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The accelerated gradient method initiated by Nesterov is now recognized to be one of the most powerful tools for solving smooth convex optimization problems. This method improves significantly the convergence rate of function values from O(1/k) of the standard gradient method down to O(1/k 2 ). In this paper, we present two generalized variants of Nesterov's accelerated proximal gradient method for solving composition convex optimization problems in which the objective function is represented by the sum of a smooth convex function and a nonsmooth convex part. We show that with suitable ways to pick the sequences of parameters, the convergence rate for the function values of this proposed method is actually of order o(1/k 2 ). Especially, when the objective function is p-uniformly convex for p > 2, the convergence rate is of order O ln k/k 2p/(p-2) , and the convergence is linear if the objective function is strongly convex. By-product, we derive a forward-backward algorithm generalizing the one by Attouch-Peypouquet [1], which produces a convergence sequence with a convergence rate of the function values of order o(1/k 2 ).

Introduction

Consider the composition convex optimization problem of the form min{f (x) + Φ(x) :

x ∈ R n }, (1) 
where Φ : R n → R ∪ {+∞} is a proper lower-semicontinuous convex function and f : R n → R is a continuously differentiable convex function with L-Lipschitz continuous gradient on dom Φ, for L > 0, that is, ∇f (x) -∇f (y) ≤ L x -y , ∀x, y ∈ dom Φ.

(

) 2 
This class of convex optimization problems arises in many applications, especially, in image processing and in machine learning ( [START_REF] Beck | A fast iterative shinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Bubeck | Convex Optimization: Algorithms and Complexity[END_REF]). Recalling, the algorithms of forward-backward type (or also called gradient proximal algorithms), generalizing the gradient projection method ( [START_REF] Goldstein | Convex programming in Hilbert spaces[END_REF][START_REF] Levittin | Constrained minimization problems[END_REF]), which exploit the additive separability of the smooth part and the nonsmooth one of the objective function, play an important role for solving [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF] (see [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF][START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] and the references given therein).

The celebrated acceleration scheme initiated by Nesterov in 1983 ([14], [START_REF] Nesterov | Introductory Lectures on Convex Optimization: Basis course[END_REF]) for solving smooth unconstrained convex optimization problem improves the theoretical convergence rate (for the function values) from O(1/k) (of the standard gradient method) down O(1/k 2 ). Nowadays this accelerated gradient method is recognized to be one of the most powerful first-order methods for solving smooth convex optimization problems. Later, this acceleration scheme was developed for solving composition convex optimization of the form [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF] in which the objective function is represented by the sum of a smooth convex function and a nonsmooth one (see [START_REF] Kim | Optimized first-order methods for smooth convex minimization[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: Basis course[END_REF][START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF][START_REF] Nesterov | Universal Gradient methods for convex optimization problems[END_REF] and the references given therein). In [START_REF] Beck | A fast iterative shinkage-thresholding algorithm for linear inverse problems[END_REF], a combination of the forward-backward method with Nesterov's acceleration scheme for solving [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF] was proposed, called the fast iterative shrinkage-thresholding algorithm (FISTA), and it was successfully applied to image processing. In [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF] (see also [START_REF] Attouch | Convergence rate of proximal inertial algorithms associated with Moreau envelopes of convex functions[END_REF]), it was shown that the convergence rate of the accelerated forward-backward method (with respect to a special sequence of parameters) is actually o(1/k 2 ), rather than O(1/k 2 ), with a proof relying on an appropriate finite-difference discretization of a differential inclusion (see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF] and the references given therein for further about this approach).

In this paper, we will develop two accelerated schemes which generalize the one by Nesterov [START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF]. We show that by updating sequences of parameters in a suitable way, the convergence rate for the function values is actually of the order o(1/k 2 ) for the convex case, and is O ln k/k 2p/(p-2) for the p-uniformly convex case with p > 2. Moreover, when the objective function is strongly convex, the convergence is linear. By-product, as a particular case, the established convergence results permit us to derive a forward-backward algorithm generalizing the one considered by Attouch-Peypouquet which produces convergence sequences with rate of order o(1/k 2 ).

Let us recall some basis notations and properties. In the sequel, the space R n is equipped with the canonical inner product • , and the subdifferential of a convex function ϕ : R n → R ∪ {+∞} at x ∈ dom ϕ is denoted by ∂ϕ(x), that is,

∂ϕ(x) = {x * ∈ R n : x * , y -x ≤ ϕ(y) -ϕ(x) ∀y ∈ R n }.
We set ∂ϕ(x) = ∅ if x / ∈ dom ϕ. The notation prox ϕ denotes the proximal mapping of the function ϕ (see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]). That is,

prox ϕ (x) = argmin{ϕ(y) + 1 2 y -x 2 : y ∈ R n }. A function ϕ : R n → R ∪ {+∞} is called p-unformly convex with parameter µ, for some µ ≥ 0, p ≥ 2, or called (µ, p)-uniformly convex if for all x, y ∈ R n , λ ∈ [0, 1] one has ϕ(λx + (1 -λ)y) ≤ λϕ(x) + (1 -λ)ϕ(y) - µ p λ(1 -λ) x -y p .
When p = 2, the function ϕ is called strongly convex (with parameter µ.) Note that if ϕ is (µ, p)-uniformly convex, then for all x, y ∈ R n , all x * ∈ ∂ϕ(x), one has

x * , y -x ≤ ϕ(y) -ϕ(x) - µ p y -x p . (3) 
For a function f which is differentiable on a convex set Ω ⊆ R n such that the gradient of this function ∇f is L -Lipschitz on Ω, the well-known inequality (see e.g., [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]) is useful in the sequel.

f (y) ≤ f (x) + ∇f (x), y -x + L 2 y -x 2 , ∀x, y ∈ Ω. (4) 
2 Generalized Nesterov's Algorithm and convergence rates

Algorithm

Firstly we introduce the following notion of support functions of a convex function at a point.

Definition 1 For a convex function Φ : R n → R ∪ {+∞} and a point z ∈ R n . A convex function Ψ z := Ψ z,Φ : R n → R ∪ {+∞} is called a lower support function to Φ at z if Ψ z ≤ Φ and Ψ z (z) = Φ(z).
Obviously, the usual two lower support functions of a convex function Φ, at a point z : the first is itself Φ, and the second is the linear function

Ψ z (x) := Φ(z) + z * , x -z , x ∈ R n , where z * ∈ ∂Φ(z), when Φ is subdifferentiable at z.
In what follows we make use of the following assumptions:

(A1) The optimal solution set of problem (1) is nonempty.

(A2) The function Φ : R n → R ∪ {+∞} is proper lower semicontinuous convex; the function f : R n → R is a differentiable convex function such that its gradient ∇f is L-Lipschitz (for some L > 0) on dom Φ.

Pick parameters C, κ, µ ≥ 0; a sequence of positive reals {α k }, and two sequences of nonnegative reals {β k } and {γ k }. Assume that the sequences {α k }, {β k } verify the condition

A k := k i=0 α k ≥ B k := k i=0 β k , for all k ∈ N. (5) 
Pick a strongly convex function h : R n → R with a strong convexity parameter ρ > 0, which has a minimizer at y 0 ∈ dom Φ. Without loss of generality, we can assume h(y 0 ) = 0. Then one has

h(x) ≥ ρ 2 x -y 0 2 , for all x ∈ R n . ( 6 
)
The algorithm is stated in the following scheme.

Algorithm 1: Generalized Nesterov's accelerated proximal gradient algorithm (GAPGA) Initialization: Initial data: y 0 as in [START_REF] Bubbeck | A geometric alternative to Nesterov's accelerated gradient descent[END_REF]. Set k = 0. Repeat: For k = 0, 1, ...,

Find

x k = argmin Φ(y) + ∇f (y k ), y -y k + 1 2κ y -y k 2 : y ∈ R n = prox κΦ (y k -κ∇f (y k )) . (7) 2. 
Find

z k = argmin x∈R n {Ch(x) + k-1 i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ zi (x) + 1 2 µγ i x -y i 2 ] + α k [f (y k ) + ∇f (y k ), x -y k + Φ(x) + 1 2 µγ k x -y k 2 ]} (8) 3. Set Ψ z k is a support function to Φ at z k such that min x∈R n {Ch(x) + k-1 i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ zi (x) + 1 2 µγ i x -y i 2 ] +α k [f (y k ) + ∇f (y k ), x -y k + Φ(x) + 1 2 µγ k x -y k 2 ]} = min x∈R n {Ch(x) + k i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ zi (x) + 1 2 µγ i x -y i 2 ]}. (9) 4. Set τ k := α k+1 A k+1 -B k , y k+1 = τ k z k + (1 -τ k )x k .
Remark 1.

(i). In Nesterov's original accelerated schemes ( [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF]), τ k := α k+1 A k+1 . which is a particular case of Algorithm 1 with β k := 0, k ∈ N.

(ii). In Step 3 of Algorithm 1, we can take Ψ z k = Φ. If we set Ψ z k = Φ, for all k ∈ N, Algorithm 1 gives a generalized variant of Nesterov's accelerated dual averaging algorithm. An another way to choose Ψ z k is as follows. As in Step 2, z k is a minimizer of the convex function in the right hand of (8), then there is

z * k ∈ ∂Φ(z k ) such that 0 ∈ C∂h(z k )+ k-1 i=0 α i [∇f (y i )+∂Ψ zi (z k )]+α k [∇f (y k )+z * k ]+µ k i=0 α i γ i (z i -y i ).
(10) Then the support function

Ψ z k (x) := z * k , x -z k + Φ(z k ), x ∈ R n , (11) 
verify condition (9) in step 3.

Especially, when h(x) := 1 2 x-y 0 2 , and for all k ∈ N, the support function Ψ z k is defined by [START_REF] Kim | Optimized first-order methods for smooth convex minimization[END_REF] for all k ∈ N, then in view of [START_REF] Goldstein | Convex programming in Hilbert spaces[END_REF] for k and (k + 1), one has, for all k ∈ N, for some z * k+1 ∈ ∂Φ(z k+1 ),

0 ∈ (C + µα k+1 γ k+1 )z k+1 -(C + µα k γ k )z k +µα k γ k y k -α k+1 γ k+1 y k+1 + α k+1 [z * k+1 + ∇f (y k+1 )].
Thus equivalently,

z k+1 = prox α k+1 C+µα k+1 γ k+1 Φ 1 C+µα k+1 γ k+1 W k+1 ; W k+1 := (C + µα k γ k )z k -µα k γ k y k + α k+1 γ k+1 y k+1 -α k+1 ∇f (y k+1 ). (12) 
In particular, when µ = 0, the sequence {z k } is defined recurrently by

z k+1 = prox α k+1 C Φ z k - α k+1 C ∇f (y k+1 ) . ( 13 
)
This is exactly the (accelerated) scheme of the proximal gradient methods.

Convergence

The following theorem gives an estimate for function values f (x k ) + Φ(x k ), and it is crucial to derive the subsequent convergence rates. Let us introduce the functions F k , G k by respectively,

F k (x) = Ch(x) + k-1 i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ zi (x) + 1 2 µγ i x -y i 2 ] +α k [f (y k ) + ∇f (y k ), x -y k + Φ(x) + 1 2 µγ k x -y k 2 ], x ∈ R n . ( 14 
)
G k (x) = Ch(x) + k i=0 α i [f (y i ) + ∇f (y i ), x -y i + Ψ zi (x) + 1 2 µγ i x -y i 2 ]. ( 15 
)
Theorem 1 Let {x k } and {y k } be sequences generated by Algorithm 1. Suppose that κ ≤ 1/L and the sequences {α k }, {β k } and {γ k } satisfy the condition

Cρ + µ k-1 i=0 α i γ i (A k -B k-1 ) ≥ α 2 k /κ, for all k ∈ N. (16) 
Then one has for all k ∈ N,

k i=0 β i [f (x i ) + Φ(x i )] + (A k -B k )[f (x k ) + Φ(x k )] + 1 2 (1/κ -L) k i=0 (A i -B i-1 ) x i -y i 2 ≤ min x∈R n F k (x). ( 17 
)
where, we set

B -1 = 0. Moreover, if f is µ-strong convex, then (17) holds if γ k = 1, k ∈ N, and the sequences {α k }, {β k } verifying the condition Cρ + µ k-1 i=0 α i (A k -B k-1 ) ≥ α 2 k (κ -1 -µ), for all k ∈ N. (18) 
Proof. We prove ( 17) by induction on k ∈ N. For k = 0, one has

min x∈R n F 0 (x) = min Ch(x) + α 0 [f (y 0 ) + ∇f (y 0 ), x -y 0 + Φ(x) + µγ 0 x -y 0 2 ] : x ∈ R n ≥ α 0 min 1 2 (Cρ + α 0 µγ 0 )α -1 0 x -y 0 2 + f (y 0 ) + ∇f (y 0 ), x -y 0 + Φ(x) : x ∈ R n by (16) ≥ α 0 min 1 2κ x -y 0 2 + f (y 0 ) + ∇f (y 0 ), x -y 0 + Φ(x) : x ∈ R n = α 0 1 2κ x 0 -y 0 2 + f (y 0 ) + ∇f (y 0 ), x 0 -y 0 + Φ(x 0 ) by (4) ≥ 1 2 (κ -1 -L)α 0 x 0 -y 0 2 + α 0 [f (x 0 ) + Φ(x 0 )].
That is, [START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF] holds for k = 0. Suppose that (17) holds for some k ∈ N.

We shall show that (17) holds for k + 1. Since F k attains minimum at

z k ; min x∈R n G k (x) = F k (z k ) = min x∈R n F k (x)
and G k is strongly convex with parameter s k := Cρ + µ k i=0 α i γ i , by using the induction assumption, one has for

x ∈ R n , F k+1 (x) = G k (x) + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x) + 1 2 µγ k+1 x -y k+1 2 ] ≥ min x∈R n G k (x) + 1 2 s k x -z k 2 + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + 1 2 µγ k+1 x -y k+1 2 + Φ(x)] = min x∈R n F k (x) + 1 2 s k x -z k 2 + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + 1 2 µγ k+1 x -y k+1 2 + Φ(x)] ≥ k i=0 β i [f (x i ) + Φ(x i )] + (A k -B k )[f (x k ) + Φ(x k )] + 1 2 (1/κ -L) k i=0 (A i -B i-1 ) x i -y i 2 + 1 2 s k x -z k 2 + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + 1 2 µ x -y k+1 2 + Φ(x)]. (19) By the convexity of f and Φ, f (x k ) ≥ f (y k+1 ) + ∇f (y k+1 ), x k -y k+1 , (20) 
and

(A k -B k )Φ(x k ) + α k+1 Φ(x) ≥ (A k+1 -B k )Φ(τ k x + (1 -τ k )x k ). (21) 
Hence, for all x ∈ R n ,

(A k -B k )[f (x k ) + Φ(x k )] + 1 2 s k x -z k 2 + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x)] ≥ (A k+1 -B k )[f (y k+1 ) + 1 2 s k (A k+1 -B k ) -1 x -z k 2 +τ k ∇f (y k+1 ), x -z k + Φ(τ k x + (1 -τ k )x k )]. (22) By setting y := τ k x+(1-τ k )x k , and in view of (16), s k (A k+1 -B k ) -1 ≥ τ 2 k κ -1 , the preceding relation implies (A k -B k )[f (x k ) + Φ(x k )] + 1 2 s k x -z k 2 + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + Φ(x)] ≥ (A k+1 -B k )[f (y k+1 ) + 1 2 κ -1 τ 2 k x -z k 2 + τ k ∇f (y k+1 ), x -z k + Φ(y)] = (A k+1 -B k )[f (y k+1 ) + 1 2 κ -1 y -y k+1 2 + ∇f (y k+1 ), y -y k+1 + Φ(y)] by (7) ≥ (A k+1 -B k )[f (y k+1 ) + 1 2 κ -1 x k+1 -y k+1 2 + ∇f (y k+1 ), x k+1 -y k+1 + Φ(x k+1 )] by (4) ≥ (A k+1 -B k )[ 1 2 (κ -1 -L) x k+1 -y k+1 2 + f (x k+1 ) + Φ(x k+1 )].
(23) This estimate together with [START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF] yield

min x∈R n F k+1 (x) ≥ k i=0 β i [f (x i ) + Φ(x i )] + 1 2 (κ -1 -L) k i=0 (A i -B i-1 ) x i -y i 2 +(A k+1 -B k )[ 1 2 (κ -1 -L) x k+1 -y k+1 2 + f (x k+1 ) + Φ(x k+1 )] = k+1 i=0 β i [f (x i ) + Φ(x i )] + (A k+1 -B k+1 )[f (x k+1 ) + Φ(x k+1 )] + 1 2 (κ -1 -L) k+1 i=0 (A i -B i-1 ) x i -y i 2 .
That is, (17) holds for k + 1, and it completes the proof of the first part.

Suppose now f is µ-strong convex and

γ k = 1, k ∈ N.
The proof is the same as above, just a different point is as follows. Instead of [START_REF] Opial | Weak convergence of the sequence of successive approximations of nonexpansive mappings[END_REF], by the strongly convexity of f with parameter µ,

f (x k ) ≥ f (y k+1 ) + ∇f (y k+1 ), x k -y k+1 + 1 2 µ x k -y k+1 2 . ( 24 
)
By using this and the inequality

(A k -B k ) x k -y k+1 2 + α k+1 x -y k+1 2 ≥ (A k+1 -B k ) x + (1 -τ k )x k -y k+1 2 = (A k+1 -B k )τ 2 k x -z k 2 , estimate (22) is now changed to (A k -B k )[f (x k ) + Φ(x k )] + 1 2 s k x -z k 2 + α k+1 [f (y k+1 ) + ∇f (y k+1 ), x -y k+1 + 1 2 µ x -y k+1 2 + Φ(x)] ≥ (A k+1 -B k )[f (y k+1 + 1 2 s k (A k+1 -B k ) -1 x -z k 2 +τ k ∇f (y k+1 ), x -z k + Φ(τ k x + (1 -τ k )x k )] +µ[(A k -B k ) x k -y k+1 2 + α k+1 x -y k+1 2 ] ≥ (A k+1 -B k )[f (y k+1 ) + 1 2 [s k (A k+1 -B k ) -1 + µτ 2 k ] x -z k 2 +τ k ∇f (y k+1 ), x -z k + Φ(τ k x + (1 -τ k )x k )] by (18) ≥ (A k+1 -B k )[f (y k+1 ) + 1 2κ τ 2 k x -z k 2 +τ k ∇f (y k+1 ), x -z k + Φ(τ k x + (1 -τ k )x k )], (25) 
where

s k := Cρ + µ k i=0 α i = Cρ + µA k .
The remain estimates are the same as before, by using (25) instead of (22), and condition [START_REF] Nesterov | Universal Gradient methods for convex optimization problems[END_REF].

Corollary 1 In Algorithm 1, pick α k = k; β k = k/2; µ = 0, and C, κ > 0 such that Cρ ≥ κ -1 ≥ L. Then condition ( 16) is satisfied, and therefore for a minimizer x * of problem (1), one has

1 2 k i=0 i[f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] + 1 4 k(k + 1)[f (x k ) + Φ(x k ) -f (x * ) -Φ(x * )] + 1 8 (1/κ -L) k i=0 i(3i -1) x i -y i 2 ≤ Ch(x * ). ( 26 
)
As a result,

lim k→∞ min i=[k/2],...,k k 2 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] = 0, ( 27 
)
where

[k/2] stands for the integer part of k/2. Therefore if {f (x k ) + Φ(x k )} is a decreasing sequence, then lim k→∞ k 2 [f (x k ) + Φ(x k ) -f (x * ) -Φ(x * )] = 0. ( 28 
)
Proof. By checking directly, we see that ( 16) is satisfied for [START_REF] Nesterov | Gradient methods for minimization composite objective functions[END_REF], then using the convexity of f, we obtain (26). This relation implies

α k = k, β k = k/2, µ = 0, and Cρ ≥ κ -1 ≥ L. Hence, by set x = x * in
∞ i=0 i[f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] < +∞. Therefore lim k→∞ k i=[k/2] i[f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] = 0. One has k i=[k/2] i[f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] ≥ min i=[k/2],...,k k 2 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] k i=[k/2] i k 2 ≥ min i=[k/2],...,k k 2 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] k(3k+2) 8k 2 ≥ 3 8 min i=[k/2],...,k k 2 [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )],
which shows (27).

We consider the case where f is p-uniformly convex, p > 2, with parameter µ, or called (µ, p)-unformly convex.

Corollary 2 Let f is (µ, p)-uniformly convex with p > 2, µ > 0. Let 0 < κ ≤ L -1 , and C, ρ, m > 0 such that mµκ ≥ 2 4 p-2 8p (p-2) 2 if 2 < p < 6, 8p (p-2) 2 if p ≥ 6;
(29)

Cρ ≥ κ -1 if 2 < p < 6, p-2 4 mµ if p ≥ 6. (30) 
In Algorithm 1, set α k = k p+2 p-2 , β k = 0, and γ 0 = 0, γ k = mk -2 for k ≥ 1. Then ( 16) is satisfied and for x * being a minimizer of f + Φ, and therefore one has for all k ∈ N,

f (x k )+Φ(x k )-f (x * )-Φ(x * ) ≤ 2p p -2 (Ch(x * )+ 1 2 (p/2) 2 p-2 m p p-2 (ln k+1)k -2p p-2 .
(31)

Proof. By using the inequalities

k i=1 i α ≥ k-1 i=0 i+1 i x α dx = 1 α + 1 k α+1 , ( 32 
) if α > 0 and if -1 < α ≤ 0, k i=1 i α ≥ k i=1 i+1 i x α dx = 1 α + 1 [(k + 1) α+1 -1], (33) 
one has for k ≥ 1,

(Cρ + µ k-1 i=0 α i γ i )A k ≥ p -2 2p k 2p p-2 [Cρ + p -2 4 mµ(k -1) 4 p-2 ],
if 2 < p < 6, and if p ≥ 6,

(Cρ + µ k-1 i=0 α i γ i )A k ≥ p -2 2p k 2p p-2 [Cρ + p -2 4 mµ(k 4 p-2 -1)].
By virtue of these two inequalities, it is easy to check directly the valid of [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF].

For k ∈ N * , let define

J k := i ∈ {1, ..., k} : y k -x * ≤ (mp/2) 1 p-2 k -2 p-2 .
Then

i∈J k α i γ i y i -x * 2 ≤ (p/2) 2 p-2 m p p-2 k i=1 i 6-p p-2 i -4 p-2 = (p/2) 2 p-2 m p p-2 k i=1 i -1 ≤ (p/2) 2 p-2 m p p-2 (ln k + 1), ( 34 
)
where the last inequality follows from the one

k i=1 i -1 ≤ 1 + k i=2 i i-1
x -1 dx = 1 + ln k.

For i ∈ {1, ..., k} \ J k , then y k -x * > (mp/2) 1 p-2 k -2 p-2 , therefore 1 
p α i y i -x * p = 1 p α i y i -x * p-2 y i -x * 2 ≥ 1 p α i (mp/2)k -2 y i -x * 2 = 1 2 α i γ i y i -x * 2 . ( 35 
)
From the latter two relations, in view of ( 17), setting x = x * , we derive that the following estimate

A k [f (x k ) + Φ(x k )] ≤ F k (x * ) ≤ Ch(x * ) + k-1 i=0 α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + 1 2 µγ i x * -y i 2 ] ≤ Ch(x * ) + j∈J k 1 2 µα i γ i x * -y i 2 + i∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * )] + k i=0, i / ∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + 1 2 µγ i x * -y i 2 ] ≤ Ch(x * ) + 1 2 (p/2) 2 p-2 m p p-2 (ln k + 1) + i∈J k α i [f (x * ) + Φ(x * )] + k i=0, i / ∈J k α i [f (y i ) + ∇f (y i ), x * -y i + Φ(x * ) + 1 p µ x * -y i p ] by (3) ≤ Ch(x * ) + 1 2 (p/2) 2 p-2 m p p-2 (ln k + 1) + i∈J k α i [f (x * ) + Φ(x * )] + k i=0, i / ∈J k [f (x * ) + Φ(x * )] ≤ Ch(x * ) + 1 2 (p/2) 2 p-2 m p p-2 (ln k + 1) + A k [f (x * ) + Φ(x * )].
By noting from (32) that

A k = k i=1 k p+2 p-2 ≥ k 2p p-2 ,
one has (31) and the proof is completed.

Next we consider the case where f is µ-strongly convex for µ > 0. For sequences α k := q k (for some q > 1) and β k = 0, k ∈ N, relation [START_REF] Nesterov | Universal Gradient methods for convex optimization problems[END_REF] becomes

Cρ + µ q k -1 q -1 q k+1 -1 q -1 ≥ q 2k (κ -1 -µ), ∀k ∈ N.
Equivalently,

µ q 2k+1 (q -1) 2 + Cρ q k+1 -1 q -1 -µ q k+1 -1 (q -1) 2 ≥ q 2k (κ -1 -µ), ∀k ∈ N.
If we take C > 0 such that Cρ(q -1) -µ ≥ 0 as well as

Cρ q k+1 -1 q -1 -µ q k+1 -1 (q -1) 2 ≥ (Cρ(q -1) -µ) q k+1 -1 (q -1) 2 ≥ 0 ∀k ∈ N.
Then, relation [START_REF] Nesterov | Universal Gradient methods for convex optimization problems[END_REF] holds if

µ q 2k+1 (q -1) 2 ≥ q 2k (κ -1 -µ), ∀k ∈ N, equivalently µq (q -1) 2 ≥ κ -1 -µ.
Hence in summary, [START_REF] Nesterov | Universal Gradient methods for convex optimization problems[END_REF] holds for α k = q k , β k = 0 with

q = 2κ -1 -µ + 4κ -1 µ -3µ 2 2(κ -1 -µ) and Cρ ≥ µ q -1 . ( 36 
)
So one obtains the following corollary for the linear convergence of Algorithm 1 in the case of strong convexity.

Corollary 3 Let f is µ-strongly convex for some µ > 0, and let q, C such as (36). Then for the sequence {x k } generated by Algorithm 1 with sequences α k := q k , β k = 0, and γ k = 1, k ∈ N, and a minimizer x * of problem ( 1), one has

f (x k ) + Φ(x k ) -f (x * ) -Φ(x * ) ≤ (q -1)Ch(x * ) q k+1 -1 , for all k ∈ N. (37) 
Proof. Relation (37) follows directly from ( 17) by noticing that as f is µ-strongly convex, for all i = 1, ..., k,

f (y i ) + ∇f (y i ), x -y i + µ x -y i 2 ≤ f (x), ∀x ∈ R n , therefore, F k (x) ≤ Ch(x) + A k (f (x) + Φ(x)), for all x ∈ R n .
Note that the linear convergence of the standard gradient method and Nesterov's accelerated schemes in the case of strongly convexity was well established in the literature (see e.g., [START_REF] Nesterov | Introductory Lectures on Convex Optimization: Basis course[END_REF]). Alternatively, in the papers [START_REF] Bubbeck | A geometric alternative to Nesterov's accelerated gradient descent[END_REF][START_REF] Drusvyatskiy | An optimal first order method based on optimal quadratic averaging[END_REF], some geometric descent methods with linear convergence rates for minimizing smooth strongly convex functions have been proposed. Then in [START_REF] Ma | Geometric Descent Method for Convex Composite Minimization[END_REF], this method has been generalized for convex composite minimization of the form (1). More recently, some results on the linear convergence of several first-order methods for smooth convex optimization problems in which the objective function is not necessarily strongly convex, have been derived in [START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF].

Generalized accelerated forward-backward algorithm

In [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF], the authors have considered the following accelerated forward-backward scheme for solving (1):

y k = x k + k-1 k+α-1 (x k -x k-1 ), x k+1 = prox κΦ (y k -κ∇f (y k )), (38) 
where α > 0, κ > 0. The authors have established the rate of convergence of order o(1/k 2 ) when α > 3 and κ ≤ 1/L, when ∇f is assumed to be L-Lipschitz on the whole space R n . By considering the operator G κ : R n → R n , defined by

G κ (y) = 1 κ [y -prox κΦ (y -κ∇f (y))], y ∈ R n ,
and setting

z k = k + α -1 α -1 y k - k α -1 x k ,
then we can rewrite the scheme (38) as follows.

   z k+1 = z k -κ(k+α-1) α-1 G κ (y k ), y k = α-1 k+α-1 z k + k k+α-1 x k , x k+1 = prox κΦ (y -κ∇f (y k )). (39)
Obviously, the sequence {z k } in the scheme (39) can be represented equivalently

z k+1 = argmin x∈R n 1 2κ x 2 + k i=0 α i G κ (y i ), x ,
where

α i = i+α-1 α-1 , for i ∈ N.
In view of this representation, we propose the generalized accelerated forward-backward algorithm: Given a ρ-strongly convex function h : R n → R (ρ > 0) as before; parameters C, µ > 0, 0 < κ ≤ 1/L, and a sequence of positive reals {α k }; sequences of nonnegative reals {β k }, and {γ k } as in Section 2. Set

A k = k i=0 α k , B k = k i=0 β k ,
and also assume that A k ≥ B k for all k ∈ N, and denote A -1 = B -1 = 0.

In this section, in assumption (A2), instead of the L-Lipschitz continuity of ∇f on dom Φ, we assume that (H) The gradient ∇f is L-Lipschitz on the whole space R n .

Algorithm 2: Generalized accelerated forward-backward algorithm (GAFBA) Initialization: Initial data: x 0 = z 0 = y 0 ∈ R n , with y 0 as in [START_REF] Bubbeck | A geometric alternative to Nesterov's accelerated gradient descent[END_REF]. Set k = 0.

Repeat: For k = 0, 1, ...,

1. Set τ k := α k A k -B k-1 , y k = τ k z k + (1 -τ k )x k . 2. Find x k+1 = prox κΦ (y k -κ∇f (y k )). ( 40 
) 4. Set G κ (y k ) = 1 κ [y k -prox κΦ (y k -κ∇f (y k ))] = 1 κ (y k -x k+1 ).
3. Find

z k+1 = argmin{Ch(x) + k i=0 α i [ G κ (y i ), x -y i + 1 2 µγ i x -y i 2 ] : x ∈ R n } (41)
By a straightforward computation, scheme (38) with α > 3, is a particular case of Algorithm 2 with h(x) = 1 2 x 2 , C = κ -1 , µ = 0 and

α k = k + α -1 α -1 , β k = (α -3)(2k + 1) 2(α -1) 2 + 2α -5, k ∈ N. ( 42 
)
Let us introduce the following functions E k , k ∈ N, which plays a role of an "estimating function" for Algorithm 2, as the one of the functions F k for Algorithm 1.

E k (x) = Ch(x)+ k i=0 α i [f (x i+1 )+Φ(x k+1 )+ G κ (y i ), x-y i + κ 2 G κ (y i ) 2 + 1 2 µγ i x-y i 2 ].
(43) The following property of the operator G κ (see e.g., [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF][START_REF] Beck | A fast iterative shinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Parikh | Proximal algorithms[END_REF]) plays a key role in the proof of the convergence result,

(f + Φ)(y -κG κ (y)) + G κ (y), x -y ≤ (f + Φ)(x) - κ 2 G κ (y) 2 , ∀x, y ∈ R n .
(44) More generally, either f or Φ is (µ, p)-uniformly convex for some µ ≥ 0, p ≥ 2, one has Lemma 1 Suppose f : R n → R is constinuously differentiable with L-Lipschitz continuous gradient on R n and 0 < κ ≤ 1/L. then for ȳ = y -κG κ (y) = prox κΦ (y -κ∇f (y)), one has

(i) If f is (µ, p)-uniformly convex, then (f +Φ)(ȳ)+ G κ (y), x-y + µ p x-y p ≤ (f +Φ)(x)- κ 2 G κ (y) 2 , ∀x, y ∈ R n . ( 45 
) (ii) If Φ is (µ, p)-uniformly convex, then (f +Φ)(ȳ)+ G κ (y), x-y + µ p x-ȳ p ≤ (f +Φ)(x)- κ 2 G κ (y) 2 , ∀x, y ∈ R n . (46) 
Proof. As ȳ = prox κΦ (y-κ∇f (y)) = argmin{Φ(x)+ ∇f (y), x-y

+ 1 2κ x-y 2 : x ∈ R n }, one has -κ -1 (ȳ -y) -∇f (y) ∈ ∂Φ(ȳ). (47) 
Firstly for part (i), this relation implies

-κ -1 (ȳ -y) -∇f (y), x -ȳ ≤ Φ(x) -Φ(ȳ), ∀x ∈ R n .
Equivalently, for x ∈ R n ,

(f + Φ)(ȳ) + G κ (y), x -y + κ 2 G κ (y) 2 ≤ Φ(x) + [f (y) + ∇f (y), x -y ] + [f (ȳ) -f (y) -∇f (y), ȳ -y -1 2κ ȳ -y 2 ]. Relation (45) follows directly from this relation, since f is (µ, p)-uniformly convex, f (y) + ∇f (y), x -y ≤ f (x) - µ p x -y p ,
and as ∇f is L-Lipschitz continuous,

f (ȳ) -f (y) -∇f (y), ȳ -y - 1 2κ ȳ -y 2 ≤ 0. For (ii), Φ is (µ, p)-uniformly convex, (47) implies -κ -1 (ȳ -y) -∇f (y), x -ȳ ≤ Φ(x) -Φ(ȳ) - µ p x -ȳ 2 , ∀x ∈ R n ,
and as before, equivalently,

(f + Φ)(ȳ) + G κ (y), x -y + κ 2 G κ (y) 2 ≤ Φ(x) -µ p x -ȳ 2 + [f (y) + ∇f (y), x -y ] +[f (ȳ) -f (y) -∇f (y), ȳ -y -κ 2 ȳ -y 2 ]
, which implies (46) by the convexity of f , as well as the L-Lipschitz continuity of ∇f.

We are now ready to state the convergence result of Algorithm 2.

Theorem 2 Let {x k } be the sequences defined by Algorithm 2. Suppose that κ ≤ 1/L and the sequences {α k }, {β k } and {γ k } satisfy the condition (16) in Theorem 1. Then for all k ∈ N,

k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )] ≤ min x∈R n E k (x). ( 48 
)
where, we set As results, for a minimizer x * of problem (1), one has (i) For µ = 0, and any two sequences of positive reals {α k } and

B -1 = 0. Moreover, if f is µ-strong convex, then (48) holds if γ k = 1, k ∈ N,
{β k } with α k ≥ β k for k ∈ N and 0 < lim inf k→∞ β k k ≤ lim sup k→∞ α k k < +∞, lim sup k→∞ β k α k < 1,
then we can find C 0 > 0 satisfying the condition

C 0 ρ(A k -B k-1 ) ≥ α k κ -1 , ∀k ∈ N, (49) 
and therefore for all C ≥ C 0 , for the sequence {x k } generated by Algorithm 2, one has

lim k→∞ k 2 min i=[k/2],...,k [f (x i ) + Φ(x i ) -f (x * ) -Φ(x * )] = 0.
(ii) Suppose that f is (µ, p)-uniformly convex with µ > 0, p > 2. Then with the same conditions as in Corollary 2, one has

f (x k ) + Φ(x k ) -f (x * ) -Φ(x * ) = O ln k k 2p/(p-2) .
(iii) If f is µ-strongly convex, then with q > 1 C > 0 as in Corollary 3, and the sequences α k = q k , β k = 0 and γ k = 1, for k ∈ N, one has

f (x k ) + Φ(x k ) -f (x * ) -Φ(x * ) = O q -k .
Proof. Similarly to the proof of Theorem 1, we prove (48) by induction on k ∈ N. For k = 0, since Cρ + α 0 µγ 0 ≥ κ -1 , one has

E 0 (x) = Ch(x) + α 0 [f (x 1 ) + Φ(x 1 ) + G κ (y 0 ), x -y 0 + κ 2 G κ (y 0 ) 2 + 1 2 µγ 0 x -y 0 2 ] ≥ 1 2 (Cρ + α 0 µγ 0 ) x -y 0 2 + α 0 [f (x 1 ) + Φ(x 1 ) + G κ (y 0 ), x -y 0 + κ 2 G κ (y 0 ) 2 ] ≥ α 0 (f (x 1 ) + Φ(x 1 ) + κ 2 [κ -1 (x -y 0 ) -G κ (y 0 )] 2 ≥ α 0 (f (x 1 ) + Φ(x 1 )),
for all x ∈ R n , showing (48) holds for k = 0. Assuming (48) holds for k -1 ∈ N, we will show that it holds for k. As

z k = argmin x∈R n E k-1 (x), since E k-1 is (Cρ + µ k-1 i=0 α i γ i )-strongly convex, one has E k-1 (x) ≥ min x∈R n E k-1 (x) + s k-1 2 x -z k 2 , for x ∈ R n , where s k-1 = Cρ + µ k-1 i=0 α i γ i , which implies E k (x) = E k-1 (x) + α k [f (x k+1 ) + Φ(x k+1 ) + G κ (y k ), x -y k + κ 2 G κ (y k ) 2 + 1 2 µγ k x -y k 2 ] ≥ k-1 i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k-1 -B k-1 )[f (x k ) + Φ(x k )] + s k-1 2 x -z k 2 +α k [f (x k+1 ) + Φ(x k+1 ) + G κ (y k ), x -y k + κ 2 G κ (y k ) 2 + 1 2 µγ k x -y k 2 ] (50) In view of inequality (44), noticing x k+1 = y k -κG κ (y k ), f (x k ) + Φ(x k ) ≥ f (x k+1 ) + Φ(x k+1 ) + G κ (y k ), x k -y k + κ 2 G κ (y k ) 2 ,
therefore (50) implies

E k (x) ≥ k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )] +(A k -B k-1 )[ s k-1 2(A k -B k-1 ) x -z k 2 + G κ (y k ), τ k x + (1 -τ k )x k -y k + κ 2 G κ (y k ) 2 ] by (16) ≥ k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )] +(A k -B k-1 )[ κ -1 τ 2 k 2 x -z k 2 + τ k G κ (y k ), x -z k + κ 2 G κ (y k ) 2 ] = k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )] + κ 2 κ -1 τ k (x -z k ) -G κ (y k ) 2 ≥ k i=0 β i [f (x i+1 ) + Φ(x i+1 )] + (A k -B k )[f (x k+1 ) + Φ(x k+1 )],
showing (48) holds for k.

For (i), with the assumptions on {α k }, {β k }, there are 0 < η 1 < η 2 < η 3 < η 4 and r 1 , r 2 , r 3 , r 4 ∈ R such that for all k sufficiently large, one has

η 1 k + r 1 ≤ β k ≤ η 2 k + r 2 , η 3 k + r 3 ≤ α k ≤ η 4 k + r 4 .
Hence, for k sufficiently large,

A k -B k-1 ≥ η 3 k(k + 1) 2 + kr 3 -η 2 k(k -1) 2 -(k -1)r 2 = O(k 2 ),
and

α 2 k ≤ (η 4 k + r 4 ) 2 = O(k 2
), so we can find out C 0 > 0 such that

C 0 ρ(A k -B k-1 ) ≥ α 2 k κ -1 .
That is, condition ( 16) is satisfied for all C ≥ C 0 . Next by inequality (44), for x * being a minimizer of problem (1), one has

E k (x * ) = Ch(x * ) + k i=0 α i [f (x i+1 ) + Φ(x k+1 ) + G κ (y i ), x * -y i + κ 2 G κ (y i ) 2 ] ≤ Ch(x * ) + A k (f (x * ) + Φ(x * )).
Therefore, (48) implies

∞ i=0 β i (f (x i+1 ) + Φ(x i+1 )) < +∞,
and since β i = O(i) as i → ∞, with the same argument as in the proof Corollary 1, one derives the conclusion of part (i).

For (ii) and (iii), from (48), invoking the inequality (45), with the same arguments as in the proofs of Corollaries 2 and 3, respectively, one derives the desired conclusions Note that for the scheme (38), then ρ = 1; the sequences α k and β k are defined as (42), one has

A k -B k-1 = α 2
k , for all k ∈ N, so we can take C 0 = κ -1 . Generally, we are going to consider Algorithm 2 when h(x) := 1 2 x -y 0 2 , x ∈ R n ; µ = 0, and sequences {α k } and {β k } satisfying the condition

A k -B k-1 = α 2 k , k ∈ N.
In this case, τ k = 1/α k , moreover ( 16) is verified for C := κ -1 , and the formula of z k can be represented equivalently,

z k+1 = z k -κα k G κ (y k ), k ∈ N. (51) 
Hence, recalling y k -x k+1 = κG κ (y k ), and

z k = (y k -(1 -τ k )x k )τ -1
k , y k+1 can be rewritten as

y k+1 = τ k+1 z k+1 + (1 -τ k+1 )x k+1 = τ k+1 [(y k -(1 -τ k )x k )τ -1 k -α k (y k -x k+1 )] + (1 -τ k+1 )x k+1 = x k+1 + τ k+1 (1-τ k ) τ k (x k+1 -x k ) = x k+1 + α k -1 α k+1 (x k+1 -x k )
Thus Algorithm 2 can be rewritten simply in the following scheme generalizing (38):

y k = x k + α k-1 -1 α k (x k -x k-1 ), x k+1 = prox κΦ (y k -κ∇f (y k )). ( 52 
)
For this scheme, we establish the following convergence result which generalizes Theorems 1 and 3 in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF].

Theorem 3 Let {α k }, {β k } be sequences of positive reals such that for some

0 < c 1 , c 2 < 1, c 1 α k ≤ β k ≤ c 2 α k , A k -B k-1 = α 2 k , k ∈ N. (53) 
Consider Algorithm 2 with h(x) := 1 2 x -y 0 2 ; C = κ -1 ≥ L, and µ = 0, or equivalently the scheme (52). Then one has

lim k→∞ k 2 [f (x k )+Φ(x k )-f (x * )-Φ(x * )] = 0 and lim k→∞ k x k+1 -x k = 0, (54) that is, f (x k ) + Φ(x k ) -f (x * ) -Φ(x * ) = o(k -2 ) and x k+1 -x k = o(k -1 )
, where x * is a minimizer of problem [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF]. Moreover, the whole sequence {x k } converges to a minimizer of problem [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF].

The following lemma is needed.

Lemma 2 Suppose that sequences of positive reals {α k }, {β k } satisfy (53). Then {α k } is an increasing sequence and there are 0 < a 1 < a 2 , and b > 0 such that

a 1 k ≤ α k ≤ a 2 k + b, for all k ∈ N. Proof. Since α k > 0 and A k -B k-1 = α 2 k , α k = 1 2 (1 + 1 + 4(A k-1 -B k-1 )), k ∈ N. As 0 ≤ B k-1 ≤ c 2 A k-1 , it implies that 1 2 (1 -c 2 )A k-1 ≤ α k ≤ 1 2 (1 + 1 + 4A k-1 ), k ∈ N.
We prove the lemma by induction. Pick

0 < a 1 < min{α 1 , α 2 /2, (1-c 2 )/3} and b ≥ max{α 0 , α 1 , α 2 , 16}, a 2 > 2b.
Obviously, (2) holds for k = 0, 1, 2. Assume that (2) holds for k -1 ≥ 2. Then

a 1 k(k-1) 2 ≤ A k-1 ≤ a 2 k(k-1) 2 + bk, therefore, (1 -c 2 )a 1 k(k -1)/2 ≤ α k ≤ 1 2 (1 + 1 + 4(a 2 k(k -1)/2 + bk)).
As

a 1 ≤ (1 -c 2 )/3, (1 -c 2 )a 1 k(k -1)/2 ≥ a 2 1 k 2 , so one has α k ≥ a 1 k.
On the other hand, by making use of the inequality

1 2 (1 + √ 1 + x) ≤ √ x, for x ≥ 16, one derives α k ≤ 1 2 (1 + 1 + 4(a 2 k(k -1)/2 + bk)) ≤ 2 a 2 k(k -1)/2 + bk ≤ 2 √ a 2 k 2 ≤ a 2 k ≤ a 2 k + b.
That is (2) holds for k, so the lemma is proved.

Proof of Theorem 3. Denoting by θ k = f (x k ) + Φ(x k ) -f (x * ) -Φ(x * )(≥ 0), k ∈ N, relation (44) in Theorem 2 (with µ = 0) and (44) imply Equivalently,

k i=0 β i [f (x i+1 ) + Φ(x i+1 ) -f (x * ) -Φ(x * )] +(A k -B k )[f (x k+1 ) + Φ(x k+1 ) -f (x * ) -Φ(x * )] ≤ min x∈R n E k (x) ≤ E k (x * ) ≤ κ -1
θ k+1 + κ -1 2 x k+1 -x k 2 ≤ θ k + κ -1 2 (α k-1 -1) 2 α 2 k x k -x k-1 2 .
Therefore,

α 2 k θ k+1 + κ -1 2 α 2 k x k+1 -x k 2 ≤ α 2 k θ k + κ -1 2 α 2 k-1 x k -x k-1 2 - κ -1 2 (2α k-1 -1) x k -x k-1 2 . By A k -B k-1 = α 2 k , then α 2 k -α 2 k-1 = α k -β k-1
, thus the preceding inequality implies = δ 2a2 > 0, which contradicts the summable property of

α 2 k θ k+1 + κ -1 2 α 2 k x k+1 -x k 2 ≤ α 2 k-1 θ k + κ -1 2 α 2 k-1 x k -x k-1 2 +(α k -β k-1 )θ k -κ -1 2 (2α k-1 -1) x k -x k-1 2 . Since ∞ k=0 (α k -β k-1 )θ k ≤ ∞ k=0 α k θ k < +∞,
∞ k=0 α k (θ k + κ -1 2
x k+1 -x k 2 ). Hence lim k→∞ α 2 k θ k = 0 as well as lim k→∞ α k x k+1 -x k = 0. In view of Lemma 2, one obtains (54).

The proof of the convergence of the sequence {x k } follows the idea in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster O(1/k 2 )[END_REF][START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF], that, by virtue of Opial's Lemma [START_REF] Opial | Weak convergence of the sequence of successive approximations of nonexpansive mappings[END_REF], it suffices to show that for any minimizer x * of (1), lim k→∞ x k -x * 2 exists finitely. Indeed, considering the sequence

z k = x k + (α k-1 -1)(x k -x k-1 ), k ∈ N, one has z k -x * 2 = x k + (α k-1 -1)(x k -x k-1 ) -x * 2 = x k -x * 2 + (α k-1 -1) 2 x k -x k-1 2 + 2(α k-1 -1) x k -x k-1 , x k -x * = [(α k-1 -1) 2 + α k-1 -1] x k -x k-1 2 + b k ,
where,

b k = α k-1 x k -x * 2 -(α k-1 -1) x k-1 -x * 2 .
By Lemma 2, α k = O(k), implying (α k-1 -1) 2 + α k-1 -1 = O(k 2 ). Thus, since lim k→∞ k x k -x k-1 = 0, one has

lim k→∞ [(α k-1 -1) 2 + α k-1 -1] x k -x k-1 2 = 0,

  and the sequences {α k }, {β k } verifying the condition (18) in Theorem 1.

2 x * -y 0 2 + 1 2 y k -x k+1 2 ≤

 2212 A k (f (x * ) + Φ(x * )), which implies immediately ∞ i=0 β i θ i+1 < +∞. Then in view of Lemma 2, ∞ i=0 kθ i+1 < +∞, which follows ∞ i=0 α i θ i+1 < +∞, and ∞ i=0 α i θ i < +∞, as well.Note that y k -x k+1 = κG κ (y k ) and y k -x k = α k-1 -1 α k (x k -x k-1 ), relation (44) gives (f + Φ)(x k+1 ) + κ -1 y k -x k+1 , x k -y k + κ -(f + Φ)(x k ).

  the inequality above yields

		lim k→∞	[α 2 k θ k+1 +	κ -1 2	α 2 k x k+1 -x k	2 ] exists
	as well as					∞
							α k x k+1 -x k	2 < +∞,
						k=0
	and consequently,				
			∞ k=0	α k (θ k +	κ -1 2	x k+1 -x k	2 ) < +∞.
	To complete the proof, we will show that this relation implies
			lim k→∞	[α 2 k θ k+1 +	κ -1 2	α 2 k x k+1 -x k	2 ] = 0.
	Indeed, if this is not the case, then
		lim k→∞	[α 2 k θ k+1 +	κ -1 2	α 2 k x k+1 -x k	2 ] = δ > 0,
	which follows that			
	lim k→∞	k i=[k/2] α k (θ k + κ -1 2	x k+1 -x k	2 ) ≥ lim k→∞	k i=[k/2]	δ α k
	by Lemma 2 ≥	lim k→∞	k i=[k/2]	δ a2k+b ≥ lim k→∞	δ(k-[k/2]) a2k+b
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which follows that the convergence of { z k -x * 2 } is equivalent to the one of {b k }. Thanks to Lemma 1 (for µ = 0),

Using this inequality, and G κ (y k ) = (y k -x k+1 )/κ, it is easy to derive that

By virtue of Lemma 2, there is a constant c > 0, such that

Therefore, the preceding inequality yields immediately

and by

and lim k→∞ k x k -x k-1 = 0, the convergence of { x kx * 2 } follows, and the proof is completed.