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When nonlinear measures are estimated from sampled temporal signals with finite-

length, a radius parameter must be carefully selected to avoid a poor estimation.

These measures are generally derived from the correlation integral which quantifies

the probability of finding neighbors, i.e. pair of points spaced by less than the radius

parameter. While each nonlinear measure comes with several specific empirical rules

to select a radius value, we provide a systematic selection method.

We show that the optimal radius for nonlinear measures can be approximated by

the optimal bandwidth of a Kernel Density Estimator (KDE) related to the corre-

lation sum. The KDE framework provides non-parametric tools to approximate a

density function from finite samples (e.g. histograms) and optimal methods to se-

lect a smoothing parameter, the bandwidth (e.g. bin width in histograms). We use

results from KDE to derive a closed-form expression for the optimal radius. The

latter is used to compute the correlation dimension and to construct recurrence plots

yielding an estimate of Kolmogorov-Sinai entropy. We assess our method through

numerical experiments on signals generated by nonlinear systems and experimental

electroencephalographic time series.

Keywords: Nonlinear measures; correlation sum; correlation dimension; Kolmogorov-

Sinai entropy; kernel density estimation; recurrence plots.

a)johan.medrano@lirmm.fr
b)kheddar@lirmm.fr
c)annick.lesne@sorbonne-universite.fr
d)sofiane.ramdani@umontpellier.fr

2

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
55

79
7

mailto:johan.medrano@lirmm.fr
mailto:kheddar@lirmm.fr
mailto:annick.lesne@sorbonne-universite.fr
mailto:sofiane.ramdani@umontpellier.fr


Nonlinear measures computed from discrete time series are widely used to char-

acterize and identify their underlying dynamics. Such measures include en-

tropies, dimensions and indices that are derived from recurrence plots. These

indices, all based on the fundamental concept of correlation sum, have been

shown to be effective in distinguishing dynamical processes based on exper-

imental data in various fields, e.g. mechanics, physiology, etc. One crucial

parameter involved in their estimation is the radius used to define neighbors in

the state space. Although many rule of thumbs are available, there is a need

of well-grounded theoretical criteria to correctly select this radius parameter.

We propose to address this issue using Kernel Density Estimation (KDE). We

first demonstrate the theoretical link between the correlation sum and the KDE

framework. We then derive a loss function, whose optimization is equivalent

to the minimization of the mean integrated squared error of a kernel density

estimator, leading to a closed-form criterion for the radius parameter selection.

These findings moreover show how the estimator bias-variance trade-off deter-

mines a range for the radius values. Numerical experiments on both simulated

(chaotic, corrupted by additive noise) and real-world data are presented to assess

our approach.

I. INTRODUCTION

Nonlinearity and chaos govern a wide variety of systems. They are found in neurons firing

patterns (Faure and Korn (2001)) and related electrophysiological signals (Freeman (2003)),

and in unpredictable changes of Earth climate (Ghil et al. (2008)), to cite few examples.

Nonlinear measures of such systems are made more accurate thanks to an increasing interest

in numerical tools suitable for nonlinear phenomena. Indeed, data generated by such systems

are more suitable to nonlinear time series analysis, which provide complementary information

to traditional linear methods such as power spectrum analysis (Yang et al. (2018)).

Our work focuses on estimating various metrics, measures (in the sense of quantitative

indices), and invariants that rely on the computation of a correlation sum. The correlation

sum is the estimator of the correlation integral, which is the mean probability that two
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points of the phase space trajectory of a dynamical system are neighbors (Ott (2002)), i.e.

the mean probability that their distance is less than a parameter called radius, threshold or

tolerance depending on the application domain. The correlation sum captures important

aspects of the nonlinear dynamics. Therefore, it is a fundamental quantity in various non-

linear measures: correlation dimension (Grassberger and Procaccia (1983a)), Kolmogorov-

Sinai entropy (Grassberger and Procaccia (1983b); Eckmann and Ruelle (1985); Faure and

Korn (1998)), its approximate versions ApEn (Pincus (1991)) and SampEn (Richman and

Moorman (2000)), Rényi’s entropies (Principe (2010); Singh and Príncipe (2011)), recur-

rence plots (Eckmann et al. (1987), Marwan et al. (2007)) and related metrics of recurrence

quantification analysis (Grendár et al. (2013)), etc.

In different nonlinear measures, the radius appears either as a variable or as a parame-

ter. For instance, the correlation dimension is computed by estimating a scaling factor on

a logarithmic plot of the correlation sum versus the radius. In contrast, a recurrence plot

displays neighboring points on a black and white image and requires to fix the radius param-

eter beforehand. In both cases, the radius is selected as small as possible. As a correlation

sum computed from a finite-length time series will likely tend to 0 together with the radius

parameter, the challenge is to identify a radius range corresponding to a statistically use-

ful distribution of neighbors. Eckmann and Ruelle (Eckmann and Ruelle (1985)) (Section

V.A.1.a.) refer to it as a “meaningful range” for the radius parameter. In our approach,

we first derive an expression of the optimal radius. Then, we introduce a range to select a

radius parameter or to study the properties of a function of the radius.

Several empirical rules exist to select a value or a range of values for the radius; however,

they generally focused on a particular nonlinear measure (Webber and Marwan (2015);

Zbilut and Webber Jr (1992); Pincus (1991)). Here, we introduce a method which can

be applied to any nonlinear measure derived from the correlation sum. Observing that log-

correlation sums are particularly used in nonlinear indices and that relative error arises from

logarithmic error terms, we focus on minimizing a relative error between the correlation sum

and the correlation integral. We show that minimizing the relative error term is equivalent to

minimizing a well-known error used in the framework of Kernel Density Estimation (KDE),

widely studied in statistics (Silverman (1986)) and in signal processing (Gunduz and Principe

(2009); Singh and Príncipe (2011)).

KDE denotes a family of non-parametric density estimation methods which generalize
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the well-known histogram methods (Silverman (1986)). Simple probability functions called

kernels are placed at sample data points to approximate the underlying density function. In

the KDE framework, the choice of the kernel width influences the degree of smoothing of the

estimated density function. Selecting the kernel width is known as the bandwidth selection

problem. The latter can be formulated simply as a bias-variance trade-off. Bandwidth

selection is an extensively studied problem (see Jones et al. (1996) for a brief review) with

notable usages in signal processing, e.g. mutual information estimation (Moon et al. (1995)).

The convergence of kernel density estimators for mixing dynamical systems was recently

shown in Hang et al. (2018).

The relation between kernel density estimation and the correlation sum is noted in Yu

et al. (2000) to estimate dynamical invariants in noisy situations. More recently, Gaus-

sian kernels estimators of the correlation integral are applied to estimate Rényi’s entropies

(Principe (2010); Singh and Príncipe (2011); Erdogmus and Principe (2006)). Here, KDE

is used not to derive new estimators of nonlinear measures but rather as a framework pro-

viding a systematic rule to select the radius in computing nonlinear measures. We show that

the radius minimizing the relative error of the correlation sum estimator is equivalent to the

bandwidth minimizing the Mean Integrated Squared Error (MISE) of a density estimator

(Section 3.1). Therefore, we use a bandwidth selection method from KDE to derive a closed-

form expression for the optimal radius (Section 3.2) and define a “meaningful range” for the

radius variable relatively to our optimum (Section 3.3). We conduct numerical experiments

on well-known dynamical systems. First, we study the behavior of the correlation sum esti-

mator in the “meaningful range” for signals of different lengths and noise levels (Section 4).

Then, we estimate the Kolmogorov-Sinai entropy of both simulated and real signals, using

recurrence plots computed with an optimal radius (Section 5).

II. CORRELATION SUM AND CORRELATION DIMENSION

Let (X ,A, µ, T ) be a measure-preserving dynamical system with X ⊂ Rd and µ the

invariant measure (probability distribution in the phase space invariant upon the dynamics).

The correlation integral c(r) is the mean probability to find a pair of points at two different

time x, y ∈ X arbitrarily close, such that the distance between x and y is less than a small
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radius parameter r (Ott (2002); Singh and Príncipe (2011)):

c(r) = P ((x, y) : ‖x− y‖p < r) =

∫
x∈X

µ(Br(x))dµ(x) (1)

where Br(x) = {y ∈ X : ‖x−y‖p < r} is the generalized d-dimensional ball in Lp space, with

radius r and center x. In practice, an estimator of the correlation integral can be computed

from a sample trajectory xi ∈ Rd, 1 ≤ i ≤ n (Grassberger and Procaccia (1983a)):

C(r, n) =
1

n2

n∑
i,j=1

Θ(r − ‖xi − xj‖p) −−−→
n→∞

c(r) (2)

where Θ is Heaviside step function and C(r, n) is called the correlation sum (Pesin (2008);

Grassberger and Procaccia (1983a)). For small values of r, the correlation integral grows as

a power law:

c(r) ≈ const× rD2 (3)

The quantity D2 is called the correlation dimension.

III. KERNEL DENSITY ESTIMATION

A probability density function f may be estimated by placing smoothing kernels at each

sample point. A smoothing kernel K is defined as a valid probability density function, which

satisfies (Silverman (1986)):∫
K(u)du = 1 ∀u ∈ R, K(u) ≥ 0 (4)

Without loss of generality, we introduce a scaled version of the kernel with a Lp norm and a

scaling factor h > 0, Kh(u) = h−dK(u/h), which is a valid kernel when K is a valid kernel.

A simple kernel is the uniform or boxcar kernel, which remains constant over a domain:

Kh(u) =
1

τp,dhd
Θ(h− ‖u‖p) (5)

where Θ is Heaviside step function and τp,d is the volume of the unit ball defined by the norm

p in a d-dimensional space (see Appendix A). Given samples xi ∈ Rd, 1 ≤ i ≤ n, distributed

according to a density f , a kernel density estimator of f is:

f̂h(x) = n−1

n∑
i=1

Kh(x− xi) (6)
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While kernel density estimators are consistent for i.i.d. samples, independence between

consecutive samples cannot generally be assumed for dynamical systems. Hang et al. (Hang

et al. (2018)) showed that kernel density estimators are also consistent for dynamical systems

with mixing properties and weakly-continuous density function (more specifically C-mixing

systems with pointwise α-Hölder controllable density, see Hang et al. (2018) defs. 1 and 2).

The bandwidth parameter h determines the “width” of the kernels and consequently the

degree of smoothing of the estimator. A plethora of methods exist to select the bandwidth

parameter, see Jones et al. (1996). Among existing bandwidth selection methods, minimizing

the Asymptotic Mean Integrated Squared Error (AMISE), a Taylor expansion of the MISE

of the estimator E[
∫
Rd(f(x)− f̂(x))2dx], is appealing for practical applications as it allows to

derive a closed-form expression of an approximately optimal bandwidth (Silverman (1986)):

hAMISE =

[
W1(K)× d

n× [W2(K)]2 ×W1(∇2f)

]1/(d+4)

(7)

where the functionals Wi are defined as W1(g) =
∫
Rd g

2(x)dx and W2(g) =
∫
Rd x

2
1g(x)dx,

where x1 is a scalar component of x. Reference rules (Silverman (1986); Scott (1979)) can

be easily obtained by replacing the unknown quantityW1(∇2f) with the quantity computed

using a reference distribution, generally a Gaussian distribution.

IV. A REFERENCE RULE FOR THE OPTIMAL RADIUS

To derive the expression of an optimal radius, we proceed as follows. First, we show that

the radius minimizing the relative error of the correlation sum estimator is equivalent to the

bandwidth minimizing the MISE of a particular density estimator. Second, we derive the

closed-form expression of the radius minimizing the AMISE of the estimator. Finally, we

identify a meaningful range to select a variable radius.

A. Criterion to select the radius

The correlation integral, c(r) = Eµ [µ(Br(x))], is generally estimated by the correlation

sum, Ĉ(r, n) = n−1
∑n

i=1 µ̂(Br(xi)) (Eq. (1) and Eq. (2)). To obtain a good estimation of the

correlation sum, we shall minimize the error between an estimator of the invariant measure

of a ball , µ̂(Br(x)), and the true quantity µ(Br(x)). However, minimizing such error is not
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sufficient to provide a good estimation for small r: the scale of the error decreases with r

and systematically leads to the trivial solution r = 0. Indeed, when r decreases, the absolute

error decreases while the relative error is multiplied by a factor proportional to 1/r (Eq. (3))

and consequently blows up. Therefore, we want to find the radius minimizing a relative

error criterion on µ̂(Br(x)). Let λ be the Lebesgue measure, such that λ(Br) is the volume

of a ball with radius r. We use the fact that µ(Br(·)) is proportional to r (see Eckmann

and Ruelle (1985), Section V.A.) and consequently that µ(Br(·)) ∝ λ(Br) to simplify the

expression of the relative error and express the following local relative error:

L(r, x) = E

[(
µ(Br(x))− µ̂(Br(x))

λ(Br)

)2
]

(8)

where the expectation is taken over samples used to construct the estimator. Given a fixed

r, µ(Br(·)) is a bounded function on X . We denote ρ the normalized density of µ(Br(·)),

such that

ρ(x) =
µ (Br(x))∫
X µ(Br(x))dx

=
µ (Br(x))

λ(Br)
(9)

and, similarly, ρ̂r(x) = µ̂(Br(x))/λ(Br) the estimator of the normalized density ρ. After

replacing in Eq. (8), we obtain:

L(r, x) = E
[
(ρ(x)− ρ̂r(x))2] (10)

Then, integrating Eq. (10) over possible values of x gives a global criterion to select the

optimal radius ropt:

ropt = arg min
r
L(r) (11)

where

L(r) =

∫
X
E
[
(ρ(x)− ρ̂r(x))2] dx (12)

With simple manipulations, we see that Eq. (12) is indeed the MISE between the estimator

of the normalized density ρ̂r and the true normalized density ρ (Silverman (1986)). Finally,

ρ̂r can be identified by replacing µ̂(Br(x)) with ρ̂r in the expression of the correlation sum

estimator (Eq. (2)):

C(r, n) =
λ(Br)

n

n∑
i=1

ρ̂r(xi) =
1

n2

n∑
i,j=1

Θ(r − ‖xi − xj‖)

8
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yielding

ρ̂r(x) =
1

nλ(Br)

n∑
i=1

Θ(r − ‖x− xi‖) (13)

As λ(Bp,d
r ) = λ(Bp,d

1 )rd (A), we observe that ρ̂r is a kernel density estimator with a uniform

kernel and a bandwidth parameter r (Eq. (5)). Hence, it follows from Eq. (11) that the

bandwidth minimizing the MISE of the estimator ρ̂r can provide a good approximation

of the optimal radius ropt minimizing the relative error on the correlation sum estimator.

Moreover, the AMISE method (Eq. (7)) can be used to approximate ropt with a simple,

closed-form expression that resembles to the empirical rules currently used. In the next

section, we use the AMISE minimization method to derive a reference rule for the optimal

radius.

B. Derivation of a reference rule for the optimal radius

As presented in section III, a Taylor expansion of the MISE can be used to derive a closed-

form expression of the optimal bandwidth for an estimator. A particular interest for this

method is motivated by the possibility of deriving a closed-form expression of the optimal

bandwidth. We use a reference Gaussian distribution in Eq. (7) and derive the expressions

for W1(K) and W2(K) for the uniform kernel (see Appendix B). Then, substituting these

expressions into Eq. (7) gives the main result of the paper: a reference rule radius ropt

defined as

ropt = αp,d × ŝ× n−1/(d+4) (14)

where αp,d, depending on the norm and dimension, rescales ropt; ŝ is an estimate of the

spread of data; and n is the length of the trajectory in phase space.

Remark 1. In practice, the phase space is reconstructed using a time delay embedding

procedure (according to Takens theorem (Takens (1981))) ; hence, if N denotes the length

of the univariate time series, d the embedding dimension and τ the delay, the length of the

trajectory in reconstructed phase space is n = N − (d− 1)τ .
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1. Estimation of the spread ŝ

A first choice for the spread ŝ is the average marginal sample standard deviation, defined

by σ̂ =
√
d−1

∑
i Si,i, S ∈ Rd×d is the sample covariance matrix. When the d-dimensional

sample is constructed from an univariate time series using delay embedding, components

on the diagonal of the sample covariance matrix are equal: σ̂ is then the sample standard

deviation of the time series. Alternatively, as the interquartile range IQR is a good alter-

native to standard deviation for non-Gaussian data (see Silverman (1986) for discussion), a

common choice for ŝ is:

ŝ = min

(
σ̂,

IQR

1.34

)
. (15)

2. Derivation of the reference factor αp,d

The expression for the 1-dimensional reference factor is relatively straightforward: αp,1 =

(12
√
π)1/5 ≈ 1.843. The general closed-form expression for αp,d is more complex (see Ap-

pendix B, Eq. (B7)); however, the expression can be simplified for common norms (Ap-

pendix C):

α1,d =
[
(d+ 2)! (d+ 1)(

√
π)d
]1/(d+4) (16)

α2,d = 2×

[
Γ
(
d
2

+ 2
)

2

]1/(d+4)

(17)

α∞,d =

[
36(
√
π)d

d+ 2

]1/(d+4)

(18)

Moreover, αp,d is to be computed only once for common dimensions and norms. Hence, we

report in Table I some values of αp,d that can be used in Eq. (14).

C. Identification of a meaningful range for a variable radius

As discussed above, some nonlinear indices require selecting the range of radius values in

which the quantity is estimated. For instance, this applies to nonlinear indices quantifying a

scaling exponent of the form lim
r→0

log ν(Br)
log r

(with ν a (with nu a probability distribution in the

phase space), as often encountered in the chaotic systems literature (see e.g. Pesin (2008);

Ott (2002)). In practice, the limit r → 0 is generally intractable, and estimations of ν for
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αp,d
p

1 2 ∞

d

1 1.843 1.843 1.843

2 2.468 2.000 1.745

3 3.087 2.150 1.694

4 3.705 2.294 1.666

5 4.325 2.432 1.649

TABLE I: Rounded values of the coefficient αp,d for common norms and dimensions. The

values can directly be used in reference rule radius,

ropt = αp,d ×min (σ̂, IQR/1.34)× n−1/(d+4).

small r are highly variable due to poor statistics (Eckmann and Ruelle (1985)). On the other

hand, at a certain point, large r will not capture the desired scaling effect. Hence, there

is a range of values which must be selected to support a good estimation of the nonlinear

measure. Here, we introduce our arguments to guide the selection of a meaningful range for

a variable radius.

The AMISE can be expanded in an integrated squared bias and integrated variance of

the density estimator, giving the following expressions of bias and variance as functions of

r (Silverman (1986)):

bias(r) ' r2

2
W2(K)∇2ρ(x) (19)

var(r) ' W1(K)

nrd
ρ(x) (20)

The behavior of the relative error with r can be understood from Eq. (19) and Eq. (20):

the bias is proportional to r whereas the variance is inversely proportional to r. As ropt

minimizes the AMISE, the bias contribution increases with r while the variance decreases

with r. However, the bias term only depends on r whereas the variance term decreases when

the number of points increases. This observation –considering that usually the bandwidth

minimizing the AMISE is too large, suggests selecting the optimal radius ropt as the upper

bound for the meaningful range. We introduce a range parameter 0 < β < 1 to select the
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lower bound as a fraction of ropt, such that the radius values lie within the range:

R = [βropt, ropt] (21)

Due to the relations Eq. (19) and Eq. (20), we argue that the value of β shall be decreased

when increasing the number of points.

V. ESTIMATION OF THE CORRELATION DIMENSION

In the following, we investigate the behavior of the Grassberger and Proccacia algorithm

for the estimation of the correlation dimension. We compare the spread and bias of estima-

tions in the full range of available scales with estimations in the meaningful range derived

in section IVC.

A. The Grassberger and Proccacia algorithm

The correlation dimension D2 can be expressed as:

D2 = lim
r→0

log c(r)

log r
= lim

r→0
lim
n→∞

logC(r, n)

log r
(22)

The Grassberger and Proccacia algorithm (Grassberger and Procaccia (1983a)) for the em-

pirical estimation of the correlation dimension consists in computing the correlation sum for

different values of r and plotting logC(r, n) versus log r. The slope of the linear region in

this logarithmic plot provide the desired estimation of the correlation dimension D2 (Ott

(2002)). Similarly to the original paper (Grassberger and Procaccia (1983a)), we use linear

regression to estimate the slope.

B. Procedure for generating reconstructed trajectories

We conducted numerical experiments on the Lorenz system (Lorenz (1963)) (σ = 10,

β = 8
3
, ρ = 28, dt = 0.01), the Rössler system (Rössler (1976)) (a = 0.1, b = 0.1, c = 14,

dt = 0.05) and the Hénon map (Hénon (1976)) (a = 1.4, b = 0.3). We apply the following

procedure to generate random time series of different length. After drawing a random initial

state, we generate time series for all systems – using a Runge-Kutta 4/5 method for Lorenz

and Rössler – such that the length of the time series is N after removing transients (sample
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FIG. 1: Sample series for the Lorenz attractor (a), the Rössler attractor (b) and the Hénon

map (c). Series from the x coordinates were systematically used to reconstruct the

trajectory using Takens delay embedding.

series are presented in Figure 1). Then, the trajectory is reconstructed using Takens delay

embedding (series from the x coordinates were systematically used). The original system

dimension is used as embedding dimension d. The time delay parameter τ is set to 1 for

the Hénon map and selected as the first minimum of the time-delayed mutual information

function (Fraser and Swinney (1986)) for the Lorenz and Rössler systems. Please note that

the length of the reconstructed trajectories, n = N−(d−1)τ , is used to compute the optimal

radius using Eq. (14) (see Remark 1).

Remark 2. Here, we assume that the delay and embedding dimension are correctly selected

as a bad phase space reconstruction deteriorates the logC(r, n) versus log r plot (Kantz and

Schreiber (2004)). In practice, this embedding problem can be efficiently addressed as a

plethora of methods exist to select the delay and the embedding dimension (see for instance

Kantz and Schreiber (2004), Ch. 3.3 and Ch. 9.2).
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C. Numerical results for the radius range

Here, we visualize the meaningful range on the log-log plot of the correlation sum versus

the radius. We first generate 100 series for each system (4000 points for Rössler and Lorenz

attractor, 200 points for Hénon map, respectively), select 25 random values of radius and

compute the corresponding correlation sums. We overlay the average value of ropt and the

ranges with arbitrary values β ∈ {0.01, 0.1, 0.5} on the plot of logC(r, n) vs log r. Results

are presented in Figure 2. We observe that the spread of the correlation sum over the runs

is low at the location of reference radius and increases when the radius is decreased. Hence,

smaller values of β likely lead to higher variance estimations.

On Figure 2b, a knee is present around a value log(rknee) ' −1, such that the slope aleft

in a left range [r0, rknee] is higher than the slope aright in right range [rknee, r1]. In practice,

a knee may appear from the superposition of signals from non-interacting subsystems with

different amplitude (Eckmann and Ruelle (1985)). In this situation, aleft characterizes the

two subsystems while aright corresponds only to the system with the largest signal amplitude.

Consequently, a careful analysis of the plot of logC(r, n) vs log r might be necessary to select

a range capturing the desired properties of systems under study.

D. Influence of the time series length

Using the procedure described in Section VB, we generate 100 trajectories for each length:

(a) N = 250, 500, 1000, 2500, 5000 for the Lorenz system,
(b) N = 500, 1000, 2500, 5000, 7500 for the Rössler system,
(c) N = 100, 250, 500, 1000, 2500 for the Hénon map.

Remark 3. Notice that the discrepancies for the number of points used for the three systems

can be justified by the resulting trajectories after time delay embedding. Indeed, when the

number of points is too low, the reconstructed trajectories cannot properly reflect the dynamics

nor the correct dimension of the attractor. For instance, in our experiments this was the

case for time series of 100 points for the Rössler system.

We computed correlations sums for 20 values of r ranging between 10−8 and 2σ, where σ is the

sample standard deviation. We compared the estimation using the Grassberger and Procca-

cia algorithm on the entire curve (the plateau on the right was omitted) with the estimation
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FIG. 2: Log-log plot of correlation sums versus the radius used to estimate the correlation

dimension for Lorenz (a), Rössler (b) and Hénon (c) systems. The dots correspond to

estimates of the correlation sum at random values of radius for trajectories integrated from

random initial states. The colored regions show different ranges defined by [βropt, ropt],

with β = 0.01 (in beige), 0.1 (in light blue) or 0.5 (in dark blue).
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for 20 values of r in the meaningful range (βropt, ropt), for values of β ∈ {0.01, 0.1, 0.5}.

We show in Figure 3 a violin plot of the estimated values depending on the duration of the

time series and the range used to estimate the dimension. We compare our estimations with

the values of correlation dimension reported by Sprott and Rowlands (Sprott and Rowlands

(2001)) for much longer series (2.049± 0.096 for Lorenz attractor, 1.986± 0.078 for Rössler

attractor, 1.220± 0.036 for Hénon map).

Overall, we observe that the spread of the estimations decreases with increasing β. With

β = 0.01 (beige) the result is almost similar to the original version of the Grassberger and

Proccacia algorithm (red). In contrast, estimations for larger values of β are more localized,

but around values of dimension further apart from the reference dimension. We observe that

the number of points affects significantly the variance of the estimations for larger values

of β. However, for both Rössler and Hénon attractors, the range parameter β = 0.1 (light

blue) gives estimations with lower variance and bias compared to β = 0.5 (dark blue). This

suggests that the range must be selected sufficiently large to provide a proper support for

dimension estimation. Moreover, although the bias of the Grassberger-Proccacia algorithm is

low in this setup, a single dimension estimate can be far from the true dimension. Therefore,

one can favor a smaller range for r to reliably estimate a quantity slightly lower than the

true dimension.

We found qualitatively similar results for Lorenz and Rössler attractors when series of

different length are obtained by downsampling an original series of fixed length (results not

shown).

E. Influence of observational white noise

Finally, we investigate the influence of observational noise on the estimation of the cor-

relation dimension in the different ranges. Observational noise is ubiquitous in practical

applications and creates a knee on the plot of logC(r, n) versus log r, with a dimension at

the left of the knee equal to the embedding dimension (see Eckmann and Ruelle (1985);

Grassberger and Procaccia (2004)). Hence, the range must be selected at the right of the

knee to provide good estimations of the dimension.

We generate 100 time series of 1000 points for the three systems. Each series, with stan-

dard deviation σ, is corrupted with additive white Gaussian noise with standard deviation
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FIG. 3: Influence of the number of points on the estimation of the correlation dimension

from Lorenz (a), Rössler (b) and Hénon (c) systems. We compare the original version of

the Grassberger and Proccacia algorithm (red) with an estimation of the slope in the range

[βropt, ropt], with β = 0.01 (beige), β = 0.1 (light blue), β = 0.5 (dark blue).

σnoise = k σ, where k defines the noise level. As above, we compare the estimation of the

original Grassberger and Proccacia algorithm with the estimation in the different ranges

(the reference radius Eq. (14) is computed for each noise-corrupted series). We present in

Figure 4 a violin plot for noise levels k = 0, 0.05, 0.1, 0.15, 0.2. For both Rössler and Lorenz

attractors, we observe that a noise level of 5% is sufficient to corrupt estimations with the
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FIG. 4: Estimation of the correlation dimension from Lorenz (a), Rössler (b) and Hénon

(c) systems under different levels of additive white Gaussian noise: comparison of the

original Grassberger and Proccacia algorithm (blue) with an estimation of the slope in the

range [βropt, ropt], with β = 0.01 (beige), β = 0.1 (light blue), β = 0.5 (dark blue).

original version of the Grassberger and Proccacia algorithm (red) or the range β = 0.01

(beige). In contrast, larger values of β yield more consistent results under the different noise

conditions. Therefore, this observation suggests that in noise conditions, the correlation
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dimension can be more robustly estimated from a smaller range of r.

VI. ESTIMATION OF KOLMOGOROV-SINAI ENTROPY USING

RECURRENCE PLOTS

In this section, we investigate the behavior of the goodness-of-fit of an estimator of a

nonlinear measure with the radius parameter. We also study the reference radius inherent

to Eq. (14) under different conditions. We use the reference radius in the construction of

recurrence plots used to estimate the Kolmogorov-Sinai (KS) entropy of Hénon map and

apply similar method to real electroencephalographic (EEG) signals.

A. Recurrence plots and Kolmogorov-Sinai entropy

1. Recurrence plots

Recurrence plots (Eckmann et al. (1987)) display phase-space neighbors as a 2D black-

and-white image whose (i, j) element is black if trajectory points xi and xj are closer than

a fixed radius ε. More formally, from a phase-space trajectory {xi}, 1 ≤ i ≤ n, a recurrence

plot rp(ε) ∈ Rn×n is defined as:

(rp(ε))i,j = Θ(ε− ‖xi − xj‖p) (23)

where Θ(·) denotes Heaviside step function, ‖ · ‖p is a norm, usually either L1, L2, or L∞.

The patterns in recurrence plots reflect properties of the underlying dynamical system and

can be quantified using the Recurrence Quantification Analysis (RQA) framework, provid-

ing a set of powerful non-parametric visualization and characterization tools for nonlinear

time series analysis. The relationship between recurrence plots (and RQA measures) and

the correlation sum intuitively follows Eq. (23) (Grendár et al. (2013)). Indeed, simple

mathematical manipulations show that the recurrence rate, defined as the average number

of recurrent points in a recurrence plot, is equal to the correlation sum (Thiel et al. (2003)).
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2. Estimating Kolmogorov-Sinai entropy from recurrence plots

The Kolmogorov-Sinai (KS) or measure-theoretic entropy (Kolmogorov (1985), Sinai Ya

(1959)) measures the evolution of uncertainty with the iteration of the map of a dynamical

system. The lower bound K2, often used as the estimate of KS entropy (Faure and Korn

(1998)), is defined as (Grassberger and Procaccia (1983b)):

K2 = lim
r→0

lim
m→∞

lim
n→∞

1

∆t
log

Cm(r, n)

Cm+1(r, n)
(24)

Cm(r, n) denotes the correlation sum built from a delay-reconstructed trajectory in a m-

dimensional L∞ space. While it is possible to approximate the KS entropy directly from

correlation sums (Pincus (1991); Richman and Moorman (2000)), we rather consider the

method in (Faure and Korn (1998)). The latter approximates the KS entropy from the

histogram of diagonal lines of length greater than m in a recurrence plot rp(ε):

N ε(m) = card{(i, j) : ∀k ∈ {0, . . . ,m− 1}, |ui+k − uj+k| < ε} (25)

A diagonal of size m on a recurrence plot reflects that two trajectories stayed at a distance

smaller than a threshold ε for m time-steps, or equivalently that two delay-reconstructed

vectors in m-dimensional space are close under L∞ norm. Hence, the histogram of diagonal

lines, N ε(m), captures information similar to the correlation sum from delay-coordinates,

Cm(r, n); whereas the parameters ε and r are analogous in the two quantities. The main

advantage of the Faure and Korn method is computational: while Cm(r, n) is computed for

several values of the embedding dimension m, the histogram N ε(m) is computed only once.

Then, using the diagonal line histograms to rewrite the KS entropy Eq. (24) as a function

of r = ε gives:

K2(r) = lim
m→∞

lim
n→∞

1

∆t
log

N r(m+ 1)

N r(m+ 2)
(26)

Faure and Korn (Faure and Korn (1998)) suggest to evaluate the average slope of a logN r(m)

vs m plot for various values of r. Then, taking the limit r → 0 is supposed to converge to

a constant value equal to the KS entropy, K2, up to a scaling factor. However, selecting

the smallest possible r to estimate the limit r → 0 from real-world data (i.e. finite-size

samples with noise) likely leads to estimations flawed by a large variance, as discussed

in Faure and Lesne (2015). Hence, the problem is to select a value of r yielding the best

possible estimations of the KS entropy. We use our reference radius (Eq. (14)) to compute
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the recurrence plot used to estimate the KS entropy. Recurrence plots and diagonal line

histograms were computed using the pyunicorn package (Donges et al. (2015)).

B. Numerical experiments for the Hénon map

We generate 100 time series for each length (n = 150, 250, 500, 1500 points) from the

standard Hénon map (a = 1.4, b = 0.3). For each series, we use the Faure and Korn method

and compute the value of K2(r), Eq. (26), as a function log r curve for 50 values of log r

ranging from −4 to 0.5. We then compute the reference radius (Eq. (14)) — using the series

length n and dimension d = 1 — and average the values over series of same length. Results

are presented in Figure 5.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
n = 150
n = 250
n = 500
n = 1500

FIG. 5: Estimation of Kolmogorov-Sinai entropy for time series from the Hénon map with

different lengths n. The filled areas corresponds to the 95% (Gaussian) confidence intervals

for each length. The vertical dashed lines represents the average reference radius

associated to each length. The horizontal dashed line indicates the reported entropy for

Hénon map, K2 = 0.42.

We notice that the variance of the estimation increases for decreasing radius and decreas-

ing number of points. This result is presumably due to a poor statistical power for small

values of the radius and short time series. However, the estimation seems to converge in

average to the theoretical value (HKS = 0.42 (Faure and Korn (1998))) when r tends to 0.
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Notice that the right-most part of the plot exhibits a large bias between the estimated and

theoretical entropy values. Contrary to the variance, the bias does not seem to decrease with

increasing number of points. Thus this bias is more symptomatic of the radius being too

high to obtain any valuable information about the Hénon map. This bias-variance trade-off

is usually related to a Mean Squared Error (MSE) minimization problem.

−4 −3 −2 −1 0

−7

−6

−5

−4

−3

−2
n = 150
n = 250
n = 500
n = 1500

FIG. 6: Estimation of the log-Mean Square Error of the Kolmogorov-Sinai entropy

estimator as a function of the radius value (lower is better). The filled areas corresponds to

the 95% bootstrap confidence interval for each length. We see that for different time series,

the reference radius gives a log-MSE value between −7 and −5.

As the MSE of an estimator quantifies the goodness-of-fit, the parameters of the estimator

yielding the minimum value of MSE can be systematically selected. We numerically compute

the MSE of the KS entropy estimator as a function of log r and use this plot as an objective

criterion to evaluate the adequacy of our reference radius. The MSE consists in the sum of a

squared bias term, measuring the difference between the theoretical value and the estimation,

as well as the variance of the estimator. We use a theoretical value K2 = 0.42 and all of the

100 sample series to compute the MSE, overlay the reference radius averaged over series of

same length, and show the results in Figure 6. For short time series, we observe that the

radius selected by the reference rule is systematically close to the minimum of the MSE. For

longer time series, the reference radius is larger than the minimum of the curve. Nevertheless,

for values of r < ropt, the slope of the MSE curve gets flatter for increasing number of points

and allows arbitrary selection of smaller radius values. We report similar observations for
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two other estimators of the KS entropy, the Approximate and Sample entropies (results not

shown).

C. Application to EEG signals in the context of epilepsy

To show the viability of our approach on real-world data, we apply our radius selection

procedure to estimate the KS entropy of epileptic EEG signals. A significant decrease of

the EEG signal entropy at the epileptic seizure location is a common feature for automatic

seizure detection (Ocak (2008); Srinivasan et al. (2007)). We use the data publicly available

from the University of Bonn (Andrzejak et al. (2001)), which consists in five sets of EEG

data. Each set contains 100 segments of 23.6 seconds recorded at 173.61Hz (4096 points per

segment), which were visually inspected for artifacts and band-pass filtered between 0.5Hz

and 40Hz. Two sets contains surface EEG recorded from five healthy volunteers at rest,

either with closed (set O) and opened eyes (set Z). The three other sets, consisting in signals

from five epileptic patients recorded during presurgical evaluation, contain segments either

from seizure-free intervals (at epileptogenic site, set F, or at the hippocampal formation of

the opposite hemisphere of the brain, set N) or during seizure (at epileptogenic site, set S).

Each record is divided in four segments of 1024 points. For each segment, we compute

a recurrence plot with the radius set by Eq. (14) and estimate the KS entropy using the

Faure and Korn method. Recurrence plots and signals sampled from the sets Z and F are

shown in Figure 7a and Figure 7b. We present in Figure 7c a box plot of the KS entropy

for the healthy volunteers (control group) and the epileptic patients. Our estimator gives an

average KS entropy of 0.288 ± 0.005 (95% confidence interval) for the epileptic group and

0.504 ± 0.006 for the control group, which confirms an average significant decrease of the

KS entropy with epilepsy, as reported in previous studies (Kannathal et al. (2005)).

Finally, to compare the discrimination strength of common closed-form radius selection

methods, we estimate the KS entropy with each method, perform a two-samples Z-test

(epileptic versus control group) and collect the Z-score. We report a Z-score of Z = 45.3

(resp. Z = 39.3) for the r = 0.2σ (resp. r = 0.1σ, with σ the series standard deviation)

rule (Pincus (1991)), Z = 48.9 when the radius is set to 10% of the maximum phase space

neighborhood (Zbilut and Webber Jr (1992)), Z = 41.1 (resp. Z = 34.6) when the radius

is selected such that 10% (resp. 4%) of the number of points are selected as neighbors
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FIG. 7: Estimation of the Kolmogorov-Sinai entropy from recurrence plots to discriminate

epileptic from healthy EEG signals: (a) and (b) show sample EEG signals and recurrence

plots for an healthy volunteer and an epileptic patient respectively. The value

r = 1.843× ŝ×n−1/5 (Eq. (14)) is used to compute the recurrence plots from the univariate

time series; (c) contains a box plot of the estimated entropies for both control and epileptic

groups. As expected, the entropy values are significantly lower for the epileptic group.

(Webber and Marwan (2015), Kraemer et al. (2018)), Z = 54.9 for the reference rule radius

r = 1.843 × ŝ × n−1/5 (Eq. (14)). Subsequently, although all methods detect significant

differences between the two groups, the radius given by Eq. (14) gives the most statistically

significant results.

VII. DISCUSSION AND CONCLUSION

We propose a new approach for selecting the radius parameter in nonlinear measures

derived from the correlation sum. We first formulate a relative error function on the quan-

tities underlying correlation sums. We show that minimizing the loss function is equivalent

to minimizing the MISE of a kernel density estimator. We use the AMISE minimization

method to derive a closed-form expression to select the radius. Additionally, we observe

how the bias and variance of the estimator varies with the radius and derive a “meaningful”
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range to select a variable radius.

We investigate the behavior of the Grassberger and Proccacia algorithm for estimating

the correlation dimension in radius ranges of different size. We observe that the range

parameter β can be selected close to 1 for low-variance estimations, and close to 0 for low-

bias estimations. However, the presence of noise in the observed signal induces typical error

in the estimations and leads to favor small ranges close to the reference radius.

We then use the reference radius to construct recurrence plots for estimating the

Kolmogorov-Sinai entropy from both simulated and experimental signals. In a first analysis,

we reconstruct the Mean Squared Error curve of the entropy estimator for Hénon map and

show that the reference radius is close to the minimum of the curve. We confirm the exper-

imental adequacy of the method by obtaining significant results in characterizing epileptic

EEG signals.

Moreover, our theoretical approach yields a reference radius that is similar to several

existing radius selection methods arising from empirical or numerical experience: the radius

is a fraction of the scale of the data (Pincus (1991), Zbilut and Webber Jr (1992)) and

compensates for the dimension of the data (Kraemer et al. (2018)).

For the specific case of recurrence plots, Andreadis et al. (2020) recently proposed an

empirical procedure to identify an optimal radius value. They define a metric to measure

the distance between recurrence plots and compute the distance between recurrence plots

constructed from the same time series using increasing values of radius. The radius value is

considered “optimal” when it minimizes the distance between consecutive recurrence plots,

i.e. such that a slightly changing the radius has the minimal impact on the recurrence plot.

The principal issues with this procedure are the computational burden of building several

recurrence plots and the difficulty to reliably identify the optimum. In contrast, our method

is computationally much more efficient and not restricted to recurrence plots.

Our numerical experiments suggest that the reference radius given in Eq. (14) can be

used as a default parameter to obtain robust and significant values for a number of different

nonlinear tools and measures: correlation dimension, recurrence plots, Kolmogorov-Sinai

entropy. In future work, we plan to investigate the relation between our optimal radius

and the embedding parameters, which play a role on the trajectories resolution in the re-

constructed phase space. Additionally, we plan to use the reference radius in EEG signal

processing application, notably to extract dynamical features characterizing the oscillatory
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dynamics of motor imagery EEG signals.
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Appendix A: Volume of generalized balls

Let Bp,d
r (x) be an open d-ball of size r in an Lp space, i.e. Bp,d

r (x) = {y ∈ Rd : ‖x−y‖p <

r}. We write τp,d = λ(Bp,d
1 ) the volume of the generalized unit ball, where λ is the Lebesgue

measure. The volume of a generalized ball of radius r is λ(Bp,d
r ) = τp,dr

d. The general

formula for the volume of a generalized unit ball is (Wang (2005)):

τp,d =
(2Γ(1

p
+ 1))d

Γ(d
p

+ 1)
(A1)

which can be simplified for common Lp spaces:

τ1,d =
2d

d!
τ2,d =

π
d
2

Γ(d
2

+ 1)
τ∞,d = 2d (A2)

Γ denotes Euler’s gamma function with the property Γ(z + 1) = zΓ(z).

Appendix B: Derivation of a reference rule for the uniform kernel

The expression of the bandwidth minimizing the Asymptotic Mean Integrated Squared

Error is (Silverman (1986), Eq. 4.14 and 4.15):

hAMISE =

[
W1(K) · d

n · [W2(K)]2 ·W1(∇2f)

]1/(d+4)

(B1)

where Wi are the functionals W1(g) =
∫
Rd g

2(u)du and W2(g) =
∫
Rd u

2
1g(u)du, where u1 is

the first component of u ∈ Rd (as the kernel is symmetric, it is sufficient to consider only u1

in W2). We compute W1 for the uniform kernel:

W1(K) =

∫
Rd

K2(u)du =

∫
Bp,d

1 (0)

(
1

τp,d

)2

du =
1

τp,d
(B2)

W1(∇2ρ) for a d-dimensional Gaussian reference distribution φ is given in (Silverman, 1986,

Eq. 4.13):

W1(∇2ρ) ≈ W1(∇2φ) = (2
√
π)−d

(
d/2 + d2/4

)
(B3)

Then, W2 in the 1-dimensional case:

W2(K) =

∫
R

u2K(u)du =

1∫
−1

u2

τp,1
du =

1

3
(B4)
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For d ≥ 2, using ui to denote the i-th coordinate of u ∈ Rd:

W2(K) =

∫
Rd

u2
1K(u)du

=
1

τp,d

∫
R

u2
1

 ∫
Rd−1

Θ(1− (|u1|p +
d∑
i=2

|ui|p)1/p)dud . . . du2

 du1

Changing to spherical coordinates ~u2:d = (η, ~ξ) with an orientation vector ~ξ and a radius

η = (
∑d

i=2 |ui|p)1/p and :

W2(K) =
1

τp,d

∫
R

u2
1

∞∫
η=0

∫
Rd−2

Θ
(
1− (|u1|p + ηp)1/p

)
d~ξ dη du1

=
τp,d−1

τp,d

∫
R

u2
1

∞∫
η=0

(d− 1)ηd−2Θ
(
1− (|u1|p + ηp)1/p

)
dη du1

=
τp,d−1

τp,d

1∫
u1=−1

u2
1

(1−|u1|p)1/p∫
η=0

(d− 1)ηd−2dη du1

=
τp,d−1

τp,d

1∫
u1=−1

u2
1

(
(1− |u1|p)1/p

)(d−1)
du1

=
τp,d−1

τp,d

2

3
2F1

(
3

p
,
1− d
p

;
3 + p

p
; 1

)

where 2F1(a, b; c; z) is the Gaussian hypergeometric function. Finally, using the fact that
τp,d−1

τp,d
=

Γ( d
p

+1)

2Γ( 1
p

+1)Γ( d−1
p

+1)
, (see Appendix A.1) and the expansion of 2F1 at z = 1 (Olver et al.,

2020, Eq. 15.4.20), we can further simplify:

W2(K) =
τp,d−1

τp,d

2Γ
(

1 + 3
p

)
Γ
(
d−1
p

+ 1
)

3Γ
(
d+2
p

+ 1
) =

Γ
(
d
p

+ 1
)

Γ
(

1 + 3
p

)
3Γ
(
d+2
p

+ 1
)

Γ
(

1
p

+ 1
) (B5)

We then derive the reference rule by plugging the appropriate values in Eq. (B1). First,

we derive the expression in the simple 1 dimensional case, which is independent from p:

ropt =
[
12
√
π
]1/5 · ŝ · n−1/5 ≈ 1.843 · ŝ · n−1/5 (B6)
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The general formula for d ≥ 2 is more complex:

ropt =

 4d(2
√
π)2

τp,dd(d+ 2)
×

(
3Γ
(
d+2
p

+ 1
)

Γ
(

1
p

+ 1
))2

(
Γ
(
d
p

+ 1
)

Γ
(

1 + 3
p

))2


1/(d+4)

· ŝ · n−1/(d+4)

=

4(2
√
π)d
(

3Γ
(
d+2
p

+ 1
)

Γ
(

1
p

+ 1
))2

τp,d(d+ 2)
(

Γ
(
d
p

+ 1
)

Γ
(

1 + 3
p

))2


1/(d+4)

· ŝ · n−1/(d+4) (B7)

Appendix C: Simplification of the reference rule for common norms

We address the case p = 1:

ropt =

[
4(2
√
π)d (3Γ (d+ 3) Γ (2))2

τp,d(d+ 2) (Γ (d+ 1) Γ (4))2

]1/(d+4)

· ŝ · n−1/(d+4)

=
(
(
√
π)d(d+ 1) (d+ 2)!

)1/(d+4) · ŝ · n−1/(d+4) (C1)

Then, the limiting case p→∞:

ropt =

[
4(2
√
π)d (3Γ (1) Γ (1))2

τp,d(d+ 2) (Γ (1) Γ (1))2

]1/(d+4)

· ŝ · n−1/(d+4)

=

[
36(
√
π)d

d+ 2

]1/(d+4)

· ŝ · n−1/(d+4) (C2)

Finally the case p = 2:

ropt =

[
4(2
√
π)d
(
3Γ
(
d+2

2
+ 1
)

Γ
(

1
2

+ 1
))2

τ2,d(d+ 2)
(
Γ
(
d
2

+ 1
)

Γ
(
1 + 3

2

))2

]1/(d+4)

· ŝ · n−1/(d+4)

=

[
2d+2Γ

(
d
2

+ 1
) (

3Γ
(
d
2

+ 1
)

(d
2

+ 1)Γ
(

1
2

+ 1
))2

(d+ 2)
(
Γ
(
d
2

+ 1
)

Γ
(
1 + 1

2

)
(1 + 1

2
)
)2

]1/(d+4)

· ŝ · n−1/(d+4)

=

[
2d+2Γ

(
d

2
+ 1

)
(d+ 2)

]1/(d+4)

· ŝ · n−1/(d+4)

= 2

[
Γ
(
d
2

+ 1
)

2

]1/(d+4)

· ŝ · n−1/(d+4) (C3)
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