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When nonlinear measures are estimated from sampled temporal signals with finite-
length, a radius parameter must be carefully selected to avoid a poor estimation.
These measures are generally derived from the correlation integral which quantifies
the probability of finding neighbors, i.e. pair of points spaced by less than the radius
parameter. While each nonlinear measure comes with several specific empirical rules
to select a radius value, we provide a systematic selection method.

We show that the optimal radius for nonlinear measures can be approximated by
the optimal bandwidth of a Kernel Density Estimator (KDE) related to the corre-
lation sum. The KDE framework provides non-parametric tools to approximate a
density function from finite samples (e.g. histograms) and optimal methods to se-
lect a smoothing parameter, the bandwidth (e.g. bin width in histograms). We use
results from KDE to derive a closed-form expression for the optimal radius. The
latter is used to compute the correlation dimension and to construct recurrence plots
yielding an estimate of Kolmogorov-Sinai entropy. We assess our method through
numerical experiments on signals generated by nonlinear systems and experimental

electroencephalographic time series.
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Nonlinear measures computed from discrete time series are widely used to char-
acterize and identify their underlying dynamics. Such measures include en-
tropies, dimensions and indices that are derived from recurrence plots. These
indices, all based on the fundamental concept of correlation sum, have been
shown to be effective in distinguishing dynamical processes based on exper-
imental data in various fields, e.g. mechanics, physiology, etc. One crucial
parameter involved in their estimation is the radius used to define neighbors in
the state space. Although many rule of thumbs are available, there is a need
of well-grounded theoretical criteria to correctly select this radius parameter.
We propose to address this issue using Kernel Density Estimation (KDE). We
first demonstrate the theoretical link between the correlation sum and the KDE
framework. We then derive a loss function, whose optimization is equivalent
to the minimization of the mean integrated squared error of a kernel density
estimator, leading to a closed-form criterion for the radius parameter selection.
These findings moreover show how the estimator bias-variance trade-off deter-
mines a range for the radius values. Numerical experiments on both simulated
(chaotic, corrupted by additive noise) and real-world data are presented to assess

our approach.

I. INTRODUCTION

Nonlinearity and chaos govern a wide variety of systems. They are found in neurons firing
patterns (Faure and Korn (2001)) and related electrophysiological signals (Freeman (2003)),
and in unpredictable changes of Earth climate (Ghil et al. (2008)), to cite few examples.
Nonlinear measures of such systems are made more accurate thanks to an increasing interest
in numerical tools suitable for nonlinear phenomena. Indeed, data generated by such systems
are more suitable to nonlinear time series analysis, which provide complementary information
to traditional linear methods such as power spectrum analysis (Yang et al. (2018)).

Our work focuses on estimating various metrics, measures (in the sense of quantitative

indices), and invariants that rely on the computation of a correlation sum. The correlation

sum is the estimator of the correlation integral, which is the mean probability that two
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points of the phase space trajectory of a dynamical system are neighbors (Ott (2002)), i.e.
the mean probability that their distance is less than a parameter called radius, threshold or
tolerance depending on the application domain. The correlation sum captures important
aspects of the nonlinear dynamics. Therefore, it is a fundamental quantity in various non-
linear measures: correlation dimension (Grassberger and Procaccia (1983a)), Kolmogorov-
Sinai entropy (Grassberger and Procaccia (1983b); Eckmann and Ruelle (1985); Faure and
Korn (1998)), its approximate versions ApEn (Pincus (1991)) and SampEn (Richman and
Moorman (2000)), Rényi’s entropies (Principe (2010); Singh and Principe (2011)), recur-
rence plots (Eckmann et al. (1987), Marwan et al. (2007)) and related metrics of recurrence
quantification analysis (Grendar et al. (2013)), etc.

In different nonlinear measures, the radius appears either as a variable or as a parame-
ter. For instance, the correlation dimension is computed by estimating a scaling factor on
a logarithmic plot of the correlation sum versus the radius. In contrast, a recurrence plot
displays neighboring points on a black and white image and requires to fix the radius param-
eter beforehand. In both cases, the radius is selected as small as possible. As a correlation
sum computed from a finite-length time series will likely tend to 0 together with the radius
parameter, the challenge is to identify a radius range corresponding to a statistically use-
ful distribution of neighbors. Eckmann and Ruelle (Eckmann and Ruelle (1985)) (Section
V.A.l.a.) refer to it as a “meaningful range” for the radius parameter. In our approach,
we first derive an expression of the optimal radius. Then, we introduce a range to select a
radius parameter or to study the properties of a function of the radius.

Several empirical rules exist to select a value or a range of values for the radius; however,
they generally focused on a particular nonlinear measure (Webber and Marwan (2015);
Zbilut and Webber Jr (1992); Pincus (1991)). Here, we introduce a method which can
be applied to any nonlinear measure derived from the correlation sum. Observing that log-
correlation sums are particularly used in nonlinear indices and that relative error arises from
logarithmic error terms, we focus on minimizing a relative error between the correlation sum
and the correlation integral. We show that minimizing the relative error term is equivalent to
minimizing a well-known error used in the framework of Kernel Density Estimation (KDE),
widely studied in statistics (Silverman (1986)) and in signal processing (Gunduz and Principe
(2009); Singh and Principe (2011)).

KDE denotes a family of non-parametric density estimation methods which generalize

4
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the well-known histogram methods (Silverman (1986)). Simple probability functions called
kernels are placed at sample data points to approximate the underlying density function. In
the KDE framework, the choice of the kernel width influences the degree of smoothing of the
estimated density function. Selecting the kernel width is known as the bandwidth selection
problem. The latter can be formulated simply as a bias-variance trade-off. Bandwidth
selection is an extensively studied problem (see Jones et al. (1996) for a brief review) with
notable usages in signal processing, e.g. mutual information estimation (Moon et al. (1995)).
The convergence of kernel density estimators for mixing dynamical systems was recently
shown in Hang et al. (2018).

The relation between kernel density estimation and the correlation sum is noted in Yu
et al. (2000) to estimate dynamical invariants in noisy situations. More recently, Gaus-
sian kernels estimators of the correlation integral are applied to estimate Rényi’s entropies
(Principe (2010); Singh and Principe (2011); Erdogmus and Principe (2006)). Here, KDE
is used not to derive new estimators of nonlinear measures but rather as a framework pro-
viding a systematic rule to select the radius in computing nonlinear measures. We show that
the radius minimizing the relative error of the correlation sum estimator is equivalent to the
bandwidth minimizing the Mean Integrated Squared Error (MISE) of a density estimator
(Section 3.1). Therefore, we use a bandwidth selection method from KDE to derive a closed-
form expression for the optimal radius (Section 3.2) and define a “meaningful range” for the
radius variable relatively to our optimum (Section 3.3). We conduct numerical experiments
on well-known dynamical systems. First, we study the behavior of the correlation sum esti-
mator in the “meaningful range” for signals of different lengths and noise levels (Section 4).
Then, we estimate the Kolmogorov-Sinai entropy of both simulated and real signals, using

recurrence plots computed with an optimal radius (Section 5).

II. CORRELATION SUM AND CORRELATION DIMENSION

Let (X, A, n, T) be a measure-preserving dynamical system with X C R? and p the
invariant measure (probability distribution in the phase space invariant upon the dynamics).
The correlation integral ¢(r) is the mean probability to find a pair of points at two different

time x,y € X arbitrarily close, such that the distance between x and y is less than a small
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radius parameter r (Ott (2002); Singh and Principe (2011)):

co(r) =P ((z,y) - lz =yl <7) = / (B, (2))dp(x) (1)

zEX

where B, () = {y € X : ||lz—y||, < r} is the generalized d-dimensional ball in L, space, with
radius r and center x. In practice, an estimator of the correlation integral can be computed
from a sample trajectory z; € R% 1 < i < n (Grassberger and Procaccia (1983a)):

Clron) = 237 00 = = 251,) — el @)

| e

where © is Heaviside step function and C(r,n) is called the correlation sum (Pesin (2008);
Grassberger and Procaccia (1983a)). For small values of r, the correlation integral grows as

a power law:
c(r) ~ const x (3)

The quantity D, is called the correlation dimension.

IIT. KERNEL DENSITY ESTIMATION

A probability density function f may be estimated by placing smoothing kernels at each
sample point. A smoothing kernel K is defined as a valid probability density function, which
satisfies (Silverman (1986)):

/K(u)du:l Vu e R, K(u) >0 (4)

Without loss of generality, we introduce a scaled version of the kernel with a L, norm and a
scaling factor h > 0, Kj,(u) = h=@K (u/h), which is a valid kernel when K is a valid kernel.
A simple kernel is the uniform or bozcar kernel, which remains constant over a domain:

() = ———0(h — [[ull,) (5)

Tp7dhd

where O is Heaviside step function and 7, 4 is the volume of the unit ball defined by the norm
p in a d-dimensional space (see Appendix A). Given samples z; € R?,1 < i < n, distributed

according to a density f, a kernel density estimator of f is:

ful@) =n"! Z Kn(x — ) (6)
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While kernel density estimators are consistent for i.i.d. samples, independence between
consecutive samples cannot generally be assumed for dynamical systems. Hang et al. (Hang
et al. (2018)) showed that kernel density estimators are also consistent for dynamical systems
with mixing properties and weakly-continuous density function (more specifically C-mixing
systems with pointwise a-Holder controllable density, see Hang et al. (2018) defs. 1 and 2).

The bandwidth parameter h determines the “width” of the kernels and consequently the
degree of smoothing of the estimator. A plethora of methods exist to select the bandwidth
parameter, see Jones et al. (1996). Among existing bandwidth selection methods, minimizing
the Asymptotic Mean Integrated Squared Error (AMISE), a Taylor expansion of the MISE
of the estimator E[ [o.(f(z)— f(x))2dz], is appealing for practical applications as it allows to

derive a closed-form expression of an approximately optimal bandwidth (Silverman (1986)):

Wi (K) x d 1/(d+4)
n x [Wa(K)J* x Wi(V2f)

(7)

hamise =

where the functionals W; are defined as Wi(g) = [z ¢*(x)dz and Wa(g) = [p. 2ig(x)dz,
where z; is a scalar component of x. Reference rules (Silverman (1986); Scott (1979)) can
be easily obtained by replacing the unknown quantity Wy (V2f) with the quantity computed

using a reference distribution, generally a Gaussian distribution.

IV. A REFERENCE RULE FOR THE OPTIMAL RADIUS

To derive the expression of an optimal radius, we proceed as follows. First, we show that
the radius minimizing the relative error of the correlation sum estimator is equivalent to the
bandwidth minimizing the MISE of a particular density estimator. Second, we derive the
closed-form expression of the radius minimizing the AMISE of the estimator. Finally, we

identify a meaningful range to select a variable radius.

A. Criterion to select the radius

The correlation integral, c¢(r) = E, [u(B,(z))], is generally estimated by the correlation
sum, C'(r,n) =n~' 27, ii(B,(;)) (Eq. (1) and Eq. (2)). To obtain a good estimation of the
correlation sum, we shall minimize the error between an estimator of the invariant measure

of a ball | i(B,(z)), and the true quantity (B, (x)). However, minimizing such error is not

7
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sufficient to provide a good estimation for small r: the scale of the error decreases with r
and systematically leads to the trivial solution » = 0. Indeed, when r decreases, the absolute
error decreases while the relative error is multiplied by a factor proportional to 1/r (Eq. (3))
and consequently blows up. Therefore, we want to find the radius minimizing a relative
error criterion on i(B,(z)). Let A be the Lebesgue measure, such that A\(B,) is the volume
of a ball with radius . We use the fact that p(B,(-)) is proportional to r (see Eckmann
and Ruelle (1985), Section V.A.) and consequently that u(B,(:)) o< A(B,) to simplify the

expression of the relative error and express the following local relative error:

W(B, (1)) — (B ()
(") )] ¥

where the expectation is taken over samples used to construct the estimator. Given a fixed

L(r,x) =&

r, w(B,(+)) is a bounded function on X'. We denote p the normalized density of u(B,()),
such that

~ p(Belz)  p(B(x))
A = T B aNdr — A(B,) ®)

and, similarly, p.(z) = a(B.(z))/\(B,) the estimator of the normalized density p. After
replacing in Eq. (8), we obtain:

L(r,z) = E [(p(z) — pr(2))’] (10)

Then, integrating Eq. (10) over possible values of x gives a global criterion to select the

optimal radius rqp:
Topt = arg min £(r) (11)
where
£ = [ B [(p(e) = o))" d (12

With simple manipulations, we see that Eq. (12) is indeed the MISE between the estimator
of the normalized density p, and the true normalized density p (Silverman (1986)). Finally,
pr can be identified by replacing ji(B,(z)) with p, in the expression of the correlation sum

estimator (Eq. (2)):

Crm) = 225 ) = 5 3 00— e — )

i=1 ij=1
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yielding

n

() = gy 2O — e =) (13)

=1

As A(B24) = \(BP")r? (A), we observe that f, is a kernel density estimator with a uniform
kernel and a bandwidth parameter r (Eq. (5)). Hence, it follows from Eq. (11) that the
bandwidth minimizing the MISE of the estimator p, can provide a good approximation
of the optimal radius 7., minimizing the relative error on the correlation sum estimator.
Moreover, the AMISE method (Eq. (7)) can be used to approximate r,, with a simple,
closed-form expression that resembles to the empirical rules currently used. In the next
section, we use the AMISE minimization method to derive a reference rule for the optimal

radius.

B. Derivation of a reference rule for the optimal radius

As presented in section [I1, a Taylor expansion of the MISE can be used to derive a closed-
form expression of the optimal bandwidth for an estimator. A particular interest for this
method is motivated by the possibility of deriving a closed-form expression of the optimal
bandwidth. We use a reference Gaussian distribution in Eq. (7) and derive the expressions
for Wy (K) and Wy(K) for the uniform kernel (see Appendix B). Then, substituting these
expressions into Eq. (7) gives the main result of the paper: a reference rule radius rop

defined as
Topt = Qp.d X § X p 1/ (d+4) (14)

where a4, depending on the norm and dimension, rescales 7,,:; § is an estimate of the

spread of data; and n is the length of the trajectory in phase space.

Remark 1. In practice, the phase space is reconstructed using a time delay embedding
procedure (according to Takens theorem (Takens (1981))) ; hence, if N denotes the length
of the univariate time series, d the embedding dimension and T the delay, the length of the

trajectory in reconstructed phase space isn =N — (d — 1)T.

9
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1. Estimation of the spread s

A first choice for the spread § is the average marginal sample standard deviation, defined
by ¢ = m, S € R%™4 is the sample covariance matrix. When the d-dimensional
sample is constructed from an univariate time series using delay embedding, components
on the diagonal of the sample covariance matrix are equal: & is then the sample standard
deviation of the time series. Alternatively, as the interquartile range IQR is a good alter-
native to standard deviation for non-Gaussian data (see Silverman (1986) for discussion), a

common choice for § is:

.. (. IQR
5§ = min (0, 1—34) : (15)

2. Derivation of the reference factor o, 4

The expression for the 1-dimensional reference factor is relatively straightforward: «,,; =
(12/7)'/% ~ 1.843. The general closed-form expression for a,, 4 is more complex (see Ap-

pendix B, Eq. (B7)); however, the expression can be simplified for common norms (Ap-

pendix C):
ara = [(d+2)!(d+1)(v/m) ] (16)
p 1/(d+4)
Qo g = 2 X w] (17)
—d1/(d+4)

Moreover, a4 is to be computed only once for common dimensions and norms. Hence, we

report in Table I some values of o, 4 that can be used in Eq. (14).

C. Identification of a meaningful range for a variable radius

As discussed above, some nonlinear indices require selecting the range of radius values in

which the quantity is estimated. For instance, this applies to nonlinear indices quantifying a

log v(By)
logr

scaling exponent of the form lir% (with v a (with nu a probability distribution in the
r—
phase space), as often encountered in the chaotic systems literature (see e.g. Pesin (2008);

Ott (2002)). In practice, the limit  — 0 is generally intractable, and estimations of v for

10
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b
Qp.d
1 2 00

111.843 1.843 1.843
2 12.468 2.000 1.745
d 3 |3.087 2.150 1.694
4 13.705 2.294 1.666

5 14.325 2.432 1.649

TABLE I: Rounded values of the coefficient «, 4 for common norms and dimensions. The

values can directly be used in reference rule radius,

Topt = Qpd X min (é', IQR/134) X n_l/(d+4)_

small 7 are highly variable due to poor statistics (Eckmann and Ruelle (1985)). On the other
hand, at a certain point, large r will not capture the desired scaling effect. Hence, there
is a range of values which must be selected to support a good estimation of the nonlinear
measure. Here, we introduce our arguments to guide the selection of a meaningful range for

a variable radius.

The AMISE can be expanded in an integrated squared bias and integrated variance of
the density estimator, giving the following expressions of bias and variance as functions of

r (Silverman (1986)):

2

bias(r) & %WQ(K)v%(l«) (19)
var(r) ~ W;iﬁ() p(x) (20)

The behavior of the relative error with r can be understood from Eq. (19) and Eq. (20):
the bias is proportional to r whereas the variance is inversely proportional to 7. As rqp
minimizes the AMISE, the bias contribution increases with r while the variance decreases
with . However, the bias term only depends on r whereas the variance term decreases when
the number of points increases. This observation —considering that usually the bandwidth
minimizing the AMISE is too large, suggests selecting the optimal radius r,p as the upper

bound for the meaningful range. We introduce a range parameter 0 < < 1 to select the

11
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lower bound as a fraction of oy, such that the radius values lie within the range:

R = [Bropt: Topt] (21)

Due to the relations Eq. (19) and Eq. (20), we argue that the value of 5 shall be decreased

when increasing the number of points.

V. ESTIMATION OF THE CORRELATION DIMENSION

In the following, we investigate the behavior of the Grassberger and Proccacia algorithm
for the estimation of the correlation dimension. We compare the spread and bias of estima-
tions in the full range of available scales with estimations in the meaningful range derived

in section IV C.

A. The Grassberger and Proccacia algorithm

The correlation dimension Dy can be expressed as:

1 1
Dy = 1im 22 i iy 02C0M)

r—0 logr r—0n—oco  logr (22)
The Grassberger and Proccacia algorithm (Grassberger and Procaccia (1983a)) for the em-
pirical estimation of the correlation dimension consists in computing the correlation sum for
different values of r and plotting log C'(r,n) versus logr. The slope of the linear region in
this logarithmic plot provide the desired estimation of the correlation dimension Dy (Ott

(2002)). Similarly to the original paper (Grassberger and Procaccia (1983a)), we use linear

regression to estimate the slope.

B. Procedure for generating reconstructed trajectories

We conducted numerical experiments on the Lorenz system (Lorenz (1963)) (o = 10,
B =%, p=28, dt =0.01), the Rossler system (Rossler (1976)) (a = 0.1, b = 0.1, ¢ = 14,
dt = 0.05) and the Hénon map (Hénon (1976)) (a = 1.4, b = 0.3). We apply the following
procedure to generate random time series of different length. After drawing a random initial
state, we generate time series for all systems — using a Runge-Kutta 4/5 method for Lorenz

and Rossler — such that the length of the time series is N after removing transients (sample

12
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FIG. 1: Sample series for the Lorenz attractor (a), the Rossler attractor (b) and the Hénon
map (c). Series from the x coordinates were systematically used to reconstruct the

trajectory using Takens delay embedding.

series are presented in Figure 1). Then, the trajectory is reconstructed using Takens delay
embedding (series from the x coordinates were systematically used). The original system
dimension is used as embedding dimension d. The time delay parameter 7 is set to 1 for
the Hénon map and selected as the first minimum of the time-delayed mutual information
function (Fraser and Swinney (1986)) for the Lorenz and Rossler systems. Please note that
the length of the reconstructed trajectories, n = N — (d—1)7, is used to compute the optimal

radius using Eq. (14) (see Remark 1).

Remark 2. Here, we assume that the delay and embedding dimension are correctly selected
as a bad phase space reconstruction deteriorates the log C(r,n) versus logr plot (Kantz and
Schreiber (2004)).  In practice, this embedding problem can be efficiently addressed as a
plethora of methods exist to select the delay and the embedding dimension (see for instance

Kantz and Schreiber (2004), Ch. 8.8 and Ch. 9.2).

13
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C. Numerical results for the radius range

Here, we visualize the meaningful range on the log-log plot of the correlation sum versus
the radius. We first generate 100 series for each system (4000 points for Rossler and Lorenz
attractor, 200 points for Hénon map, respectively), select 25 random values of radius and
compute the corresponding correlation sums. We overlay the average value of 7., and the
ranges with arbitrary values 5 € {0.01,0.1,0.5} on the plot of log C(r,n) vs logr. Results
are presented in Figure 2. We observe that the spread of the correlation sum over the runs
is low at the location of reference radius and increases when the radius is decreased. Hence,
smaller values of 3 likely lead to higher variance estimations.

On Figure 2b, a knee is present around a value log(ripee) =~ —1, such that the slope ajef
in a left range [ro, rinee] is higher than the slope ayign in right range [rinee, 71]. In practice,
a knee may appear from the superposition of signals from non-interacting subsystems with
different amplitude (Eckmann and Ruelle (1985)). In this situation, ajg characterizes the
two subsystems while ayigne corresponds only to the system with the largest signal amplitude.
Consequently, a careful analysis of the plot of log C'(r,n) vs log r might be necessary to select

a range capturing the desired properties of systems under study.

D. Influence of the time series length

Using the procedure described in Section V B, we generate 100 trajectories for each length:

(a) N = 250,500, 1000, 2500, 5000 for the Lorenz system,
(b) N = 500, 1000, 2500, 5000, 7500 for the Réssler system,
(¢) N = 100,250,500, 1000, 2500 for the Hénon map.

Remark 3. Notice that the discrepancies for the number of points used for the three systems
can be justified by the resulting trajectories after time delay embedding. Indeed, when the
number of points is too low, the reconstructed trajectories cannot properly reflect the dynamics
nor the correct dimension of the attractor. For instance, in our experiments this was the

case for time series of 100 points for the Rossler system.

We computed correlations sums for 20 values of r ranging between 10~® and 20, where o is the
sample standard deviation. We compared the estimation using the Grassberger and Procca-

cia algorithm on the entire curve (the plateau on the right was omitted) with the estimation

14
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FIG. 2: Log-log plot of correlation sums versus the radius used to estimate the correlation
dimension for Lorenz (a), Rossler (b) and Hénon (c) systems. The dots correspond to
estimates of the correlation sum at random values of radius for trajectories integrated from
random initial states. The colored regions show different ranges defined by [B7opt, Topt),

with 8 = 0.01 (in beige), 0.1 (in light blue) or 0.5 (in dark blue).
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for 20 values of r in the meaningful range (Sropt, 7opt), for values of g € {0.01,0.1,0.5}.
We show in Figure 3 a violin plot of the estimated values depending on the duration of the
time series and the range used to estimate the dimension. We compare our estimations with
the values of correlation dimension reported by Sprott and Rowlands (Sprott and Rowlands
(2001)) for much longer series (2.049 £ 0.096 for Lorenz attractor, 1.986 =+ 0.078 for Rossler
attractor, 1.220 = 0.036 for Hénon map).

Overall, we observe that the spread of the estimations decreases with increasing 5. With
f = 0.01 (beige) the result is almost similar to the original version of the Grassberger and
Proccacia algorithm (red). In contrast, estimations for larger values of 5 are more localized,
but around values of dimension further apart from the reference dimension. We observe that
the number of points affects significantly the variance of the estimations for larger values
of 5. However, for both Rossler and Hénon attractors, the range parameter 5 = 0.1 (light
blue) gives estimations with lower variance and bias compared to 5 = 0.5 (dark blue). This
suggests that the range must be selected sufficiently large to provide a proper support for
dimension estimation. Moreover, although the bias of the Grassberger-Proccacia algorithm is
low in this setup, a single dimension estimate can be far from the true dimension. Therefore,
one can favor a smaller range for r to reliably estimate a quantity slightly lower than the
true dimension.

We found qualitatively similar results for Lorenz and Réssler attractors when series of
different length are obtained by downsampling an original series of fixed length (results not

shown).

E. Influence of observational white noise

Finally, we investigate the influence of observational noise on the estimation of the cor-
relation dimension in the different ranges. Observational noise is ubiquitous in practical
applications and creates a knee on the plot of log C'(r,n) versus logr, with a dimension at
the left of the knee equal to the embedding dimension (see FEckmann and Ruelle (1985);
Grassberger and Procaccia (2004)). Hence, the range must be selected at the right of the
knee to provide good estimations of the dimension.

We generate 100 time series of 1000 points for the three systems. Each series, with stan-

dard deviation o, is corrupted with additive white Gaussian noise with standard deviation
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FIG. 3: Influence of the number of points on the estimation of the correlation dimension
from Lorenz (a), Réssler (b) and Hénon (c) systems. We compare the original version of
the Grassberger and Proccacia algorithm (red) with an estimation of the slope in the range

[BTopts Topt)s With 8 = 0.01 (beige), S = 0.1 (light blue), 8 = 0.5 (dark blue).

Onoise = k o, where k defines the noise level. As above, we compare the estimation of the
original Grassberger and Proccacia algorithm with the estimation in the different ranges
(the reference radius Eq. (14) is computed for each noise-corrupted series). We present in
Figure 4 a violin plot for noise levels k£ = 0,0.05,0.1,0.15,0.2. For both Rossler and Lorenz

attractors, we observe that a noise level of 5% is sufficient to corrupt estimations with the
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FIG. 4: Estimation of the correlation dimension from Lorenz (a), Rossler (b) and Hénon
(c) systems under different levels of additive white Gaussian noise: comparison of the
original Grassberger and Proccacia algorithm (blue) with an estimation of the slope in the

range [Bropt, Topt), With 5 = 0.01 (beige), = 0.1 (light blue), 5 = 0.5 (dark blue).

original version of the Grassberger and Proccacia algorithm (red) or the range 5 = 0.01
(beige). In contrast, larger values of 3 yield more consistent results under the different noise

conditions. Therefore, this observation suggests that in noise conditions, the correlation
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dimension can be more robustly estimated from a smaller range of r.

VI. ESTIMATION OF KOLMOGOROV-SINAI ENTROPY USING
RECURRENCE PLOTS

In this section, we investigate the behavior of the goodness-of-fit of an estimator of a
nonlinear measure with the radius parameter. We also study the reference radius inherent
to Eq. (14) under different conditions. We use the reference radius in the construction of
recurrence plots used to estimate the Kolmogorov-Sinai (KS) entropy of Hénon map and

apply similar method to real electroencephalographic (EEG) signals.

A. Recurrence plots and Kolmogorov-Sinai entropy

1. Recurrence plots

Recurrence plots (Eckmann et al. (1987)) display phase-space neighbors as a 2D black-
and-white image whose (i, j) element is black if trajectory points z; and x; are closer than
a fixed radius e. More formally, from a phase-space trajectory {z;},1 < i < n, a recurrence

plot RP(g) € R™ " is defined as:

(RP(€))i; = Ofe — llzs — lp) (23)

where O(-) denotes Heaviside step function, || - ||, is a norm, usually either L;, Lo, or L.
The patterns in recurrence plots reflect properties of the underlying dynamical system and
can be quantified using the Recurrence Quantification Analysis (RQA) framework, provid-
ing a set of powerful non-parametric visualization and characterization tools for nonlinear
time series analysis. The relationship between recurrence plots (and RQA measures) and
the correlation sum intuitively follows Eq. (23) (Grendar et al. (2013)). Indeed, simple
mathematical manipulations show that the recurrence rate, defined as the average number

of recurrent points in a recurrence plot, is equal to the correlation sum (Thiel et al. (2003)).
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2. Estimating Kolmogorov-Sinati entropy from recurrence plots

The Kolmogorov-Sinai (KS) or measure-theoretic entropy (I<olmogorov (1985), Sinai Ya
(1959)) measures the evolution of uncertainty with the iteration of the map of a dynamical
system. The lower bound Ks, often used as the estimate of KS entropy (Faure and Korn
(1998)), is defined as (Grassberger and Procaccia (1983b)):

o1 C™(r,n)
R = 0 0 g B o ()

(24)
C™(r,n) denotes the correlation sum built from a delay-reconstructed trajectory in a m-
dimensional L., space. While it is possible to approximate the KS entropy directly from
correlation sums (Pincus (1991); Richman and Moorman (2000)), we rather consider the

method in (Faure and Korn (1998)). The latter approximates the KS entropy from the

histogram of diagonal lines of length greater than m in a recurrence plot RP(e):
N¢(m) = card{(s,7) : Vk € {0,...,m — 1}, |ujpr — ujii| <€} (25)

A diagonal of size m on a recurrence plot reflects that two trajectories stayed at a distance
smaller than a threshold ¢ for m time-steps, or equivalently that two delay-reconstructed
vectors in m-dimensional space are close under L., norm. Hence, the histogram of diagonal
lines, N¢(m), captures information similar to the correlation sum from delay-coordinates,
C™(r,n); whereas the parameters ¢ and r are analogous in the two quantities. The main
advantage of the Faure and Korn method is computational: while C"™(r,n) is computed for
several values of the embedding dimension m, the histogram N¢(m) is computed only once.
Then, using the diagonal line histograms to rewrite the KS entropy Eq. (24) as a function

of r = ¢ gives:
N™(m+1)
NT(m + 2)

Faure and Korn (Faure and Korn (1998)) suggest to evaluate the average slope of a log N"(m)

1
Ky(r) = lim lim — log (26)

vs m plot for various values of r. Then, taking the limit » — 0 is supposed to converge to
a constant value equal to the KS entropy, K5, up to a scaling factor. However, selecting
the smallest possible 7 to estimate the limit » — 0 from real-world data (i.e. finite-size
samples with noise) likely leads to estimations flawed by a large variance, as discussed
in Faure and Lesne (2015). Hence, the problem is to select a value of r yielding the best

possible estimations of the KS entropy. We use our reference radius (Eq. (14)) to compute
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the recurrence plot used to estimate the KS entropy. Recurrence plots and diagonal line

histograms were computed using the pyunicorn package (Donges et al. (2015)).

B. Numerical experiments for the Hénon map

We generate 100 time series for each length (n = 150,250,500, 1500 points) from the
standard Hénon map (a = 1.4, b = 0.3). For each series, we use the Faure and Korn method
and compute the value of Ky(r), Eq. (26), as a function logr curve for 50 values of logr
ranging from —4 to 0.5. We then compute the reference radius (Eq. (14)) — using the series
length n and dimension d = 1 — and average the values over series of same length. Results

are presented in Figure 5.

—n =150
n =250
n =500
—n= 1500

KS(r)

logr

FIG. 5: Estimation of Kolmogorov-Sinai entropy for time series from the Hénon map with
different lengths n. The filled areas corresponds to the 95% (Gaussian) confidence intervals
for each length. The vertical dashed lines represents the average reference radius
associated to each length. The horizontal dashed line indicates the reported entropy for

Hénon map, Ky = 0.42.

We notice that the variance of the estimation increases for decreasing radius and decreas-

Publishing

AlP

ing number of points. This result is presumably due to a poor statistical power for small
values of the radius and short time series. However, the estimation seems to converge in

average to the theoretical value (Hxg = 0.42 (Faure and Korn (1998))) when 7 tends to 0.
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Notice that the right-most part of the plot exhibits a large bias between the estimated and
theoretical entropy values. Contrary to the variance, the bias does not seem to decrease with
increasing number of points. Thus this bias is more symptomatic of the radius being too
high to obtain any valuable information about the Hénon map. This bias-variance trade-off

is usually related to a Mean Squared Error (MSE) minimization problem.

_2 .
' —n =150
-3 : n = 250
! n =500
z ! n = 1500
: :
= 5 !
[-T4)
< 1
_6 1
1
_7 1
1
-4 -3 -2 -1 0
logr

FIG. 6: Estimation of the log-Mean Square Error of the Kolmogorov-Sinai entropy
estimator as a function of the radius value (lower is better). The filled areas corresponds to
the 95% bootstrap confidence interval for each length. We see that for different time series,

the reference radius gives a log-MSE value between —7 and —5.

As the MSE of an estimator quantifies the goodness-of-fit, the parameters of the estimator
yielding the minimum value of MSE can be systematically selected. We numerically compute
the MSE of the KS entropy estimator as a function of logr and use this plot as an objective
criterion to evaluate the adequacy of our reference radius. The MSE consists in the sum of a
squared bias term, measuring the difference between the theoretical value and the estimation,
as well as the variance of the estimator. We use a theoretical value K5 = 0.42 and all of the
100 sample series to compute the MSE, overlay the reference radius averaged over series of
same length, and show the results in Figure 6. For short time series, we observe that the
radius selected by the reference rule is systematically close to the minimum of the MSE. For
longer time series, the reference radius is larger than the minimum of the curve. Nevertheless,
for values of r < rqp, the slope of the MSE curve gets flatter for increasing number of points

and allows arbitrary selection of smaller radius values. We report similar observations for
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two other estimators of the KS entropy, the Approximate and Sample entropies (results not

shown).

C. Application to EEG signals in the context of epilepsy

To show the viability of our approach on real-world data, we apply our radius selection
procedure to estimate the KS entropy of epileptic EEG signals. A significant decrease of
the EEG signal entropy at the epileptic seizure location is a common feature for automatic
seizure detection (Ocak (2008); Srinivasan et al. (2007)). We use the data publicly available
from the University of Bonn (Andrzejak et al. (2001)), which consists in five sets of EEG
data. Each set contains 100 segments of 23.6 seconds recorded at 173.61Hz (4096 points per
segment), which were visually inspected for artifacts and band-pass filtered between 0.5Hz
and 40Hz. Two sets contains surface EEG recorded from five healthy volunteers at rest,
either with closed (set O) and opened eyes (set Z). The three other sets, consisting in signals
from five epileptic patients recorded during presurgical evaluation, contain segments either
from seizure-free intervals (at epileptogenic site, set F, or at the hippocampal formation of
the opposite hemisphere of the brain, set N) or during seizure (at epileptogenic site, set S).

Each record is divided in four segments of 1024 points. For each segment, we compute
a recurrence plot with the radius set by Eq. (14) and estimate the KS entropy using the
Faure and Korn method. Recurrence plots and signals sampled from the sets Z and F are
shown in Figure 7a and Figure 7b. We present in Figure 7c¢ a box plot of the KS entropy
for the healthy volunteers (control group) and the epileptic patients. Our estimator gives an
average KS entropy of 0.288 + 0.005 (95% confidence interval) for the epileptic group and
0.504 £ 0.006 for the control group, which confirms an average significant decrease of the
KS entropy with epilepsy, as reported in previous studies (Kannathal et al. (2005)).

Finally, to compare the discrimination strength of common closed-form radius selection
methods, we estimate the KS entropy with each method, perform a two-samples Z-test
(epileptic versus control group) and collect the Z-score. We report a Z-score of Z = 45.3
(resp. Z = 39.3) for the r = 0.20 (resp. r = 0.10, with o the series standard deviation)
rule (Pincus (1991)), Z = 48.9 when the radius is set to 10% of the maximum phase space
neighborhood (Zbilut and Webber Jr (1992)), Z = 41.1 (resp. Z = 34.6) when the radius
is selected such that 10% (resp. 4%) of the number of points are selected as neighbors
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FIG. 7: Estimation of the Kolmogorov-Sinai entropy from recurrence plots to discriminate
epileptic from healthy EEG signals: (a) and (b) show sample EEG signals and recurrence
plots for an healthy volunteer and an epileptic patient respectively. The value
r=1.843 x § x n~Y/? (Eq. (14)) is used to compute the recurrence plots from the univariate
time series; (c) contains a box plot of the estimated entropies for both control and epileptic

groups. As expected, the entropy values are significantly lower for the epileptic group.

(Webber and Marwan (2015), Kraemer et al. (2018)), Z = 54.9 for the reference rule radius
r = 1.843 x § x n~ /> (Eq. (14)). Subsequently, although all methods detect significant
differences between the two groups, the radius given by Eq. (14) gives the most statistically

significant results.

VII. DISCUSSION AND CONCLUSION

We propose a new approach for selecting the radius parameter in nonlinear measures
derived from the correlation sum. We first formulate a relative error function on the quan-
tities underlying correlation sums. We show that minimizing the loss function is equivalent
to minimizing the MISE of a kernel density estimator. We use the AMISE minimization
method to derive a closed-form expression to select the radius. Additionally, we observe

how the bias and variance of the estimator varies with the radius and derive a “meaningful”
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range to select a variable radius.

We investigate the behavior of the Grassberger and Proccacia algorithm for estimating
the correlation dimension in radius ranges of different size. We observe that the range
parameter § can be selected close to 1 for low-variance estimations, and close to 0 for low-
bias estimations. However, the presence of noise in the observed signal induces typical error
in the estimations and leads to favor small ranges close to the reference radius.

We then use the reference radius to construct recurrence plots for estimating the
Kolmogorov-Sinai entropy from both simulated and experimental signals. In a first analysis,
we reconstruct the Mean Squared Error curve of the entropy estimator for Hénon map and
show that the reference radius is close to the minimum of the curve. We confirm the exper-
imental adequacy of the method by obtaining significant results in characterizing epileptic
EEG signals.

Moreover, our theoretical approach yields a reference radius that is similar to several
existing radius selection methods arising from empirical or numerical experience: the radius
is a fraction of the scale of the data (Pincus (1991), Zbilut and Webber Jr (1992)) and
compensates for the dimension of the data (I{racmer et al. (2018)).

For the specific case of recurrence plots, Andreadis et al. (2020) recently proposed an
empirical procedure to identify an optimal radius value. They define a metric to measure
the distance between recurrence plots and compute the distance between recurrence plots
constructed from the same time series using increasing values of radius. The radius value is
considered “optimal” when it minimizes the distance between consecutive recurrence plots,
i.e. such that a slightly changing the radius has the minimal impact on the recurrence plot.
The principal issues with this procedure are the computational burden of building several
recurrence plots and the difficulty to reliably identify the optimum. In contrast, our method
is computationally much more efficient and not restricted to recurrence plots.

Our numerical experiments suggest that the reference radius given in Eq. (14) can be
used as a default parameter to obtain robust and significant values for a number of different
nonlinear tools and measures: correlation dimension, recurrence plots, Kolmogorov-Sinai
entropy. In future work, we plan to investigate the relation between our optimal radius
and the embedding parameters, which play a role on the trajectories resolution in the re-
constructed phase space. Additionally, we plan to use the reference radius in EEG signal

processing application, notably to extract dynamical features characterizing the oscillatory
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dynamics of motor imagery EEG signals.
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Appendix A: Volume of generalized balls

Let BP%(x) be an open d-ball of size r in an L, space, i.e. B?(z) ={y e R?: [z —y||, <
r}. We write 7,4 = A(BY") the volume of the generalized unit ball, where X is the Lebesgue
measure. The volume of a generalized ball of radius r is A(B??) = 7, 4% The general

formula for the volume of a generalized unit ball is (Wang (2005)):

(20(; + 1))

= Al
Tp7d F(% + 1) ( )
which can be simplified for common L, spaces:
24 w5
Tid = =5 Tod = — Tooq = 24 A2
1,d d' 2.d F(%l + 1) ,d ( )

I denotes Euler’s gamma function with the property I'(z + 1) = 2I'(2).

Appendix B: Derivation of a reference rule for the uniform kernel

The expression of the bandwidth minimizing the Asymptotic Mean Integrated Squared
Error is (Silverman (1986), Eq. 4.14 and 4.15):

(B1)

Wy(K)-d } 1/(d+4)

hamise = [n [WQ(K>]2 WA (V)

where W; are the functionals Wi(g) = [5. ¢°(u)du and Wa(g) = [p.uig(u)du, where uy is
the first component of u € R? (as the kernel is symmetric, it is sufficient to consider only u,

in W3). We compute W; for the uniform kernel:

Wi (K) = /KQ(u)du: / (%>2du: i (B2)

)
W1(V?p) for a d-dimensional Gaussian reference distribution ¢ is given in (Silverman, 1986,

Eq. 4.13):
WL(V20) ~ WA(V20) = (2v/) (d/2 + d2/4) (B3)

Then, W5 in the 1-dimensional case:



For d > 2, using w; to denote the i-th coordinate of v € R%:

Wy(K) = / ul K (u)du

d
1
= _Tpd u% / O(1 — (Jlw|? + g |ui|p)1/p)dud...du2 duy
’ Rd—1 1=2

—

Changing to spherical coordinates sy = (n,&) with an orientation vector 5 and a radius

0= (L, lwl?)"? and :

o0

WQ(K):T U%/ / e (1- ‘u1’p+n)1/1’)d§dndu1
P R n=0Rd-2
=Tt [ [ @=1t20 (1= (il + 7)) diduy
T,
P R 7=0
1 (1_‘ul|p)1/p
ze [ ] e
Tp.d
’u,1=*1 77:0
1
_ Tpd-1 / u? ((1 — ]u1|p)1/p)(d71) duy
Tp.d
up=-—1
12 1—-d
_ a2 (3_@ 1)
Tp,d 3 p p p

where 5F(a,b;c; z) is the Gaussian hypergeometric function. Finally, using the fact that
T de r(2+1)
p,d—1 __ D

Tp,d 2r(L4+1)r(241)”
2020, Eq. 15.4.20), we can further simplify:

(see Appendix A.1) and the expansion of o F7 at z =1 (Olver et al.,

3 d—1 d
i) = i (1+)r(Ete1) (41T
T a0 (2 41) 37 (442 4 1)

We then derive the reference rule by plugging the appropriate values in Eq. (B1). First,
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we derive the expression in the simple 1 dimensional case, which is independent from p:

Topt = [12\/E} 1/5 -5 n*1/5 ~ 1.843 -5 n*1/5 <B6)
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The general formula for d > 2 is more complex:

- 1/(d+4)
S BTN CRRLICER)) R
U wadd+2) (p (e )T (148
o )
RS <3F (% + 1) r (% + 1)) e .
o 2
| mald+2) (T (44+1)1 (1+2))

Appendix C: Simplification of the reference rule for common norms

We address the case p = 1:

roo= 4(2ﬁ>d (3F (d + 3) r (2))2 e I VA
P a(d+2) (T (d+1)T (4)°

= (Vm)(d+1) (d+2)1) /4 g1/ (C1)

Then, the limiting case p — oo:

[ 4(2¢/m)* (3T (1)T (1))
| rpa(d+2) (T (1)T(1))?

- 1/(d+4)
M} g -1/
Td+2

PRI

Topt =

] 1/(d+4)

Finally the case p = 2:

1/(d+4)

[ 4(2y/m)? (3T (42 + 1
| Toa(d+2) (T (5 +1)
[90e2r (4 4 1) (30 (4 4+ 1) (4 + )T (L + 1))
(@+2) (T (E+ )T (1+3) (1 + 1)
T/(d+4)

—1/(d+4)

)2
Topt = 3 “5-n

] 1/(d+4)

= [2%+21 (g +1)(d+2) § . p~ /()

+ S

rE+n)]
5

=2

A Ca ) (C3)
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