ e k (φ k ) e k z k d t z k . ( 26 
)
By setting successively 26), we get that:

φ k = 1/T k = ∂ e k (s k ) |τ k and φ k = P k /T k = ∂ τ k (s k ) |e k in equation (
d t (P k /T k ) d t (1/T k ) = 1 y k ∇ 2 (τ k ,e k ) s k τd t α k ed t z k , (27) 
where ∇ 2 (τ k ,e k ) s k stands for the Hessian matrix of the phasic entropy (τ k , e k ) → s k (τ k , e k ). By combining equation ( 27) for the two phases, we easily get the relation:

d t (P 1 /T 1 -P 2 /T 2 ) d t (1/T 1 -1/T 2 ) = 1 y 1 ∇ 2 (τ 1 ,e 1 ) s 1 + 1 y 2 ∇ 2 (τ 2 ,e 2 ) s 2 τd t α 1 ed t z 1 , (28) 
or using the definition of the source terms [START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF]:

d t (P 1 /T 1 -P 2 /T 2 ) d t (1/T 1 -1/T 2 ) = 1 y 1 ∇ 2 (τ 1 ,e 1 ) s 1 + 1 y 2 ∇ 2 (τ 2 ,e 2 ) s 2 τ(α 1 -α 1 ) λ e(z 1 -z 1 ) λ . ( 29 
)
Since the phasic entropies are strictly concave with respect to (τ k , e k ) and since the mass fractions are constant, it implies that the matrix involving the Hessian matrices on the right hand side of ( 28) and ( 29) is symmetric definite strictly negative, we thus get the inequality:

t d t (P 1 /T 1 -P 2 /T 2 ) d t (1/T 1 -1/T 2 ) • τ(α 1 -α 1 ) λ e(z 1 -z 1 ) λ < 0. ( 30 
)
Moreover, for source terms [START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF], equation ( 21) gives:

t (∇ Y s)(Y ) • (Y -Y ) ≥ 0 (31) 
By using formulas ( 11)-( 13) for the derivatives of the mixture entropy s and by setting y 1 = y 1 in (31), we obtain the inequality:

t (P 1 /T 1 -P 2 /T 2 ) (1/T 1 -1/T 2 ) • τ(α 1 -α 1 ) λ e(z 1 -z 1 ) λ ≥ 0 (32) 
From equation ( 23), we know that W , the second vector on the left hand side of inequalities (32) and ( 30), can be written as a constant vector W 0 multiplied by a function of time ω(t), W = ω(t)W 0 , where we have:

W = τ(α 1 -α 1 ) λ e(z 1 -z 1 ) λ , W 0 = τ(α 1 -α 1 (0)) e(z 1 -z 1 (0))
, and ω = 1

λ exp - t 0 dζ λ (ζ ) .
If at time t = 0 the system is out of equilibrium, then W 0 = t (0, 0) and W 0 allows to define two complementary half spaces of R 2 :

W + = (x, y) ∈ R 2 , t (x, y) •W 0 ≥ 0 and W -= (x, y) ∈ R 2 , t (x, y) •W 0 < 0 .
The vector of pressure and temperature differences, t (P 1 /T 1 -P 2 /T 2 , 1/T 1 -1/T 2 ), lies in W + , and its derivative with time lies in W -. At that point it seems difficult to go further in the analysis of the relaxation process. Indeed, it depends on the phasic EoS and on the link between W 0 and the initial pressure and temperature differences. In the next section, the example of perfect gas EoS is developed. For these simple EoS, W 0 is co-linear with the initial pressure and temperature differences, and the analysis of the relaxation process can be performed further quite easily.

Relaxation process for Perfect Gas EoS

We recall that in the following we set y 1 = y 1 . In the very particular case of two Perfect Gas EoS, it can be proven that the pressure and temperature relaxation is monotonic when considering that mass transfer does not occur. For a Perfect Gas EoS, we have the entropy:

s k (τ k , e k ) = C v,k ln e k τ (γ k -1) k + s 0,k ,
where C v,k > 0, γ k > 1 and s 0,k are parameters. The pressure and temperature (2) are then: P k = (γ k -1)e k /τ k and T k = e k /C v,k , and thus P k /T k = (γ k -1)C v,k /τ k . Hence, 1/T k only depends on e k and P k /T k only depends on τ k , which means that the matrix on the right hand side of system of equations ( 29) is diagonal. In fact we have:

   d t (P 1 /T 1 -P 2 /T 2 ) = -P 1 α 1 T 1 + P 2 α 2 T 2 (α 1 -α 1 ) λ , d t (1/T 1 -1/T 2 ) = -1 z 1 T 1 + 1 z 2 T 2 (z 1 -z 1 ) λ . ( 33 
)
Moreover, the volume and energy equilibrium fractions can be written explicitly from the temperature and pressure equilibrium ( 15)-( 16):

α 1 = y 1 δ 1 y 1 δ 1 + y 2 δ 2 and z 1 = y 1 C v,1 y 1 C v,1 + y 2 C v,2 , (34) 
where δ k = (γ k -1)C v,k . We recall that we consider here the case y k = y k , so that in fact α 1 and z 1 -and thus Y -do not depend on Y . After some easy computations using these explicit formulas (see details in appendix 7), it can be obtained that:

α 1 -α 1 = T P α 1 α 2 P 1 T 1 - P 2 T 2 , ( 35 
)
and

z 1 -z 1 = T z 1 z 2 1 T 1 - 1 T 2 , ( 36 
)
where the pressure P and the temperature T are defined by [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF]. By introducing these formulas into system (33) we get:

d t (P 1 /T 1 -P 2 /T 2 ) = - α 1 α 2 T λ P P 1 α 1 T 1 + P 2 α 2 T 2 (P 1 /T 1 -P 2 /T 2 ) , ( 37 
)
d t (1/T 1 -1/T 2 ) = - z 1 z 2 T λ 1 z 1 T 1 + 1 z 2 T 2 (1/T 1 -1/T 2 ) . ( 38 
)
For perfect gas and for two phase flows (i.e. (α 1 , y 1 , z 1 ) ∈]0, 1[), the first terms on the right hand side of equations ( 37) and ( 38) are strictly negative. These two equations are of the form: d t X = AX, with A < 0, and thus we get d t ln(X) = A < 0 or equivalently d t X < 0. It can then be deduced that:

d t (P 1 /T 1 -P 2 /T 2 ) < 0, ( 39 
) d t (1/T 1 -1/T 2 ) < 0, (40) 
which implies that the time evolution of (P 1 /T 1 -P 2 /T 2 ) and (1/T 1 -1/T 2 ) is monotonically decreasing.

Remark 5. The equilibrium mass fraction y 1 is defined thanks to the chemical potential equilibrium [START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF]. The latter is non-linear with respect to τ k and e k even for Perfect Gas EoS since:

µ k /T k = γ k C V,k -s k (τ k , e k ).
Thus y 1 is such that:

γ 1 C V,1 -s 1 α 1 τ y 1 , z 1 e y 1 = γ 2 C V,2 -s 2 (1 -α 1 )τ (1 -y 1 ) , ( 1 
-z 1 )e (1 -y 1 ) . ( 41 
)
Formulas (34) clearly gives positive volume and energy fractions provided that y 1 ∈ [0, 1], γ k > 1 and C v,k > 0. But depending on the choice for the EOS parameters, equation (41) may provide a solution for y 1 which is not in [0, 1]. Moreover, the source term for the mass fraction S 2 can then not be written in terms of the difference of the potential, as it is the case for S 1 and S 3 which can respectively be written in terms of the differences P 1 /T 1 -P 2 /T 2 and 1/T 1 -1/T 2 .

Proposition of modified BGK source terms

The source terms of section 3.2 allow to define independent time-scales for pressure, temperature and chemical potential relaxation. In a physical point of view, it is an interesting feature. Indeed, this enables more possibilities in the definition of the thermodynamical paths towards the equilibrium state. In this section, the BGK source terms of section 4 are modified in order to account for three independent time-scales for volume, mass and energy fractions.

BGK source terms involving three independent time-scales

A first natural way of introducing three time-scales in BGK source terms could be to modify source terms [START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF] into:

S i = Y i -Y i λ i , Y = argmax Y (s(Y )), (42) 
with λ i > 0 for i = 1..3. In section 4, choosing a single time-scale, λ i = λ , ensures that the source terms comply with the second law of thermodynamics whatever the form for λ > 0 is. With choice (42), this is not the case because the concavity of the mixture entropy can not be used as in section 4.1. Hence, for each choices of λ i one should check if the second law of thermodynamics is fulfilled. This might be very tricky. An other suggestion is thus made here, and it also relies on the concavity of the mixture entropy as in section 4. The basic idea is very close to the one proposed in [START_REF] Hurisse | Various choices of source terms for a class of two-fluid two-velocity models[END_REF].

Since the mixture entropy Y → s(Y ) is strictly concave with respect to Y , the three functions:

η 1 : α 1 → s(α 1 , y 1 , z 1 ), (43) 
η 2 : y 1 → s(α 1 , y 1 , z 1 ), (44) 
η 3 : z 1 → s(α 1 , y 1 , z 1 ), (45) 
are also strictly concave. For the function η i , the variable is Y i while Y j , j = i, are parameters. In the following, an abuse of notation is used: parameters Y j , j = i are omitted in the arguments of η i . Let us define the maximum of each of these functions by:

η i = η i ( Y i ) = max Y i (η i (Y i )), i = 1..3. (46) 
In the definition (46) of the maximum for η i , the quantities Y j , j = i, are fixed. It is an important point to be quoted that in general we have:

Y = Y = t ( Y 1 , Y 2 , Y 3 ).
Indeed, the equilibrium fraction vector Y of section 4 is a constant, it does not depend of the fractions Y i . On the contrary, the equilibrium fraction vector defined by (46) depends on the fractions and it is thus not constant, but it does not depend on τ and e: Y → Y (Y ). More precisely, the component i of Y depends on the two components j = i of vector Y . Since the functions η i are strictly concave with respect to Y i , the recipes used in section 4.1 can be applied here. For all Y i , we have:

∀Y i , η i (Y i ) ≤ η i (Y i ) + ∂ η i ∂ Y i (Y i ) × (Y i -Y i ),
and if we choose

Y i = Y i we obtain for all Y i : 0 ≤ η i -η i (Y i ) ≤ ∂ η i ∂ Y i (Y i ) × ( Y i -Y i ).
Moreover, thanks to equations ( 11)-( 13) we easily get the derivatives of η i with respect to Y i :

∂ η 1 ∂ α 1 = ∂ α 1 (s) |y 1 ,z 1 = τ P 1 T 1 - P 2 T 2 (Y ), (47) 
∂ η 2 ∂ y 1 = ∂ y 1 (s) |α 1 ,z 1 = - µ 1 T 1 - µ 2 T 2 (Y ), (48) 
∂ η 3 ∂ z 1 = ∂ z 1 (s) |α 1 ,y 1 = e 1 T 1 - 1 T 2 (Y ). (49) 
As a consequence, source terms in agreement with the second law of thermodynamics can be defined on the basis of Y as:

S i = Y i (Y ) -Y i λ i , Y i (Y ) = argmax Y i (η i (Y i )), (50) 
with independent time scales λ i > 0. Indeed, with (50) each term on the right hand side of Gibbs relation ( 10) is positive, whatever the time scale λ i > 0 is. As the system of section 4.1, system of ODE ( 14) associated with source terms (50) is a non-linear system. At last, when the thermodynamical equilibrium is reached for 0 < Y i < 1, the fractions are defined by the optimality constraint for each function η i that leads to:

P 1 T 1 ( α 1 , y 1 , z 1 ) = P 2 T 2 ( α 1 , y 1 , z 1 ), (51) 
µ 1 T 1 (α 1 , y 1 , z 1 ) = µ 2 T 2 (α 1 , y 1 , z 1 ), (52) 1 
T 1 (α 1 , y 1 , z 1 ) = 1 T 2 (α 1 , y 1 , z 1 ). (53) 
The equilibrium fractions Y i may not remain in [0, 1]. The reason is the same than for the classical BGK model as described in remark 2, and it depends on the choice of the phasic EoS, see also remark 4.4. Nevertheless, in the following it will be assumed that Y belongs to [0, 1] 3 .

Some basic properties

As mentioned previously, ODE system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] with source terms (50) is non-linear and its study is more complex than the system of section 4. First of all, it has been assumed in section 2 that the phasic entropies belong to C 2 (R + * × R + * ). The equilibrium fractions Y i are defined through the first derivatives of the entropies by ( 51)-(53) Therefore, Y → Y (Y ) is continuous.

Since system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] with source terms (50) is diagonal, each equation can be integrated between 0 and t:

Y i (t) = (Φ i (t)) -1 Y i (0) + (Φ i (t)) -1 t 0 Φ i (s) Y i (Y (s)) λ i (s) ds, (54) 
where we have for all t: Moreover, it should be noticed that:

Φ i (t) =
t 0 Φ i (s) λ i (s) ds = t 0 d s Φ i (s)ds = Φ i (t) -1. (55) 
Hence, by using equation ( 54) and previous result (55), we obtain:

1 -Y i (t) = (Φ i (t)) -1 (1 -Y i (0)) + (Φ i (t)) -1 t 0 Φ i (s)(1 -Y i ) λ i (s) ds.
This equation clearly implies that if 1 -Y i (s) ≥ 0 for all s ∈ [0,t], then 1 -Y i (t) ≥ 0. We can then conclude that if Y (0) lies in [0, 1] 3 and if for all s ∈ [0,t], Y (s) lies in [0, 1] 3 , then Y (t) lies in [0, 1] 3 . This ends the proof of proposition 3.

Proposition 4. Source terms (50) are associated with the same unique equilibrium state than source terms [START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF]:

Y * = Y
Proof. Equilibrium states Y * for system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] with source terms (50) are such that:

S i (Y * ) = 0 ⇐⇒ Y * i = Y i (Y * ), i = 1.
.3, which thanks to (51)-(53) reads:

P 1 T 1 (α * 1 , y * 1 , z * 1 ) = P 2 T 2 (α * 1 , y * 1 , z * 1 ), (56) 
µ 1 T 1 (α * 1 , y * 1 , z * 1 ) = µ 2 T 2 (α * 1 , y * 1 , z * 1 ), (57) 1 
T 1 (α * 1 , y * 1 , z * 1 ) = 1 T 2 (α * 1 , y * 1 , z * 1 ). (58) 
This exactly corresponds to the definition of Y though ( 15)- [START_REF] Helluy | Assessment of numerical schemes for complex two-phase flows with real equations of state[END_REF], which is the unique solution of system (56)-(58). Source terms (50) are then associated with the same unique equilibrium state than source terms [START_REF] Hurisse | Simulations of liquid-vapor water flows with non-condensable gases on the basis of a two-fluid model[END_REF]: Y * = Y . This ends the proof of proposition 4.

Proposition 5. The equilibrium state Y is asymptotically stable for system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] with source terms (50).

Proof. We assume from now that each λ i is bounded for all t. This implies that the relaxation process for the fractions does not stop for a finite time, and that:

lim t→∞ Φ i (t) = +∞, Let us define Y → L (Y ) = s(Y ) -s(Y ).
In the previous sections, it has been shown that for source terms (50):

(i) L (Y ) = 0 and d t L (Y ) = 0, (ii) ∀Y = Y , L (Y ) > 0, (iii) ∀Y = Y , d t L (Y ) < 0.
Therefore, Y → L (Y ) is a strict Lyapunov function for system [START_REF] Ghazi | A nonisothermal thermodynamical model of liquid-vapor interaction with metastability[END_REF] with source terms (50), which ensures that the equilibrium state defined by Y is asymptotically stable. This ends the proof of proposition 5.

Moreover, as Y → Y is continuous and t → Y (t) is continuous, this implies that Y tends asymptotically to Y when time increases. The vector Y can thus be seen as a "local-in-time" equilibrium state that tends to the asymptotic equilibrium state Y .

Relaxation process for the modified BGK source terms

The aim of this section is to provide some remarks on the pressure and temperature relaxation process by following thermodynamical paths that ensure that no mass transfer occurs. For the classical BGK source terms, such paths are obvious and correspond to a constant mass fractions: y 1 = y 1 . For the modified source terms, these paths are such that: y 1 = y 1 (α 1 , z 1 ), where y 1 is implicitly defined by equation (52). Let us differentiate (52), we get:

k=2 ∑ k=1 A k τ k + B k e k y k dy 1 = k=2 ∑ k=1 A k τ k α k dα 1 + k=2 ∑ k=1 B k e k z k dz 1 , (59) 
with:

A k = e k ∂ 2 e k τ k (s k ) + τ k ∂ 2 τ k τ k (s k ) , and B k = e k ∂ 2 e k e k (s k ) + τ k ∂ 2 e k τ k (s k ) .
When considering the Hessian matrix of s k , we have:

A k B k = ∇ 2 (τ k ,e k ) s k τ k e k .
The phasic entropies are strictly concave, so that the sum on the left hand side of equation ( 59) is strictly negative because:

A k τ k + B k e k = (τ k e k ) • A k B k = (τ k e k ) • ∇ 2 (τ k ,e k ) s k τ k e k < 0. ( 60 
)
So that dy 1 is correctly defined through equation ( 59). From now it is assumed that y 1 = y 1 (α 1 , z 1 ). By considering a function φ k : (τ k , e k ) → φ k (τ k , e k ), the counterpart of equation ( 26) is here:

d t φ k = ∂ τ k (φ k ) τ k α k -A α A y ∂ τ k (φ k ) τ k y k + ∂ e k (φ k ) e k y k d t α k + ∂ e k (φ k ) e k z k -A z A y ∂ τ k (φ k ) τ k y k + ∂ e k (φ k ) e k y k d t z k , (61) 
where

A α = k=2 ∑ k=1 A k τ k α k , A y = k=2 ∑ k=1 A k τ k + B k e k y k , A z = k=2 ∑ k=1 B k e k z k .
Thanks to (60), we obviously have A y < 0. Then, by setting successively 61) one obtains:

φ k = 1/T k = ∂ e k (s k ) |τ k and φ k = P k /T k = ∂ τ k (s k ) |e k in equation (
d t (P k /T k ) d t (1/T k ) = 1 y k ∇ 2 (τ k ,e k ) s k 1 -α k A α y k A y -τ e z k A α y k A y -e τ α k A z y k A y 1 -z k A z y k A y τd t α k ed t z k . (62) 
It should be noted that equation ( 27) is recovered by setting A α = A z = 0 (with A y < 0) in equation ( 62), the latter corresponds to d t y 1 = 0. But in general, the second matrix on the right hand side of equation ( 62) is not equal to the identity matrix and the paths followed by the difference of the phasic pressure and the difference of the phasic temperature are different than for the classical BGK source terms. Let us denote D k this matrix:

D k = 1 -α k A α y k A y -τ e z k A α y k A y -e τ α k A z y k A y 1 -z k A z y k A y .
The matrix D k possesses two real eigenvalues:

r 1,k = 1 and r 2,k = 1 - α k A α + z k A z y k A y .
The second eigenvalue, r 2,k , depends on the thermodynamical state defined by α and z. Since we have the relation:

α k A α + z k A z = A k τ k + B k e k ,
the eigenvalue r 2,k can be rewritten:

r 2,k = 1 - (A k τ k + B k e k )/y k A y .
and thanks to (60) we can deduce that r 2,k ∈]0, 1[. Moreover, we have r 2,1 + r 2,2 = 1. The eigenvectors V 1,k and V 2,k that are respectively associated with r 1,k and r 2,k are:

V 1,k = t (τ/α k , -e/z k ) and V 2,k = t (τA α , eA z ).
It should be quoted that the eigenvector V 2,k is the same for both phases. The two eigenvectors are linearly independent since:

det(V 1,k ,V 2,k ) = τe α k z k (A k τ k + B k e k ) < 0
The matrix D k is then diagonalizable on R 2 , but it is not symmetric. The time evolution of the pressure and temperature differences is then obtained by combining equations (62): 

d
Unfortunately, since D k is not symmetric, the counterpart of inequality [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] can not be obtained from (63). This makes the analysis of the relaxation process even more complex than for the classical BGK source terms.

Remark 6. When both phases are described by a Perfect Gas EoS, some specific results can be obtained. In particular, the equilibrium fractions are very close to those obtained in section 4.4, see equations ( 34) and (41), except that they depend on Y . They are obtained from equations ( 51)-( 53):

α 1 = y 1 δ 1 y 1 δ 1 + y 2 δ 2 , ( 64 
)
z 1 = y 1 C v,1 y 1 C v,1 + y 2 C v,2 , (65) 
γ 1 C V,1 -s 1 α 1 τ y 1 , z 1 e y 1 = γ 2 C V,2 -s 2 α 2 τ (1 -y 1 )
, z 2 e (1y 1 )

.

For these Perfect Gas EoS, it should be noted that α 1 and z 1 only depend on y 1 whereas y 1 depends on α 1 and z 1 . This is due to the non-linearity of the chemical potential. On the contrary to the source terms of section 4.4, the thermodynamical path, y 1 = y 1 (α 1 , z 1 ), for which no mass transfer occurs can not be explicitly written. The analysis of the sole pressure and temperature relaxations is then more tricky even for Perfect Gas EoS.

Conclusion

A modified form of BGK source terms has been proposed for modeling two-phase flows with thermodynamical disequilibrium. For these source terms, three independent time-scales manage the return to the thermodynamical equilibrium while remaining in agreement with the second law of thermodynamics. The relaxation process can then be defined with additional degrees of freedom. Nonetheless, relaxation process remains complex and further studies should be carried in order to analysis in details the pressure and temperature relaxation. In particular, with the BGK source terms of sections 4 and 5, it is not an easy task to impose instantaneous relaxation of the pressure or the temperature for general EoS. In a numerical point of view, both classical and modified BGK source terms have advantages and drawbacks depending on the numerical strategy. For the classical BGK source terms, the simulation of the ODE system relies on the unique computation of the asymptotic equilibrium state through a 3 × 3 non-linear system. Then, if the time scale can be explicitly integrated, the overall integration of the classical source terms is exact [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF][START_REF] Hurisse | Numerical simulations of steady and unsteady two-phase flows using a homogeneous model[END_REF]. On the contrary, for the modified BGK source terms, the ODE system involves a "local-in-time" thermodynamical equilibrium which tends towards the asymptotic equilibrium. The computation of this "local-in-time" equilibrium state is based on three independent non-linear equations. Hence, when considering a fractional step approach for which the ODE system for relaxation process is solved using a unique time-step, modified BGK form can be preferred provided that the time-step is much smaller than the characteristic time for return to equilibrium. On the contrary, if several time steps are involved for solving the ODE system, the classical BGK source terms are less CPU-consuming since the thermodynamical equilibrium is only computed once at the beginning of the integration.

  If the initial fraction Y (0) lies in [0, 1] 3 and if for all s ∈ [0,t], Y i (s) lies in [0, 1] 3 , then Y (t) lies in [0, 1] 3 .Proof. Let us assume that Y (0) ∈ [0, 1] 3 . Function Φ i is such that for all t, we have:Φ i (t) > 0 and d t Φ i (t) = Φ i (t)/λ i (t).Provided that Y i (s) ≥ 0 for all s ∈ [0,t], equation (54) clearly ensures that Y i remains positive.
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  t (P 1 /T 1 -P 2 /T 2 ) d t (1/T 1 -1/T 2 ) = ∇ 2 (τ 1 ,e 1 ) s 1

	D 1 y 1	+ ∇ 2 (τ 2 ,e 2 ) s 2	D 2 y 2	τd t α 1 ed t z 1	.

7 Appendix: computation of the formulas of section 4.4

We present here the detailed computations that allow to retrieve equations ( 35) and (36). It is first recalled that perfect gas EOS are considered in section 4.4, hence, we have:

Moreover, mass fractions are assumed to be such that: y 1 = y 1 , so that definitions (34) lead to:

Thanks to the definitions of the mixture pressure and temperature [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF] and to the definitions (4) we have:

Hence, we obtain the formula of equation (35). Equation (36) can be found using exactly the same computations with (z 1z 1 ).