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Abstract—The emergence of low-power embedded Graphical
Processing Units (GPUs) with high computation capabilities has
enabled the integration of image processing chains in a wide
variety of embedded systems. Various optimisation techniques are
however needed in order to get the most out of an embedded GPU.
This paper explores several optimisation methods for iterative
stencil-like image processing algorithms on embedded NVIDIA
GPUs using the Compute Unified Device Architecture (CUDA)
API. We chose to focus our architectural optimisations on the
TV-L1 algorithm, an optical flow estimation method based on
total variation (TV) regularisation and the L1 norm. It is widely
used as a model for more complex optical flow estimations and is
used in many recent video processing applications. In this work
we evaluate the impact of architecture-oriented optimisations on
both execution time and energy consumption on several Nvidia
Jetson GPU embedded boards. Results show a speedup up to 3×
compared to State-of-the-Art versions as well as a 2.6× decrease
in energy consumption.

Index Terms—GPU, Embedded System, Image Processing, TV-
L1, Optical flow, Energy Consumption

I. INTRODUCTION

Today’s embedded image processing chains are becoming
more and more complex and demand a lot of computing
capabilities. Design constraints such as real-time processing and
limiting power consumption are increasingly hard to achieve.
Using embedded GPUs significantly increases the parallel
processing power of the embedded system. The Nvidia Jetson
boards (TX2, AGX Xavier and Nano) [1] are examples of
the latest embedded GPUs architectures. They are a family of
embedded computing boards carrying a Tegra SoC that includes
an ARM CPU and an Nvidia GPU, ready to be programmed
using the CUDA programming model.

Even if such systems allow for heavier embedded image
processing, the most complex algorithms still need trade-
offs and optimisations in order to both decrease processing
time and energy consumption. This papers explores such
optimisations and trade-offs on iterative stencil-like image
processing algorithms, specifically on the TV-L1 optical flow
estimation.

Optical flow represents the apparent motion of objects,
surfaces and edges in a visual scene [2]. It is a major tool
in video enhancement [3], [4] and computer vision [5], [6].
First pioneered by Horn and Schunck [7] and by Lucas and
Kanade [8] in 1981, hundreds of different algorithms now exist.
Most of them are indexed and evaluated in the Middlebury

database [9]. These various methods differ by their computing
speed and accuracy. The most qualitative methods are usually
also the slowest ones.

The TV-L1 algorithm is a good candidate for optimisations
on embedded systems. First introduced by Zach, Pock and
Bischof in 2007, the TV-L1 optical flow is an iterative numerical
scheme based on the minimisation of an energy function [10].
It is a stencil-like iterative algorithm using various intermediate
data arrays, which is well suited for algorithmic optimisations.
Unlike other simpler methods such as Horn and Schunck’s, TV-
L1 allows for discontinuities in the optical flow. Furthermore,
it is widely used as a model for more complex optical
flow estimations [11]–[13] and is used in many recent video
processing applications such as video denoising [3], action
recognition [14]–[16] or 3D scene reconstruction [17]. Different
implementations exist on CPU namely the original [10] and
improved [11] versions, a parallel OpenMP version [18] and
a SIMD version [19]. FPGA implementations have also been
developed [20] and have been optimised in memory allocation
and power consumption [21]. Finally, GPU implementations
have been developed for the original [10], improved [11] and
further optimised TV-L1 versions [22], [23].

Many newer optical flow methods have been introduced in
the last few years based on deep-learning [24]–[26]. Those
methods are not good candidates for embedded systems since
they are slower and require large if not multiple GPUs to run
and thus have a large power requirement (typically several
hundred watts). Even the fastest method to our knowledge,
FlowNet 2.0 [24], takes 7 ms to process 1024 × 436 pixel
images on an Nvidia GTX 1080. This GPU contains 5× the
number of CUDA cores and has a clock frequency 25% higher
than the most powerful embedded platform tested in this work:
the Jetson AGX Xavier. If we estimate the time needed to run
FlowNet 2.0 on an AGX board by scaling the number of cores
and the frequency, we find that FlowNet 2.0 runs at 98 ns/pix.
In comparison, the TV-L1 OpenCV implementation tested in
our paper runs at 20.1 ns/pix. Our goal is to be able to process
frames of 2048 × 2048 pixels at 25 images per seconds (a
processing time of 40 ms), corresponding to a processing time
of 9.54 ns/pix. In this context, the deep-learning algorithm
requires an acceleration of 10 times while the TV-L1 algorithm
requires an acceleration of 2 times. TV-L1 is therefore a much
better candidate for embedded applications than deep-learning
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Figure 1: Consumer/Producer representation of a TV-L1 iteration.
The white squares corresponds to the central pixels and the grey
squares to the left, right, upper or lower pixels.

methods.
In this work we introduce several optimised GPU imple-

mentations and evaluate both time and energy consumption on
embedded systems. We also compare our new implementations
to other State-of-the-Art versions.

II. CUDA GPU OPTIMISATIONS

As shown in [19], figure 1 illustrates a data con-
sumer/producer representation of the main steps of one iteration
of the TV-L1 algorithm. Part a) represents the 5 steps:

- V to estimate the relaxation term
- Div to compute the divergence
- U to update the optical flow estimation U = (u1, u2)
- fG to compute the forward gradient
- P to update the double vector field P = (p1, p2) =
(p1x, p1y, p2x, p2y)

The divergence is estimated with backward differences and the
forward gradient with forward differences [18]. A pyramidal
approach is used to compute displacements larger than 1 pixel.
A warping step between each scale is used to propagate the
solution across pyramid levels. Warps consist in a movement
compensation using interpolation (in our case bicubic). Ad-
ditional warps can be performed on each level to get more
robust and accurate results.

The main algorithmic transformation used in this work for
GPU implementations is operator fusion [19], [27]. This reduces
the number of memory accesses, improves data locality and
improves arithmetic intensity. This also reduces the total kernel
launch overhead due to many kernel calls (between 2 and 5 µs
per kernel call). Part b) of the figure 1 shows the 2 main steps
of the TV-L1 algorithm after fusion: one step to update U and
one step to update P . This representation also illustrates the
difficulty to further regroup those two remaining steps into one
due to data dependencies.

Those data dependencies also make pipelining difficult even
after algorithmic fusion. The main advantage of iterations

Board Process CPU
Fmax
(GHz)

GPU
Fmax
(GHz)

TX2 16 nm
4×A57 +

2×Denver 2
2.00 256 C Pascal 1.3

AGX 12 nm 8×Carmel 2.27 512 C Volta 1.4
Nano 12 nm 4×A57 1.43 128 C Maxwell 0.9

Table 1: Technical specifications of the NVIDIA Jetson boards.

pipeline is to improve the data reuse within fast local memory.
On GPU this can be done by using the shared memory. This
memory is faster than the global memory and is accessible by
all the threads of a thread block. However, on the embedded
GPU we tested, we were not able to pipeline more than 2
iterations. Because of the dependencies, an apron proportional
to the pipeline depth is needed. There is not enough shared
memory available to fit all the necessary data to pipeline more
than 2 iteration of TV-L1. The Jetson AGX Xavier uses the
latest Nvidia GPU architecture available on embedded systems,
the Volta architecture, which only allows up to 48 KB of
shared-memory per thread block. For a 3-iteration pipeline, we
would need 12 intermediate 7x7 buffers which would require
75 KB of shared memory using 32-bit floating point numbers.
There is not enough shared memory per block on GPU to
launch such a kernel. Moreover, no newer Nvidia architecture
has been announced for embedded systems yet. The AGX
platform will last a long time before being obsolete. With only
2 iterations pipelined, there is not enough data reuse and the
computation is slower than without pipeline.

We present two kinds of TV-L1 optimisation: global and
shared_fusion.

global implements the algorithmic fusion shown in figure 1b
using only the global GPU memory. shared_fusion computes
both U and P in one step using the shared memory. All the
elements, including a border outside of the thread block, are
loaded in shared memory for intermediate data reuse.

global and shared_fusion are declined in both 32-bit (F32)
and 16-bit (F16) floating point versions. As shown in [28]
the use of F16 is sufficient for optical flow. Furthermore, the
original implementation in [10] already uses F16 for parts of the
algorithm on GPU. We also used CUDA vector types __float2
(resp. __half2) in our f32x2 (resp. f16x2) implementations. The
__half2 type allows us to use subword parallelism not available
with __float2 type.

III. EXPERIMENTAL EVALUATION

A. Evaluation Benchmark

For our experimentation we used three Nvidia Jetson em-
bedded platforms detailed in table 1. Three kinds of evaluation
are performed. We first compare the execution time of CPU
and GPU implementations on the three considered systems.
We measure the execution time of a mono-scale configuration
with 1 bicubic warping step and 10 iterations. We use square
images of size from 128× 128 up to 2048× 2048 pixels and
the computation time is normalised in nano-seconds per pixel
(ns/pix).
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Figure 2: TV-L1 execution time (ns/pix) comparison with OpenCV
on CPU. Our best implementation here corresponds to the
f16x2_shared_fusion version on GPU.

Next, we evaluate the power consumption of the same
implementations by means of an external electronic board
developed to this effect. We vary the GPU clock from the
lowest to the highest frequency and record both the time and
the energy taken to compute 1 warp and 10 iterations on
images of size 2048× 2048 pixels. The energy results are also
normalised in nano-joules per pixel (nJ/pix). We explore the
(time per pixel, energy per pixel) space to find the fastest and
most energy efficient implementations and platforms.

Finally, we compare our work to State-of-the-Art TV-L1
GPU implementations.

B. Timing Result Analysis

Figure 2 shows the processing time in ns/pix depending on
the image size on each platform. Our fastest version called
Best is compared to the open source GPU implementation of
TV-L1 provided by OpenCV. Overall the results are similar on
each boards with a speedup of 2.8× on the AGX, 2.5× on
the TX2 and 2.9× on the Nano. As such, we focus the rest
of our analysis on the AGX which possesses the newest GPU
architecture (Volta), the biggest and fastest GPU (512 cores,
1.3 GHz) out of the three tested Jetson boards.

Figure 3 shows the processing speed of different implemen-
tations of TV-L1 on the AGX board, namely:

- OpenCV XX: F32 OpenCV implementation on the XX
architecture (CPU or GPU)

- XX_neon CPU: Optimised Neon SIMD CPU version using
XX (F32 or F16) computation format,

- XX_base: GPU baseline version using XX format
- XX_global: GPU optimised implementation with operator

fusion using only the global memory and XX format
- XX_shared_fusion: GPU optimised implementation with

operator fusion using shared memory and XX format
The timing results in figure 3 shows that the optimised CPU

Neon versions are faster than the f32_base GPU version. The
f32_neon CPU version is also faster than the OpenCV GPU
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Figure 3: Execution time (ns/pix) of TV-L1 implementations on AGX.
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Figure 4: F32 and F16 execution time (ns/pix) on AGX.

version for images less than 400×400 pixels and the f16_neon
CPU version is faster for images less than 800 × 800. Our
f16x2_shared_fusion GPU version is 3× faster than OpenCV
GPU and 7× faster than f32_base. Better data reuse, less reads
and writes to global memory, along with smaller data size due
to the use of F16 lead to a lower memory footprint of our
implementations. Table 2 shows this increase in the effective
memory bandwidth.

Figure 4 shows a more detailed comparison between GPU
implementations. We can see that all the F32 versions ultimately

Version
Time

(ns/pix)
Bandwidth

(GB/s)
Throughput
(GFLOP/s)

OpenCV CPU (F32) 56 40.0 14.6
f32_neon CPU 26 51.3 24.3
f16_neon CPU 16 41.7 39.4

OpenCV GPU (F32) 12 125.2 51.2
f32x2_shared_fusion GPU 8 178.1 79.7
f16x2_shared_fusion GPU 4 243.2 119.3

Table 2: Execution time, memory bandwidth and computational
throughput of several TV-L1 implementations on the Jetson AGX.
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Figure 5: Time (ns/pix) and energy (nJ/pix) operating points for
several TV-L1 implementations on each Jetson boards. Several clock
frequencies are tested for each versions.

plateau at 8.4 ns/pix. In F32, the use of shared memory
or f32x2 does not provide any speedup. In F16 however,
f16_shared_fusion (4.9 ns/pix) performs better than f16_global
(5.6 ns/pix) thanks to more reuse of data in shared memory.
More data can be allocated in shared memory since F16 are
twice as small as F32. Furthermore, the f16x2_shared_fusion is
even faster at 4.3 ns/pix since f16x2 enables us to use subword
parallelism which increases computational throughput as shown
in table 2. This parallelism is not supported in F32.

C. Power Consumption Result Analysis

Figure 5 presents the results in the (time per pixel, energy
per pixel) space for our TV-L1 implementations on GPU
along with the optimised Neon CPU versions and the GPU
OpenCV version. Each point along each curve corresponds to
a different clock frequency. Only the maximum frequency is
shown here for each Neon CPU versions. The AGX achieves
the best performance in both terms of runtime and energy
consumption. The TX2 board is a close second in terms
of energy consumption. The fastest GPU implementation is
f16x2_shared_fusion and is 4× faster and 3.4× more power
efficient than the best CPU version (f16_neon) on the AGX. It
is also 3× faster and 2.6× more energy efficient than OpenCV.
The f16x2_shared_fusion version is both the fastest and the
most power efficient implementation on every platform.

The figure 6 provides more detailed results for the AGX
on 2048 × 2048 pixels image at various GPU frequencies.
Figure 6a, shows the board’s total energy consumption in nJ/pix.
In figure 6b, the system’s idle energy consumption is subtracted
from the total energy. Figure 6c shows the computation time in
CPP. There is no significant difference in energy consumption
between the frequency minimising energy consumption and
the highest frequency for the f16x2_shared_fusion version.

We can see that for f16x2_shared_fusion the energy con-
sumption is almost constant for all frequencies. As shown
in c, this can be explained by an almost linear computation
speedup compared to frequency augmentation (the CPP are
constant). This is not the case with the other implementations

Algorithm Warps
Normalised
GPU cycles

Speedup vs
F32

Speedup vs
F16

Our f16x2_shared_fusion 1 1.6 2 -
Our f32x2_shared_fusion 1 3.2 - -
[23] TV-L1 (DL solver) 1 12.9 7.9 15.8
[10] TV-L1 introduction 1 219.8 143.7 287.4

Our f16x2_shared_fusion 25 46.0 1.9 -
Our f32x2_shared_fusion 25 86.6 - -
[11] P(GPU) 25 156.2 1.8 3.4

Table 3: Execution time comparison between State-of-the-Art TV-L1
implementation and our fastest versions.

where at some point the CPP and the energy consumption start
to increase. This change appears when the GPU frequency
grows too high compared to the memory frequency. From this
point on the memory bandwidth becomes a bottleneck. This
behaviour remains valid for all 3 platforms.

D. State-of-the-Art Comparison

In this section we compare our implementations to other
State-of-the-Art ones. Since source codes are no longer
available, we were not able to perform a real comparison on
identical platforms. Thus, the execution time for each algorithm
is normalised according to GPU hardware and the algorithm
configuration with the following formula:

C =
T × F

Ncores ×Npix ×Niter

where C is the number of cycles per core per iteration, T is the
time of a given benchmark, F is the GPU frequency, Ncores

the number of GPU cores, Npix the number of pixel in the
image and Niter the number of iterations.

Table 3 presents the execution time comparison between
State-of-the-Art and f16x2_shared_fusion implementations.
Equivalent configurations and parameters (i.e. same number
of scales, warps per scales and iterations per warps and same
optical flow dataset) were used whenever possible. The first
part of the table corresponds to the "light" TV-L1 configuration
found in other publications with 3 scales, 1 warp per scale
and 50 iterations per warp. Here, the biggest acceleration is
with [10] with a speedup of 143.7×. We should note that this
version uses both an older GPU architecture and language
(Cg). For the same algorithm on close GPU architectures, we
observe a runtime acceleration of 7.9×. The second part of the
table corresponds to a heavier and slower configurations with 5
scales, 25 warps per scale and 10 iterations per warp yielding
more accurate results. Compared to the other implementations,
a speed-up of 4.4× is achieved.

IV. CONCLUSION

In this paper, we show several optimisation technique for
the TV-L1 optical flow iterative algorithm on embedded GPUs.
Thanks to more data reuse, using the shared memory and using
F16 and sub-word parallelism, we can achieve 3× speedup as
well as a 2.6× decrease in energy consumption, compared to
other State-of-the-Art GPU implementations. On the newest
AGX board, our best embedded GPU implementation is 4×
faster and consumes 2.6× less energy than our fastest CPU
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Figure 6: Energy (nJ/pix) with/without idle consumption and time (Cycles Per Pixel: CPP) on the AGX board for 2048× 2048 pixels images.

SIMD implementation. Real-time processing at 25 frames per
second for images up to 2048×2048 pixels can be achieved on
GPU while lowering energy consumption. These optimisations
can be applied to any optical flow algorithms and any iterative
stencil-like algorithm.
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