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Abstract

A modified form of BGK source terms is proposed for modeling two-phase flows with thermodynamical dise-
quilibrium. The novelty is that three independent time-scales allow to manage the return to the thermodynamical
equilibrium while remaining in agreement with the second law of thermodynamics. This is achieved thanks to the
definition of a “local-in-time” equilibrium state which tends towards the asymptotic equilibrium state when time
increases. The thermodynamical paths of the system are then modified with respect to the classical BGK source
terms used for two-phase flow modeling, and the relaxation process of the system towards the asymptotic equi-
librium state can be defined with additional degrees of freedom. In a numerical point of view, both the classical
and the modified BGK source terms have advantages. The choice between these two forms strongly depends on
the numerical strategy used to perform simulations.
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1 Introduction
A wide range of two-phase flow models have been proposed in the literature in order to account for the thermody-
namical disequilibrium between the phases, see for instance [1, 27, 32, 7, 11, 2] among many others. These models
can be roughly split into two classes: the two-fluid models for which each phase possesses its own velocity field,
and the homogeneous models assuming that both phases share the same velocity. In a thermodynamical point of
view, the disequilibrium are taken into account in the systems of equations by the mean of source terms that rule
the return to the thermodynamical equilibrium defined by the equality of the phasic pressures, the phasic temper-
atures and phasic chemical potentials. We focus herein on the source terms that take a BGK form (BGK stands
for Bhatnagar-Gross-Krook). These form of source terms are classically used in Boltzmann methods for modeling
collision terms. They are a linearized form of the exact terms for collisions that is highly non-linear. When dealing
with two-phase flows, the BGK source terms are widely used in homogeneous models [7, 10, 2, 21, 16]. Besides,
it should be noted that such source terms can also be used for two-fluid models [22, 24] and that other forms of
source terms (i.e. not of BGK type) have been applied to homogeneous models as in [12, 13, 14].

The BGK source terms have two main advantages. Firstly, they are defined on the basis of an entropy for the
mixture and they can thus easily be defined in agreement with the second law of thermodynamics. Secondly, the
ODE system of equations associated with the BGK source terms is linear with respect to the primitive variables
of the system. This allows to propose efficient and simple schemes on the basis of fractional step methods, as in
[21, 16] for instance. The difficulty then lies in the computation of the thermodynamical equilibrium state that is
defined by a system of three non-linear equations. An efficient scheme has been proposed for two-phase flows with
general EoS (Equation Of State) [8, 16]. With the latter, the 3×3 system is reduced to a single non-linear equation
involving one unknown. Nevertheless, when turning to settings involving more than two phases this simplification
is no more possible [23, 31] and computing the thermodynamical equilibrium becomes tricky.

In addition to this numerical difficulty for more than two phases, the classical BGK source terms are associated
with a unique time scale for the return to the asymptotic equilibrium. This strongly couples the relaxation effect
towards pressure, temperature and chemical potential equilibrium. Indeed, one could wish to manage separately
these three relaxation processes by defining three different time-scales. The aim of the present work is to pro-
pose a modified form for the BGK source terms that enables to bypass the two drawback mentioned above. A
new thermodynamical path is then proposed by using a “local-in-time” equilibrium state which tends towards the
asymptotic thermodynamical equilibrium. This modified source terms agree with the second law of thermody-
namics, whatever the three time-scales are. Moreover, the “local-in-time” thermodynamical equilibrium can be
computed by solving three independent non-linear equations.

The outline of the paper is the following. In section 2, the homogeneous model proposed in [2] is shortly
described and the link between the thermodynamical disequilibrium and the exchanges between the phases is
recalled in section 3. Then the derivation of the classical BGK source terms is described in section 4 while
modified BGK source terms are proposed in section 5. In these two sections, some properties of the source terms
are given, even if only very basic ones can be proved. An effort has also been made in order to try to describe the
pressure and temperature relaxation process for both sets of source terms.
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2 A homogeneous model accounting for the disequilibrium between the
phases

The aim of the present section is not to present the complete derivation of the model proposed in [2]. This has
been done in several references, see [2, 16, 23, 24, 26, 30, 31] for instance. The model is introduced and its main
properties are highlighted, in particular those associated with the exchanges between the phases. Some of these
results will be useful in the following sections.

Let us consider two phases whose thermodynamical behaviors are described by their EoS, given through the
phasic specific entropies sk, k = 1,2:

(τk,ek) 7→ sk(τk,ek),

where τk and ek respectively stand for the specific volume and the specific energy. It is assumed that the entropies
sk are in C2(R+

∗ ×R+
∗ ), that they are strictly concave with respect to (τk,ek), and that the partial derivative of sk

with respect to the energy is strictly positive: ∂ek (sk)τk
> 0. Moreover, it is assumed that within each of these

phases the Gibbs relation holds:

Tkdsk = dek +Pkdτk, (1)

allowing to define the phasic pressure Pk and the phasic temperature Tk thanks to the entropy sk:

1
Tk

= ∂ek (sk)|τk
, and

Pk

Tk
= ∂τk (sk)|ek

. (2)

Following [2, 16, 23, 24, 26, 30, 31], an immiscible mixture of these two phases is described by the mean of three
fractions: the volume fraction αk of phase k, the mass fraction yk of phase k and the fraction zk of energy of phase
k. Obviously, conservation of volume, mass and energy leads to the relations:

α1 +α2 = 1, y1 + y2 = 1 and z1 + z2 = 1. (3)

We assume here that the phasic EoS are such that these three fractions belong to [0,1], see also remark 2.
Remark 0. It should be noted that for miscible phases, when one assumes that both phases occupy the same
volume, the volume fraction does not make sense and the volume conservation leads to α1 = α2 = 1, see [5, 19,
24, 30, 31].

By defining the mixture density ρ and the mixture specific energy e as:

ρ = α1ρ1 +α2ρ2, and ρe = α1ρ1e1 +α2ρ2e2,

with ρk = 1/τk, the specific volume and the specific energy of phase k can be obtained through the relations:

τk =
αkτ

yk
, and ek =

zkτ

yk
, (4)

with τ = 1/ρ . The specific mixture entropy s for the mixture is defined as:

ρs = α1ρ1s1(τ1,e1)+α2ρ2s2(τ2,e2).

It can thus be written as a function of the fractions and the mixture specific volume and energy: (α1,y1,z1,τ,e) 7→
s(α1,y1,z1,τ,e) by using relations (3) and (4). Moreover, thanks to the phasic Gibbs relations (1), a Gibbs relation
for the mixture can be exhibited:

T ds = de+Pdτ + τ

(
P1

T1
− P2

T2

)
dα1−

(
µ1

T1
− µ2

T2

)
dy1 + e

(
1
T1
− 1

T2

)
dz1, (5)

where µk = ek +Pkτk−Tksk is the chemical potential, and where the mixture pressure and the mixture temperature
read:

P
T

= α1
P1

T1
+α2

P2

T2
, and

1
T

= z1
1
T1

+ z2
1
T2

. (6)

Remark 1. EoS may be defined in other thermodynamical planes, leading to different closures for the mixture
pressure and temperature, see [9]. For instance, if one chooses the thermodynamical plane (τk,sk), the Gibbs
relation reads:

dek(τk,sk) = Tkdsk−Pkdτk,

and thus we get:
Pk =−∂τk (ek)|sk

and Tk = ∂sk (ek)|τk
.

3



The Gibbs relation for the mixture then gives the following definitions for the mixture pressure and for the mixture
temperature:

P = α1P1 +α2P2 and T = β1T1 +β2T2,

where βk = yksk/s is the entropic fraction. More details may be found in [9].

The system of partial derivative equations used for simulating such mixtures is then based on the Euler system
of equations. It is thus assumed that both phases have the same velocity field U . In one-dimensional setting, the
system reads: 

∂t (ρY )+∂x (ρUY ) = ρS ,
∂t (ρ)+∂x (ρU) = 0,
∂t (ρU)+∂x

(
ρU2 +P

)
= 0,

∂t (ρE)+∂x (U(ρE +P)) = 0,

(7)

where Y = t(α1,y1,z1) is a vector containing the three fractions, E = e+ u2/2 is the total energy of the mixture
and P is the pressure of the mixture as described in equation (6). The vector S = t(Sα1 ,Sy1 ,Sz1) gathers the
source terms that rule the exchanges of volume, mass and energy between the two phases. It should be noted that
in system (7) no external forces or heat exchange has been accounted for. We indeed intend to focus in this work
on the source terms S which define the internal exchanges between the two phases.

Remark 2. It should be noted that system of equations (7) is strictly hyperbolic provided that the mixture temper-
ature is strictly positive [16, 21, 23]. This is the case here if the phasic energies are positive. For the Generalized
Stiffened Gas EoS, phasic energies may become negative, which might lead to negative energy fractions and to a
negative mixture temperature T , even if the phasic temperature Tk are positive. In such cases, hyperbolicity can be
lost.

Thanks to (7), we have de+Pdτ = 0 so that equation (5) can be written:

T ds = τ

(
P1

T1
− P2

T2

)
Sα1 −

(
µ1

T1
− µ2

T2

)
Sy1 + e

(
1
T1
− 1

T2

)
Sz1 , (8)

or equivalently, by reintroducing the mixture entropy:

T ds = ∂α1 (s)|y1,z1,τ,e Sα1 +∂y1 (s)|α1,z1,τ,e Sy1 +∂z1 (s)|α1,y1,τ,e Sz1 . (9)

Equations (8) and (9) are equivalent since we have:

∂α1 (s)|y1,z1,τ,e = τ

(
P1

T1
− P2

T2

)
, (10)

∂y1 (s)|α1,z1,τ,e =−
(

µ1

T1
− µ2

T2

)
, (11)

∂z1 (s)|α1,y1,τ,e = e
(

1
T1
− 1

T2

)
. (12)

Both forms (8) and (9) will be useful in the following sections. Since S define exchanges between the two phases,
they should agree with the second law of thermodynamics. When the two phasic entropies (τk,ek) 7→ sk(τk,ek)
are strictly concave, it has been proved in [26, 30, 21, 23] that (α1,y1,z1) 7→ s(α1,y1,z1,τ,e) is strictly concave.
Hence, in order to fulfill the second law of thermodynamics, the source terms S should be chosen so that the
mixture entropy increases along a streamline:

T ds≥ 0.

The following sections are dedicated to the study of possible source terms S . We thus consider a closed
mixture of two phases at rest and with a constant mixture energy e and a constant mixture specific volume τ . The
whole model (7) has been presented for the sake of completeness. The following sections rely on equations (8)-(9)
and the convective part of system (7) will not be considered.

3 The thermodynamical disequilibrium and the exchange between the
phases

As mentioned at the end of the previous section, we consider here the source terms when the system composed
of the mixture of the two phases is thermodynamically closed. That is: there is no mass exchange and no heat
exchange between the mixture and its surrounding, and no external force acts on the mixture. This implies that e
and τ are constant. The time evolution of the entropy of the mixture is thus given by equation (8) or equation (9).
Moreover, degenerate cases involving single phase situations are excluded from the present work: (α1,y1,z1) ∈
]0,1[3, despite model (7) allows to handle single phase flows as shown in [16, 23].

4



In the following, we then consider system of equations (7) at rest, i.e. U = 0, and with constant τ and e. We
get an ODE system whose variables are the fractions:

dtY = S ,
dtρ = 0,
U = 0,
dte = 0,

(13)

For the sake of readability, τ and e will be omitted in the arguments of the different functions and the argument
(α1,y1,z1) will be replaced by Y . Moreover, the source term vector S = t(Sα1 ,Sy1 ,Sz1) will be denoted by
S = t(S1,S2,S2).

3.1 Modeling the thermodynamical disequilibrium
Since the mixture entropy Y 7→ s(Y ) is strictly concave [26, 30, 21, 23], it possesses a unique maximum which is
reached for a set of fractions:

Y = (α1,y1,z1),

which only depends on (τ,e). The vector Y is thus constant here and we get:

∀Y 6= Y , s(Y )< s,

where s denotes the maximum value of the mixture entropy: s = s(Y ). Since we have assumed that single phase
flows do not occur, i.e. Y ∈]0,1[3, then the first order conditions for the optimality of Y hold:

(∇Y s)(Y ) = t(0,0,0).

Thanks to equations (10), (11) and (12), the latter can be expressed as pressure, temperature and chemical potential
equilibrium:

P1(Y ) = P2(Y ), (14)
T1(Y ) = T2(Y ), (15)
µ1(Y ) = µ2(Y ). (16)

Hence, for a given (τ,e), the fraction vector Y is the unique vector that allows to recover the thermodynamical
equilibrium defined by (14), (15) and (16). In other words, if the system is such that Y 6= Y , then the associated
thermodynamical state is out-of-equilibrium: at least one of the three equilibrium (14), (15) or (16) is not reached.

As mentioned in the previous section, the source terms S should be chosen in agreement with the second
law of thermodynamics which states that T dts≥ 0. Since Y 7→ s(Y ) is strictly concave, this means that the time
evolution of the thermodynamical system through (13) tends to increase the entropy s and thus to decrease the
gap between the state of the system Y and the thermodynamical equilibrium state Y . In that sense, the fractions
Y characterize the thermodynamical disequilibrium between the phases and the source terms S determine the
thermodynamical path of the system towards the equilibrium state defined by Y . Let us now study different ways
for defining S .

3.2 Two-fluid-like source terms
First of all, a short point is proposed in this section on a class of source terms that are classically used for two-fluid
models, see among others [1, 15, 25, 6, 11]. They are not in a BGK form and they have been recently studied in
the framework of homogeneous models in [12, 13, 14]. For these source terms, equation (8) should be considered.
A natural way of defining S so that T dts≥ 0 is to choose:

Sα1 =
Kα1

λα1

(
P1

T1
− P2

T2

)
, (17)

Sy1 =−
Ky1

λy1

(
µ1

T1
− µ2

T2

)
, (18)

Sz1 =
Kz1

λz1

(
1
T1
− 1

T2

)
, (19)

where Kα1 , Ky1 and Kz1 are normalization terms that should be positive and may depend on (α1,y1,z1,τ,e). The
advantage of these source terms is that the three (positive) time scales λα1 , λy1 and λz1 can be chosen independently
and can depend on (α1,y1,z1,τ,e). This choice gives a lot of freedom in defining the paths followed by the system
towards the equilibrium states. It will be seen in section (4) that the classical form of BGK source terms do not
offer such a possibility.

Nevertheless, source terms of the form (17)-(19) have a known drawback when turning to numerical simulation.
Building efficient and robust schemes for these source terms can be tricky, see for instance [12, 18, 17, 29, 28, 3,
4, 24]. When considering two-fluid models, BGK-like source terms have been recently proposed in order to avoid
such difficulties [22, 24]. Indeed, it will be seen in the next section that the form of the BGK source terms render
their numerical discretization easier.
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4 Classical BGK source terms
In this section, classical BGK source terms associated with model (7) are first studied. They have been proposed
in [2] and they strongly rely on the property of concavity of the mixture entropy.

4.1 A classical BGK model for the source terms
The classical form of source terms for model (7) relies on the Gibbs relation (9) and on the remark that the mixture
entropy Y 7→ s(Y ) is strictly concave. Indeed, the concavity of s implies that the plane tangent to s at a point Y
is always above s. In other words, for all Y = (α1,y1,z1), we have:

∀Y ′ = t(α ′1,y
′
1,z
′
1), s(Y ′)≤ s(Y )+ t(∇Y s)(Y ) · (Y ′−Y ).

So that, setting Y ′ = Y we get thanks to the definition of Y that for all Y :

0≤ s− s(Y ) = s(Y )− s(Y )≤ t(∇Y s)(Y ) · (Y −Y ).

Equation (9) can be written:
T dts = t(∇Y s)(Y ) ·S ,

hence, by choosing S = (Y −Y )/λ , with λ a positive time-scale, we obtain from the previous inequality that:

T dts = t(∇Y s)(Y ) · (Y −Y )/λ ≥ 0 (20)

We can conclude that the source terms defined as:

S =
Y −Y

λ
, Y = argmax

Y
(s(Y )), (21)

comply with the second law of thermodynamics.
It is an important point to be quoted that, on the contrary to the source terms of section 3.2, source terms (21)

only involve a unique time scale λ for all the fractions.

4.2 Some basic properties
System (13) associated with BGK source terms (21) is a quasi-linear set of ODE which and can be easily integrated.
Indeed, since Y only depends on (τ,e), it is constant. Thus we get for each component Yi, i = 1..3, of the vector
Y :

Yi(t) = Y i +
(
Yi(0)−Y i

)
exp
(
−
∫ t

0

dζ

λ (ζ )

)
. (22)

Several very basic properties arise from formula (22).
First, since λ > 0, equation (22) states that:

∀t ≥ 0, min
(
Yi(0),Y i

)
≤ Yi(t) ≤ max

(
Yi(0),Y i

)
.

If we assume that the initial fraction Yi(0) and the equilibrium fraction Y i belong to ]0,1[, the inequalities above
mean that t 7→Yi(t) is bounded and remains in ]0,1[ for all t ≥ 0. Moreover, (22) implies that Yi(t) is an increasing
(resp. decreasing) function of t if Yi(0)≥ Y i (resp. Yi(0)≤ Y i).

Let us now focus on the integral term in relation (22). If its limit tends to +∞:∫ t

0

dζ

λ (ζ )
−→

t→+∞
+∞, (23)

then the exponential term in (22) tends to zero when t→+∞. In such cases, the equilibrium state is asymptotically
reached by the system:

lim
t→+∞

Yi(t) = Y i, i = 1..3.

This is for instance the case when for all t ≥ 0 the time-scale remains bounded. On the contrary, if the integral
remains bounded the system tends to a limit state that is different from the equilibrium state. The latter is thus
not asymptomatically reached. Such situations occur for instance when the relaxation time-scale is a function that
“quickly” increases to +∞. If one chooses for instance: λ (t) = exp(t), the system tends to:

lim
t→+∞

Yi(t) = Y i +
(
Yi(0)−Y i

)
exp(−1) 6= Y i, i = 1..3.

For such time-scales, the relaxation of the fraction to the equilibrium fraction is partial and the thermodynamical
equilibrium can not be reached.

These remarks clearly show that the equilibrium state defined by Y is a stable equilibrium state for system
(13). It is asymptotically reached when condition (23) is fulfilled by the relaxation time-scale.
Remark 3. In fact, a Lyapunov function can be built for system (13) on the basis of the mixture entropy, L : Y 7→
s− s(Y ). Such a Lyapunov function has been used in [14] in order to study the stability of the source terms of
section 3.2. Indeed, system (13) associated with these source terms leads to a highly non-linear system which can
not be studied as easily as system (13) associated with BGK source terms (21).
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4.3 Relaxation process for the phasic pressures and temperatures
It has been shown in section (4.2) that the fractions Y exponentially relax to the equilibrium fractions Y provided
that condition (23) holds for the time scale. The equilibrium state is clearly defined as the unique state for which
pressure, temperature and chemical potential of the two phases are equal, see section 3.1. So it seems natural to
study how the relaxation process for the fractions translates in terms of phasic pressures and temperatures. For the
sake of simplicity, relaxation for chemical potentials will not be studied here. The latter is associated with the mass
fraction through relation (11). We then consider the specific case where mass fractions yk are constant. Typically,
if one sets y1(0) = y1, equation (22) states that for all t ≥, y1(t) = y1(0) = y1 and that dty1 = 0.

Let us consider a function φk defined for phase k: φk : (τk,ek) 7→ φk(τk,ek). Thanks to system (13), we get that
its derivative is:

dtφk = ∂τk

(
φ f
) τk

αk
dtαk−

(
∂τk

(
φ f
) τk

yk
+∂ek

(
φ f
) ek

yk

)
dtyk +∂ek

(
φ f
) ek

zk
dtzk,

which for constant mass fraction can be simplified in:

dtφk = ∂τk

(
φ f
) τk

αk
dtαk +∂ek

(
φ f
) ek

zk
dtzk. (24)

By setting successively φk = 1/Tk = ∂ek (sk)|τk
and φk = Pk/Tk = ∂τk (sk)|ek

in equation (24), we get that:(
dt(P/Tk)
dt(1/Tk)

)
=

1
yk

∇
2
(τk,ek)

sk

(
τdtαk
edtzk

)
, (25)

where ∇2
(τk,ek)

sk stands for the Hessian matrix of the phasic entropy (τk,ek) 7→ sk(τk,ek). By combining equation
(25) for the two phases, we easily get the relation:(

dt(P1/T1−P2/T2)
dt(1/T1−1/T2)

)
=

(
1
y1

∇
2
(τ1,e1)

s1 +
1
y2

∇
2
(τ2,e2)

s2

)(
τdtα1
edtz1

)
, (26)

or using the definition of the source terms (21):(
dt(P1/T1−P2/T2)
dt(1/T1−1/T2)

)
=

(
1
y1

∇
2
(τ1,e1)

s1 +
1
y2

∇
2
(τ2,e2)

s2

)(
τ(α1−α1)

λ
e(z1−z1)

λ

)
. (27)

Since the phasic entropies are strictly concave with respect to (τk,ek) and since the mass fractions are constant, it
implies that the matrix involving the Hessian matrices on the right hand side of (26) and (27) is symmetric definite
strictly negative, we thus get the inequality:

t
(

dt(P1/T1−P2/T2)
dt(1/T1−1/T2)

)
·

(
τ(α1−α1)

λ
e(z1−z1)

λ

)
< 0. (28)

Moreover, for source terms (21), equation (20) gives:

t(∇Y s)(Y ) · (Y −Y )≥ 0 (29)

By using formulae (10)-(12) for the derivatives of the mixture entropy s and by setting y1 = y1 in (29), we obtain
the inequality:

t
(

(P1/T1−P2/T2)
(1/T1−1/T2)

)
·

(
τ(α1−α1)

λ
e(z1−z1)

λ

)
≥ 0 (30)

From equation (22), we know that W , the second vector on the left hand side of inequalities (30) and (28), can be
written as a constant vector W0 multiplied by a function of time ω(t), W = ω(t)W0, where we have:

W =

(
τ(α1−α1)

λ
e(z1−z1)

λ

)
, W0 =

(
τ(α1−α1(0))
e(z1− z1(0))

)
, and ω =

1
λ

exp
(
−
∫ t

0

dζ

λ (ζ )

)
.

If at time t = 0 the system is out of equilibrium, then W0 6= t(0,0) and W0 allows to define two complementary half
spaces of R2:

W + =
{
(x,y) ∈ R2, t(x,y) ·W0 ≥ 0

}
and W − =

{
(x,y) ∈ R2, t(x,y) ·W0 < 0

}
.

The vector of pressure and temperature differences, t(P1/T1−P2/T2,1/T1− 1/T2), lies in W +, and its derivative
with time lies in W −.

At that point it seems difficult to go further in the analysis of the relaxation process. Indeed, it depends on the
phasic EoS and on the link between W0 and the initial pressure and temperature differences. In the next section,
the example of perfect gas EoS is developed. For these simple EoS, W0 is co-linear with the initial pressure and
temperature differences, and the analysis of the relaxation process can be performed further quite easily.
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4.4 Relaxation process for Perfect Gas EoS
In the very particular case of two Perfect Gas EoS, it can be proven that the pressure and temperature relaxation is
monotonic when considering that mass transfer does not occur. For a Perfect Gas EoS, we have the entropy:

sk(τk,ek) =Cv,k ln
(

ekτ
(γk−1)
k

)
+ s0,k,

where Cv,k > 0, γk > 1 and s0,k are parameters. The pressure and temperature (2) are then: Pk = (γk−1)ek/τk and
Tk = ek/Cv,k, and thus Pk/Tk = (γk− 1)Cv,k/τk. Hence, 1/Tk only depends on ek and Pk/Tk only depends on τk,
which means that the matrix on the right hand side of system of equations (27) is diagonal. In fact we have: dt(P1/T1−P2/T2) =−

(
1

z1T1
+ 1

z2T2

)
(α1−α1)

λ

dt(1/T1−1/T2) =−
(

P1
α1

+ P2
α2

)
(z1−z1)

λ

(31)

Moreover, the volume and energy equilibrium fractions can be written explicitly from the temperature and pressure
equilibrium (14)-(15):

α1 =
y1δ1

y1δ1 + y2δ2
and z1 =

y1Cv,1

y1Cv,1 + y2Cv,2
, (32)

where δk = (γk−1)Cv,k. We recall that we consider here the case yk = yk, so that in fact α1 and z1 - and thus Y -
do not depend on Y . After some easy computations using these explicit formulae, it can be obtained that:

α1−α1 =
T
P

α1α2

(
P1

T1
− P2

T2

)
,

and

z1− z = T z1z2

(
1
T1
− 1

T2

)
,

which combined with system (31) ensures that the time evolution of (P1/T1−P2/T2) and (1/T1−1/T2) is mono-
tonic.

Remark 4. The equilibrium mass fraction y1 is defined thanks to the chemical potential equilibrium (16). The
latter is non-linear with respect to τk and ek even for Perfect Gas EoS since: µk/Tk = γkCV,k− sk(τk,ek). Thus y1 is
such that:

γ1CV,1− s1

(
α1τ

y1
,

z1e
y1

)
= γ2CV,2− s2

(
(1−α1)τ

(1− y1)
,
(1− z1)e
(1− y1)

)
. (33)

The source term for the mass fraction S2 can then not be written in terms of the difference of the potential, as
it is the case for S1 and S3 which can respectively be written in terms of the differences P1/T1 − P2/T2 and
1/T1−1/T2.

5 Proposition of modified BGK source terms
The source terms of section 3.2 allow to define independent time-scales for pressure, temperature and chemical
potential relaxation. In a physical point of view, it is an interesting feature. Indeed, this enables more possibilities
in the definition of the thermodynamical paths towards the equilibrium state. In this section, the BGK source
terms of section 4 are modified in order to account for three independent time-scales for volume, mass and energy
fractions.

5.1 BGK source terms involving three independent time-scales
A first natural way of introducing three time-scales in BGK source terms could be to modify source terms (21)
into:

Si =
Y i−Yi

λi
, Y = argmax

Y
(s(Y )), (34)

with λi > 0 for i = 1..3. In section 4, choosing a single time-scale, λi = λ , ensures that the source terms comply
with the second law of thermodynamics whatever the form for λ > 0 is. With choice (34), this is not the case
because the concavity of the mixture entropy can not be used as in section 4.1. Hence, for each choices of λi one
should check if the second law of thermodynamics is fulfilled. This might be very tricky. An other suggestion is
thus made here, and it also relies on the concavity of the mixture entropy as in section 4. The basic idea is very
close to the one proposed in [22].
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Since the mixture entropy Y 7→ s(Y ) is strictly concave with respect to Y , the three functions:

η1 : α1 7→ s(α1,y1,z1), (35)
η2 : y1 7→ s(α1,y1,z1), (36)
η3 : z1 7→ s(α1,y1,z1), (37)

are also strictly concave. For the function ηi, the variable is Yi and Y j, j 6= i, are parameters. In the following, an
abuse of notation is used: parameters Y j, j 6= i are omitted in the arguments of ηi. Let us define the maximum of
each of these functions by:

η̃i = ηi(Ỹi) = max
Yi

(ηi(Yi)), i = 1..3. (38)

In the definition (38) of the maximum for ηi, the quantities Y j, j 6= i, are fixed. It is an important point to be
quoted that in general we have:

Y 6= Ỹ = t(Ỹ1, Ỹ2, Ỹ3).

Indeed, the equilibrium fraction vector Y of section 4 is a constant, it does not depend of the fractions Yi. On the
contrary, the equilibrium fraction vector defined by (38) depends on the fractions and it is thus not constant
- but it does not depend on τ and e-: Y 7→ Ỹ (Y ). More precisely, the component i of Ỹ depends on the two
components j 6= i of vector Y .

Since the functions ηi are strictly concave with respect to Yi, the recipes used in section 4.1 can be applied
here. For all Yi, we have:

∀Y ′i , ηi(Y
′

i )≤ ηi(Yi)+
∂ηi

∂Yi
(Yi)× (Y ′i −Yi),

and if we choose Y ′i = Ỹi we obtain for all Yi:

0≤ η̃i−ηi(Yi)≤
∂ηi

∂Yi
(Yi)× (Ỹi−Yi).

Moreover, thanks to equations (10)-(12) we easily get the derivatives of ηi with respect to Yi:

∂η1

∂α1
= ∂α1 (s)|y1,z1

= τ

(
P1

T1
− P2

T2

)
(Y ), (39)

∂η2

∂y1
= ∂y1 (s)|α1,z1

=−
(

µ1

T1
− µ2

T2

)
(Y ), (40)

∂η3

∂ z1
= ∂z1 (s)|α1,y1

= e
(

1
T1
− 1

T2

)
(Y ). (41)

As a consequence, source terms in agreement with the second law of thermodynamics can be defined on the basis
of Ỹ as:

Si =
Ỹi(Y )−Yi

λi
, Ỹi(Y ) = argmax

Yi

(ηi(Yi)), (42)

with independent time scales λi > 0. Indeed, with (42) each term on the right hand side of Gibbs relation (9) is
positive, whatever the time scale λi > 0 is. As the system of section 4.1, system of ODE (13) associated with
source terms (42) is a non-linear system.

At last, when the thermodynamical equilibrium is reached for 0 < Ỹi < 1, the fractions are defined by the
optimality constraint for each function ηi that leads to:

P1

T1
(α̃1,y1,z1) =

P2

T2
(α̃1,y1,z1), (43)

µ1

T1
(α1, ỹ1,z1) =

µ2

T2
(α1, ỹ1,z1), (44)

1
T1

(α1,y1, z̃1) =
1
T2

(α1,y1, z̃1). (45)

The equilibrium fractions Ỹi may not remain in [0,1]. The reason is the same than for the classical BGK model
as described in remark 2, and it depends on the choice of the phasic EoS. Nevertheless, in the following it will be
assumed that Ỹ belongs to [0,1]3.
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5.2 Some basic properties
As mentioned previously, ODE system (13) with source terms (42) is non-linear and its study is more complex
than the system of section 4. First of all, it has been assumed in section 2 that the phasic entropies belong to
C2(R+

∗ ×R+
∗ ). The equilibrium fractions Ỹi are defined through the first derivatives of the entropies by (43)-(45)

Therefore, Y 7→ Ỹ (Y ) is continuous.
Since system (13) with source terms (42) is diagonal, each equation can be integrated between 0 and t:

Yi(t) = (Φi(t))−1Yi(0)+(Φi(t))−1
∫ t

0

(
Φi(s)Ỹi(Y (s))

λi(s)

)
ds, (46)

where we have for all t:

Φi(t) = exp
(∫ t

0

dζ

λ (ζ )

)
.

Function Φi is such that for all t, we have: Φi(t) > 0 and dtΦi(t) = Φi(t)/λi(t). Provided that Ỹi(s) ≥ 0 for all
s ∈ [0, t], equation (46) clearly ensures that Yi remains positive. Moreover, it should be noticed that:∫ t

0

(
Φi(s)
λi(s)

)
ds =

∫ t

0
dsΦi(s)ds = Φi(t)−1. (47)

Hence, by using equation (46) and previous result (47), we obtain:

1−Yi(t) = (Φi(t))−1(1−Yi(0))+(Φi(t))−1
∫ t

0

(
Φi(s)(1− Ỹi)

λi(s)

)
ds.

This equation clearly implies that if 1− Ỹi(s) ≥ 0 for all s ∈ [0, t], then 1−Yi(t) ≥ 0. We can conclude that if
Y (0) lies in [0,1]3 and if for all s ∈ [0, t], Ỹi(s) lies in [0,1]3, then Y (t) lies in [0,1]3.

Equilibrium states Y ∗ for system (13) with source terms (42) are such that:

Si(Y
∗) = 0⇐⇒ Y ∗i = Ỹi(Y

∗), i = 1..3,

which thanks to (43)-(45) reads:

P1

T1
(α∗1 ,y

∗
1,z
∗
1) =

P2

T2
(α∗1 ,y

∗
1,z
∗
1), (48)

µ1

T1
(α∗1 ,y

∗
1,z
∗
1) =

µ2

T2
(α∗1 ,y

∗
1,z
∗
1), (49)

1
T1

(α∗1 ,y
∗
1,z
∗
1) =

1
T2

(α∗1 ,y
∗
1,z
∗
1). (50)

This exactly corresponds to the definition of Y though (14)-(16), which is the unique solution of system (48)-(50).
Source terms (42) is then associated with the same unique equilibrium state than source terms (21): Y ∗ = Y .

We assume from now that each λi is bounded for all t. This implies that the relaxation process for the fractions
does not stop for a finite time, and that:

lim
t→∞

Φi(t) = +∞,

Let us define Y 7→L (Y ) = s(Y )− s(Y ). In the previous sections, it has been shown that for source terms (42):

(i) L (Y ) = 0 and dtL (Y ) = 0,
(ii) ∀Y 6= Y , L (Y )> 0,
(iii) ∀Y 6= Y , dtL (Y )< 0.

Therefore, Y 7→L (Y ) is a strict Lyapunov function for system (13) with source terms (42), which ensures that the
equilibrium state defined by Y is asymptotically stable. As Y 7→ Ỹ is continuous and t 7→Y (t) is continuous, this
implies that Ỹ tends asymptotically to Y when time increases. The vector Ỹ can thus be seen as a “local-in-time”
equilibrium state that tends to the asymptotic equilibrium state Y .

5.3 Relaxation process for the modified BGK source terms
The aim of this section is to provide some remarks on the pressure and temperature relaxation process by following
thermodynamical paths that ensure that nos mass transfer occurs. For the classical BGK source terms, such paths
are obvious and correspond to a constant mass fractions: y1 = y1. For the modified source terms, these paths are
such that: y1 = ỹ1(α1,z1), where ỹ1 is implicitly defined by equation (44). Let us differentiate (44), we get:

k=2

∑
k=1

(
Akτk +Bkek

yk

)
dy1 =

k=2

∑
k=1

(
Akτk

αk

)
dα1 +

k=2

∑
k=1

(
Bkek

zk

)
dz1, (51)
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with:
Ak = ek ∂

2
ekτk

(sk)+ τk ∂
2
τkτk

(sk) , and Bk = ek ∂
2
ekek

(sk)+ τk ∂
2
ekτk

(sk) .

When considering the Hessian matrix of sk, we have:(
Ak
Bk

)
= ∇

2
(τk,ek)

sk

(
τk
ek

)
.

The phasic entropies are strictly concave, so that the sum on the left hand side of equation (51) is strictly negative
because:

Akτk +Bkek = (τk ek) ·
(

Ak
Bk

)
= (τk ek) ·∇2

(τk,ek)
sk

(
τk
ek

)
< 0. (52)

So that dyk is correctly defined through equation (51). From now it is assumed that y1 = ỹ1(α1,z1). By considering
a function φk : (τk,ek) 7→ φk(τk,ek), the counterpart of equation (24) is here:

dtφk =
(

∂τk

(
φ f
)

τk
αk
− Aα

Ay

(
∂τk

(
φ f
)

τk
yk
+∂ek

(
φ f
) ek

yk

))
dtαk

+
(

∂ek

(
φ f
) ek

zk
− Az

Ay

(
∂τk

(
φ f
)

τk
yk
+∂ek

(
φ f
) ek

yk

))
dtzk,

(53)

where

Aα =
k=2

∑
k=1

(
Akτk

αk

)
, Ay =

k=2

∑
k=1

(
Akτk +Bkek

yk

)
, Az =

k=2

∑
k=1

(
Bkek

zk

)
.

Thanks to (52), we obviously have Ay < 0. Then, by setting successively φk = 1/Tk = ∂ek (sk)|τk
and φk = Pk/Tk =

∂τk (sk)|ek
in equation (53) one obtains:

(
dt(P/Tk)
dt(1/Tk)

)
=

1
yk

∇
2
(τk,ek)

sk

((
1− αkAα

ykAy
− τ

e
zkAα

ykAy

− e
τ

αkAz
ykAy

1− zkAz
ykAy

)(
τdtαk
edtzk

))
. (54)

It should be noted that equation (25) is recovered by setting Aα =Az = 0 (with Ay < 0) in equation (54), the latter
corresponds to dty1 = 0. But in general, the second matrix on the right hand side of equation (54) is not equal to
the identity matrix and the paths followed by the difference of the phasic pressure and the difference of the phasic
temperature are different than for the classical BGK source terms. Let us denote Dk this matrix:

Dk =

(
1− αkAα

ykAy
− τ

e
zkAα

ykAy

− e
τ

αkAz
ykAy

1− zkAz
ykAy

)
.

The matrix Dk possesses two real eigenvalues:

r1,k = 1 and r2,k = 1− αkAα + zkAz

ykAy
.

The second eigenvalue, r2,k, depends on the thermodynamical state defined by α and z. Since we have the relation:

αkAα + zkAz = Akτk +Bkek,

the eigenvalue r2,k can be rewritten:

r2,k = 1− (Akτk +Bkek)/yk

Ay
.

and thanks to (52) we can deduce that r2,k ∈]0,1[. Moreover, we have r2,1 + r2,2 = 1. The eigenvectors V1,k and
V2,k that are respectively associated with r1,k and r2,k are:

V1,k =
t(τ/αk,−e/zk) and V2,k =

t(τAα ,eAz).

It should be quoted that the eigenvector V2,k is the same for both phases. The two eigenvectors are linearly inde-
pendent since:

det(V1,k,V2,k) =
τe

αkzk
(Akτk +Bkek)< 0

The matrix Dk is then diagonalizable on R2, but it is not symmetric. The time evolution of the pressure and
temperature differences is then obtained by combining equations (54):(

dt(P1/T1−P2/T2)
dt(1/T1−1/T2)

)
=

(
∇

2
(τ1,e1)

s1
D1

y1
+∇

2
(τ2,e2)

s2
D2

y2

)(
τdtα1
edtz1

)
. (55)
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Unfortunately, since Dk is not symmetric, the counterpart of inequality (28) can not be obtained from (55). This
makes the analysis of the relaxation process even more complex than for the classical BGK source terms.

Remark 5. When both phases are described by a Perfect Gas EoS, some specific results can be obtained. In
particular, the equilibrium fractions are very close to those obtained in section 4.4, see equations (32) and (33),
except that they depend on Y . They are obtained from equations (43)-(45):

α̃1 =
y1δ1

y1δ1 + y2δ2
, (56)

z̃1 =
y1Cv,1

y1Cv,1 + y2Cv,2
, (57)

γ1CV,1− s1

(
α1τ

ỹ1
,

z1e
ỹ1

)
= γ2CV,2− s2

(
α2τ

(1− ỹ1)
,

z2e
(1− ỹ1

)

)
. (58)

For these Perfect Gas EoS, it should be noted that α̃1 and z̃1 only depend on y1 whereas ỹ1 depends on α1 and
z1. This is due to the non-linearity of the chemical potential. On the contrary to the source terms of section 4.4,
the thermodynamical path, y1 = ỹ1(α1,z1), for which no mass transfer occurs can not be explicitly written. The
analysis of the sole pressure and temperature relaxations is then more tricky even for Perfect Gas EoS.

6 Conclusion
A modified form of BGK source terms has been proposed for modeling two-phase flows with thermodynamical
disequilibrium. For these source terms, three independent time-scales manage the return to the thermodynamical
equilibrium while remaining in agreement with the second law of thermodynamics. The relaxation process can
then be defined with additional degrees of freedom. Nonetheless, relaxation process remains complex and further
studies should be carried in order to analysis in details the pressure and temperature relaxation. In particular, with
the BGK source terms of sections 4 and 5, it is not an easy task to impose instantaneous relaxation of the pressure
or the temperature for general EoS.

In a numerical point of view, both classical and modified BGK source terms have advantages and drawbacks
depending on the numerical strategy. For the classical BGK source terms, the simulation of the ODE system relies
on the unique computation of the asymptotic equilibrium state through a 3× 3 non-linear system. Then, if the
time scale can be explicitly integrated, the overall integration of the classical source terms is exact [20, 21]. On
the contrary, for the modified BGK source terms, the ODE system involves a “local-in-time” thermodynamical
equilibrium which tends towards the asymptotic equilibrium. The computation of this “local-in-time” equilibrium
state is based on three independent non-linear equations. Hence, when considering a fractional step approach
for which the ODE system for relaxation process is solved using a unique time-step, modified BGK form can be
preferred provided that the time-step is much smaller than the characteristic time for return to equilibrium. On the
contrary, if several time steps are involved for solving the ODE system, the classical BGK source terms are less
CPU-consuming since the thermodynamical equilibrium is only computed once at the beginning of the integration.
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