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Abstract—This work proposes a highly tunable motion estima-
tion architecture. We implement the Horn and Schunck algorithm
with the hierarchical extension for larger motion estimations
in FPGAs. Different architectures are explored dealing with
interpolation, pipeline, parallelism and arithmetic format, in
order to fit performance. We show in our exploration, how the
different cores of our system should be used to increase the
throughput. Our smallest design achieves a 30.8 Mpixel/s in a
1024 <1024 resolution and the fastest 507 Mpixel/s which is one
of the fastest ever achieved, as far as we know, for FPGAs.

I. INTRODUCTION

A. State-of-the-Art

Optical flow algorithms are used to estimate the velocity
of each pixel between a pair of images. These algorithms are
used in a variety of applications from object detection, motion
compensation, to autonomous driving.

Most of the literature focuses on the accuracy [1], and only
few target embedded systems and address the tradeoffs that one
has to do for a realtime implementation, namely the number of
iterations, the computing format (the number of bits of fixed
or floating point number), and the parallelism.

There are a lot of optical flow algorithms according to their
typically organized according to their computational speed,
accuracy and specific application.

The estimation of the optical flow in real time is a challenging
task because it requires a lot of computation efforts and in the
same time the hardware to remain low. There were a lot of
works in optimizing optical flow algorithms in CPU [2]-[4],
GPU [5]-[7] and FPGAs. Especially for FPGAs, some works
use the Lucas-Kanade (L&K) method with mono-scale and
multi-scale implementations for [8] while [9] remains on the
multi-scale Phase-based algorithm and [10] proposes a lower
frame memory access to reduce external memory interactions.
Finally the works [11]—-[13] implement a Horn and Schunck
optical flow mono-scale algorithm, the first in an iterative mode
and the others also in partial and fully pipelined modes.

B. Horn and Schunck algorithm

The basic scheme of Horn and Shunck (H&S) [14] is an
iterative algorithm (Fig. 1(a)) that estimates (u,v) from the
first spatio-temporel derivatives I, I,, I; (of a pair of images)
and from the previous average values (u, ), according to (1)
and (2) where « is a smoothing parameter.
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As the derivatives are estimated with a 2 x 2 x 2 kernel, the
computed velocities should be smaller than 1 pixel / frame.
That is the reason why, multi-scale (aka hierarchical) scheme
should be considered (Fig. 1(b)).

From the computed velocities (u, v)?fnla, of level A+ 1, a
new velocity field is initialized : (u,v)},;, by up-scaling the
previous one with a factor 2, and multiplying it also by a factor
2: (u,v)2,;; = 2 x Upscale(u, v)?jnlal . These velocities are
used to compensate (warp) the motion between the two images
(I2rec), thanks to a bi-linear or bi-cubic interpolation. Then
H&S kernel iterates to provide the residual velocities (du, Jv).
After the iterations these residuals are accumulated to the initial
estimation: (,v)};,,0; = (1, )3, + (4, v)* to provide the final
velocity estimations at this level. Then same computations are
done for the next level: (u,v)} 1 = 2 x Upscale(u,v)?mal
and so on until level A = 0.

In this paper, we first present an architecture that implements
the multi-scale H&.S algorithm in FPGA. As this architecture
is highly tunable, section III will describe a design space
exploration methodology to reach the performance whose
results are discussed in section IV. Then, we conclude and
explore future works.

C. Contributions

Instead of setting a constant number of iteration for every
level, the convergence is better if one puts a high number of
iterations at coarse level (small images) and low number of
iterations at fine level (large images). Thus a very standard
configuration with a 3-level pyramid with a x2-factor (20,10,5
iterations) has been selected for our implementations which
achieves a motion estimation in the range of (V,U) < |7], but
a x4-factor (80,20,5 iterations) can be also considered. The
image size is set at 1024 x1024 pixels but can be adapted in
other sizes too.

Our contribution is to propose a multi-scale implementation
of H&S where the parameters to explore are the parallelism
(1,5,10 or 20 computing kernels), the floating point format (16-
bit or 32-bit IEEE floating points) and the warp interpolation
(bi-linear or bi-cubic). So we do not try to address accuracy,
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Fig. 1. Description of the Algorithm

as the convergence depends on the observed scene, we only
evaluate the impact of the precision (16 or 32 bits) on the size
of the design.

II. PROPOSED ARCHITECTURE

In this section we will describe the different cores used in
our design.

A. Horn and Schunck core

In this paper, we propose four different designs (Fig.2)
depending on the number of H&S cores used and the
number of iterations for each pyramid level. The first three
implementations are the standard iterative (I), the partial
pipeline (P) and fully pipeline (£) used by [12], [13]. The last
one is a fully pipeline parallel implementation with 7 parallel
cores (F). In the last case the 7 parallel core is mandatory to
access to 3x(7m+2) neighboured previous average values (i, ),
instead of the 3x3 required for the first 3 designs. With this
design 7 pixels per clock cycle can be processed.

B. Warping core

For the warping core two cases have been explored, the
bi-linear and bi-cubic interpolation. For the bi-linear (resp. bi-
cubic) interpolation, a neighbourhood of 2x2 (resp. 4x4) pixels
in the input image is required. The goal is to interpolate one
pixel per clock cycle, so we have to ensure that in every clock
cycle all the required neighboured pixels are available in a
similar way as in [15]. To do that the worst case scenario has to
be examined. It occurs when the optical flow vectors summed
from levels 2 and 1 have to be interpolated with the input
image in level 0 ((V,U) < |6]). This means that for bi-linear
(resp. bi-cubic) interpolation, 14 (resp. 16) lines have to be
stored in 14 (resp. 16) FIFOs. In every clock cycle a new pixel
is read from the external memory and all the remaining pixels
inside the FIFOs are moved one position to the right so that all
the required pixels for the interpolation are available without
latency. In order to choose the right neighbouring pixels in
the two cases, the integer parts of the velocity vectors are
needed and the interpolation is done with the fraction part of
the velocities. In order to process 7 pixels per clock cycle, we
have to parallelize the computation. In that case, 7 pixels per
clock cycle are read from the memory.
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Fig. 2. Different Implementations Used

C. Sum, Up-scaling core

The sum core is used to sum the velocities calculated in the
previous levels with those of the current level. These values
are stored in an on chip memory to reduce the interaction with
the external memory. Another solution would be to store the
velocities in an external memory, but in this case both read
and write operations are needed in not neighboured addresses:

« read operations to provide the warp core with the adequate
velocities,

« and write operation to merge the new calculated velocities
with the ones from the previous level.

This might make the full pipeline of one pyramid level more
difficult. Then, results from the sum are extended (up-scaling)
in order to be used in the next pyramid level. For up-scaling
two FIFO line memory are needed as was made in [8], [9].

D. Pyramid Creation

Each image used for each level of the pyramid is being built
after the convolution from the coarser pyramid level with a
5x5 Gaussian kernel (down-sampling) and then stored in the
external memory in order to be used for the next steps of the
algorithm. Seven FIFOs are used for the pyramid built:

o five for the Gaussian kernel,

« and two to ensure continuous streaming because each
coarser level image is four times smaller than the finer
level image so for every 4 pixels read from the memory
one is written.

E. Pipeline and Parallelism in each Pyramid Level

It is obvious from the sections above that the up-scaling,
warping, H &S and sum can be performed in a pipeline way for
each pyramid level. This has a major advantage: interpolated
pixels do not need to be written back to the external memory
and then read again, but they can be directly processed by the
H&S core in a pipeline way. It is also possible to compute
the optical flow vectors in a fully pipeline parallel way.

III. DESIGN SPACE EXPLORATION

As depicted in the previous section, there are a lot of
possibilities with the architecture to manage performance. In
this sense, a design space exploration has been performed
to find the architecture that matches as closely as possible



the designer’s requirements. The exploration is based on the
number of the H&S cores used in our design. Depending on
the number of iterations in each level of the pyramid these
cores can be used in different modes: iterative ([), partial
pipeline (P), fully pipeline (F") and fully pipeline parallel (F;)
as shown in Fig 2. These modes have different impacts on
computation time. The same cores used in iterative mode in
one pyramid level can be used in another mode in a different
pyramid level by changing the pipeline depth of the FIFOs
memories used and by adding more of them in series or in
parallel. For example with respectively 20, 10, 5 iterations for
levels, levely, levelg and 10 available cores, then:

o in levelsy, the cores are used in partial pipeline mode,

o in level;, in fully pipeline mode with the FIFOs used in

levely doubled in depth,

e and in levely, in fully pipelined parallel and the number

of FIFOs used in level; doubled and used in parallel.

Another critical part is that if in one level 71 H&S cores are
used in parallel then 7 interpolation cores have to be used in
parallel for a continuous computation of 7w pixels per clock
cycle. The up-scaling and sum components can also be adapted
as to be used in parallel mode. We should also mention that
when we divide the image width by 7, the residue has to be
zero in order to ensure that the 7 parallel pixels are in the
same line.

By taking all these into account, depending on the number
of cores (II) used and the number of iterations, the total time T
for the multi-scale algorithm calculation of the image, without
the down-sampling (which takes less than 15% of the total
time), can be estimated by (3).

_ Height - Weight - (io + 4 + {3) 1
T 7 + lat 7 3)
where lat is the latency added from every core which is low
regarding the total computation time, ¢, the iterations for level
and f the running frequency.

Given the number of iterations ¢g at levelg, the total number

of logic elements N can be estimated by (4) and (5).
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where Ngg, Nwarp’ Nsum, Nupscaling and Ndownsampling
are respectively the numbers of logic elements of H&S,
interpolation, sum, up-scaling and down-sampling cores.

The total memory M can also be estimated by (6), (7) and
(8). M, represents the extra memory used by PP mode in level;
to avoid storing the intermediate velocity values in the external
memory. This happens because the memory used for sum core
for this task is not enough.

M =1 -Mys + Myarp + My + My (6)
Ml = —]\'Isum + 'Mupscaling + Mdownsampling (7)
Height - Weight
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where J\IHSs Mwarps —]\{sums Mupscaling and Mdownsampling
are respectively the memories used to store values of H&S,
warp, sum, up-scaling and down-sampling cores. Width
represents the word length depending on the format used
(F16, F32)-

The maximum bandwidth of the external memory required
is defined by levely and level; of the pyramid. In level, the
input pixels from the images are 8 bit wide whereas the pixels
in level; are depending on the format used (Fig, F32). This
happens because the finest level of the pyramid does not get
down-sampled. As a result if the calculation in levely is done in
F. mode with F}¢ then the maximum bandwidth is determined
by levely, otherwise by level;.

TABLE 1
MONO-SCALE & MONO-CORE RESULTS FOR F32 AND F'ig
core logic blocks registers memory
bi-linear interp. Fig 4,543 (2%) 13,261 292,244 (< 1%)
bi-cubic interp. Flig 17,919 (8%) 51,375 326,876 (< 1%)
Horn Schunck Fig 4,599 (2%) 13,759 150,352 (< 1%)
sum Fig 1,841 (< 1%) 5,777 9,437,184 (18%)
up-scaling Fyg 1,768 (< 1%) 2,077 67,100 (< 1%)
down-sampling F'ig 13,344 (5.6%) 23,110 94,358 (< 1%)
bi-linear interp. F3o 7,648 (3%) 18,261 605,644 (1%)
bi-cubic interp. F32 44,991 (19%) 105,845 624,288 (1%)
Horn Schunck F3o 9,686 (4%) 19,720 270,483 (< 1%)
sum F'3o 4,351 (2%) 11,717 16,777,216 (32%)
up-scaling F'3p 2,840 (< 1%) 9,798 135,628 (1%)
down-sampling Fi32 24,387 (10%) 68,666 190,469 (< 1%)

IV. RESULTS OF IMPLEMENTATION

For the implementation of the algorithm, the FPGA Altera
Stratix V 5SSGXEA7H3F35C3 was used. The images from
the computer where written to two 64-bit data bus DDR3
memories with a maximum speed of 800 MHz using a PCI
express interface. The communication of the external memory
with the FPGA was done with the help of two DDR3 SDRAM
Controllers with UniPHY provided from Altera. Each DDR3
memory is used for the storage of each image.

In Table I we can see the information about all the key
components used in our design. All the components are
implemented in VHDL and without DSP to increase clock
working frequency. Half and single precision floating point
numeric formats are used in the same way as in [19] and all
the units are built with the help of the FloPoCo library [20].

In Table II we can see the total resources used regarding
the number of H&S cores, the type of interpolation used and
the fps achieved by each implementation. There are also 2
mono-scale fully pipelined versions (v;),(vs) with half (Fig)
and single precision (F33) floating point format in order to do
a fair comparison in the same arithmetic system.

From Table II we can see that by increasing the number of
H&S cores a better fps is achieved. What is also interesting
is when for the finest pyramid level 4 pixels per clock cycle
are computed then 4 interpolation cores are used as described
in section III. That highly impacts the resource usage. For
a smaller design the bi-linear interpolation should be chosen
for the hardware area to remain small compared to bi-cubic.



TABLE 1II

DESIGN SPACE EXPLORATION RESULTS

Implementation F'ig mono-scale v multi-scale vo multi-scale vs3 multi-scale v4 multi-scale vs multi-scale vg multi-scale vz
Iterations 20 20,10,5 20,10,5 20,10,5 20,10,5 20,10,5 20,10,5
HS cores (IT) 20 1 5 10 20 10 20
Mode F 1% 119 15 P*P?F P2 F.F, F,F5,Fy P, F.F» F,F>,Fy
interpolation - bi-cubic bi-cubic bi-cubic bi-cubic bi-linear bi-linear
Logic blocks 93,570(40%) 53,531(23%) 67,055(29%) 109,258(47%) 192,386(82%) 82,430(35%) 148,537 (63%)
registers 250,418 150,706 189,719 293,683 529,456 208,720 382,203
memory 3,195,788 (6%) 10,232,738 (20%) 13,264,090 (25%) 11,650,850 (22%) 13,589,222 (26%) 11,617,698 (22%) 13,350,693 (25%)
frequency 339 276 293 281 270 286 274
fps 310 294 149 275 471 277 484
Implementation F3o mono-scale vg multi-scale vg multi-scale vig multi-scale vi1 multi-scale vio multi-scale vi3 multi-scale vi4
Iterations 20 20,10,5 20,10,5 20,10,5 20,10,5 20,10,5 20,10,5
HS cores (IT) 20 1 5 10 20 10 20
Mode F 129 11915 PTP2F P?F.F> F,Fy,Fy P, F,F> F,Fs,Fy
interpolation - bi-cubic bi-cubic bi-cubic bi-cubic bi-linear bi-linear
Logic blocks 187,211(80%) 98,384(42%) 138,012(59%) not implementable not implementable 168,127(71%) not implementable
registers 368413 215,633 295,138 - - 340,993 -
memory 5.932,160(11%) 17,230,659(33%) 23,571.910(45%) - - 20,854,914(40%) -
frequency 209 228 224 - - 208 -
fps 191 243 114 - - 202 -
TABLE III
COMPARISON TO STATE-OF-THE-ART IMPLEMENTATION ON FPGA (SORTED ON THE THROUGHPUT)
Implementation Algorithm size format 11 frame rate Throughput (Mpixel/s) Architecture
This work va Multi-scale H&S 1024 x 1024 Fie 1 294 (4.2) 30.8 (4.4) Stratix V 291Mhz (40Mhz)
This work v4 Multi-scale H&S 1024 x 1024 Fig 10 275 (38.8) 288 (40.6) Stratix V 296Mhz (40Mhz)
This work vy Multi-scale H&S 1024 x 1024 Fig 20 484 (70.6) 507 (70.4) Stratix V 278Mhz (40Mhz)
(I) [13] Mono-scale H&S 640 x 512 Q 1 30.0 9.2 Stratix IV 295 Mhz
9] Multi-scale Phase-based 640 x 480 Q8.058.4 - 31.5 9.6 Virtex-4 45MHz
[8] Multi-scale L&K 640 x 480 Q9.0-29.8 - 32.0 9.8 Virtex-4 83 MHz
[16] Phase-based 512 x 512 Qs—12 - 40.0 10.4 Virtex-4 42MHz
[17] HBM + Refinement 640 x 480 - - 39.0 12.0 Virtex-7 200MHz
[10] Mono-scale L&K 800 x 600 Q41.626 - 170.0 81.6 Virtex-6 94 MHz
() [12] Mono-scale H&S 1920 x 1080 Q7.10 128 84.0 174.2 Virtex-7 150MHz
(F) [12] Mono-scale H&S 1920 x 1080 F3o 32 96.5 200 Virtex-7 200MHz
(F) [13] Mono-scale H&S 4096 x 2304 Q 20 30.0 283.1 Stratix IV -
[18] Mono-scale L&K 1024 x 1024 Q1032 - 1000.0 1048 Virtex-2 90 MHz

If accuracy is the point then bi-cubic interpolation is better.
Moreover, we can see that the vg and vi3 have less logic block
usage than mono-scale vy and vg with small impact in fps. So
these 2 designs can replace the mono-scale implementations if
memory usage is not important and better range for velocities
is needed. Finally, the F35 requires more than the double of
the resources than the Fjg meaning that designs vi1, vi2 and
vi4 are not implementable.

In Table IIT we make a comparison of our works with the
state of the art Optical flow algorithms implemented in FPGA.
In our works, we have 2 clock frequencies of which the second
one is almost the same with the ones used by the previous
works in order to do a fair comparison. We can see from
this table that v; outperforms in terms of throughput all the
other designs except those of Ishii [18]. The reason is that it
implements a Mono-scale L& K algorithm with pseudo-variable
frame rate by using two FPGAs, one for the transformation
of the serial input to parallel, the other for the calculation of
the product sums and a PC for the rest of the steps of the
algorithm. Especially now for the H&S algorithm, we can
see that our iterative vo, v4 and v7 implementations compared
to the ones of [13] I, F achieve a x3.34, x1.02 and x1.79
throughput. Finally we notice that v4 and v; compared to the

other multi-scale implementations [9], [8], [17] achieve a x4.2,
x4.1, x3.9 and x7.3, x7.18, x6.76 throughput respectively,
even with lower frequency.

V. CONCLUSION

We proposed a parametric hierarchical implementation of
the gradient Based H &S motion estimation algorithm in the
Stratix V FPGA which, as far as we know, has never been
done before. Our exploration showed that we have to switch
from single precision to half precision floating point format
to fit all the designs we propose. Furthermore we showed
that our smallest design can reach 30.8 Mpixel/s with 23%
usage of the Logic Blocks of the Stratix V and that our fastest
outperforms in terms of throughput all the existing state of the
art optical flow designs that use solely FPGAs, achieving 507
Mpixel/s with a cost of 63% of the Stratix V FPGA Logic
Blocks. Finally we showed that contrary to the limited range of
all the previous H&S mono-scale designs, all our multi-scale
designs achieve a range of 7 for the calculated velocities.

In the future we plan to do more design space exploration on
the multi-scale H&S design by exploring fixed point format,
ways to reduce the on-chip memory usage and we also plan
to deal with its accuracy.
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