Thomas Romera

Andrea Petreto

Florian Lemaitre

Manuel Bouyer

Quentin Meunier

Lionel Lacassagne

Implementations Impact on Iterative Image Processing for Embedded GPU

Keywords: GPU, Embedded System, Image Processing, TV-L1, Optical flow, Energy Consumption

The emergence of low-power embedded Graphical Processing Units (GPUs) with high computation capabilities has enabled the integration of image processing chains in a wide variety of embedded systems. Various optimisation techniques are however needed in order to get the most out of an embedded GPU. This paper explores several optimisation methods for iterative stencil-like image processing algorithms on embedded NVIDIA GPUs using the Compute Unified Device Architecture (CUDA) API. We chose to focus our architectural optimisations on the TV-L1 algorithm, an optical flow estimation method based on total variation (TV) regularisation and the L1 norm. It is widely used as a model for more complex optical flow estimations and is used in many recent video processing applications. In this work we evaluate the impact of architecture-oriented optimisations on both execution time and energy consumption on several Nvidia Jetson GPU embedded boards. Results show a speedup up to 3× compared to State-of-the-Art versions as well as a 2.6× decrease in energy consumption.

I. INTRODUCTION

Today's embedded image processing chains are becoming more and more complex and demand a lot of computing capabilities. Design constraints such as real-time processing and limiting power consumption are increasingly hard to achieve. Using embedded GPUs significantly increases the parallel processing power of the embedded system. The Nvidia Jetson boards (TX2, AGX Xavier and Nano) [START_REF] Nvidia Corp | Jetson portfolio[END_REF] are examples of the latest embedded GPUs architectures. They are a family of embedded computing boards carrying a Tegra SoC that includes an ARM CPU and an Nvidia GPU, ready to be programmed using the CUDA programming model.

Even if such systems allow for heavier embedded image processing, the most complex algorithms still need tradeoffs and optimisations in order to both decrease processing time and energy consumption. This papers explores such optimisations and trade-offs on iterative stencil-like image processing algorithms, specifically on the TV-L1 optical flow estimation.

Optical flow represents the apparent motion of objects, surfaces and edges in a visual scene [START_REF] Burton | Thinking in Perspective: Critical Essays in the Study of Thought Processes, ser. Psychology in progress[END_REF]. It is a major tool in video enhancement [START_REF] Petreto | A new real-time embedded video denoising algorithm[END_REF], [START_REF] Xue | Video enhancement with task-oriented flow[END_REF] and computer vision [START_REF] Kalal | Tracking-learning-detection[END_REF], [START_REF] Adarve | A filter formulation for computing real time optical flow[END_REF]. First pioneered by Horn and Schunck [START_REF] Horn | Determining optical flow[END_REF] and by Lucas and Kanade [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] in 1981, hundreds of different algorithms now exist. Most of them are indexed and evaluated in the Middlebury database [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF]. These various methods differ by their computing speed and accuracy. The most qualitative methods are usually also the slowest ones.

The TV-L1 algorithm is a good candidate for optimisations on embedded systems. First introduced by Zach, Pock and Bischof in 2007, the TV-L1 optical flow is an iterative numerical scheme based on the minimisation of an energy function [START_REF] Zach | A duality based approach for realtime TV-L1 optical flow[END_REF]. It is a stencil-like iterative algorithm using various intermediate data arrays, which is well suited for algorithmic optimisations. Unlike other simpler methods such as Horn and Schunck's, TV-L1 allows for discontinuities in the optical flow. Furthermore, it is widely used as a model for more complex optical flow estimations [START_REF] Wedel | An improved algorithm for TV-L1 optical flow[END_REF]- [START_REF] Ranftl | Non-local total generalized variation for optical flow estimation[END_REF] and is used in many recent video processing applications such as video denoising [START_REF] Petreto | A new real-time embedded video denoising algorithm[END_REF], action recognition [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF]- [START_REF] Lin | Tsm: Temporal shift module for efficient video understanding[END_REF] or 3D scene reconstruction [START_REF] Newcombe | Live dense reconstruction with a single moving camera[END_REF]. Different implementations exist on CPU namely the original [START_REF] Zach | A duality based approach for realtime TV-L1 optical flow[END_REF] and improved [START_REF] Wedel | An improved algorithm for TV-L1 optical flow[END_REF] versions, a parallel OpenMP version [START_REF] Pérez | TV-L1 optical flow estimation[END_REF] and a SIMD version [START_REF] Petreto | Energy and execution time comparison of optical flow algorithms on SIMD and GPU architectures[END_REF]. FPGA implementations have also been developed [START_REF] Beretta | Parallelizing the chambolle algorithm for performance-optimized mapping on FPGA devices[END_REF] and have been optimised in memory allocation and power consumption [START_REF] Garcia | Optimized memory allocation and power minimization for FPGA-based image processing[END_REF]. Finally, GPU implementations have been developed for the original [START_REF] Zach | A duality based approach for realtime TV-L1 optical flow[END_REF], improved [START_REF] Wedel | An improved algorithm for TV-L1 optical flow[END_REF] and further optimised TV-L1 versions [START_REF] Angelo | Fast TV-L1 optical flow for interactivity[END_REF], [START_REF] Bao | A comparison of TV-L1 optical flow solvers on GPU[END_REF].

Many newer optical flow methods have been introduced in the last few years based on deep-learning [START_REF] Ilg | Flownet 2.0: Evolution of optical flow estimation with deep networks[END_REF]- [START_REF] Hui | Liteflownet3: Resolving correspondence ambiguity for more accurate optical flow estimation[END_REF]. Those methods are not good candidates for embedded systems since they are slower and require large if not multiple GPUs to run and thus have a large power requirement (typically several hundred watts). Even the fastest method to our knowledge, FlowNet 2.0 [START_REF] Ilg | Flownet 2.0: Evolution of optical flow estimation with deep networks[END_REF], takes 7 ms to process 1024 × 436 pixel images on an Nvidia GTX 1080. This GPU contains 5× the number of CUDA cores and has a clock frequency 25% higher than the most powerful embedded platform tested in this work: the Jetson AGX Xavier. If we estimate the time needed to run FlowNet 2.0 on an AGX board by scaling the number of cores and the frequency, we find that FlowNet 2.0 runs at 98 ns/pix. In comparison, the TV-L1 OpenCV implementation tested in our paper runs at 20.1 ns/pix. Our goal is to be able to process frames of 2048 × 2048 pixels at 25 images per seconds (a processing time of 40 ms), corresponding to a processing time of 9.54 ns/pix. In this context, the deep-learning algorithm requires an acceleration of 10 times while the TV-L1 algorithm requires an acceleration of 2 times. TV-L1 is therefore a much better candidate for embedded applications than deep-learning

methods.

In this work we introduce several optimised GPU implementations and evaluate both time and energy consumption on embedded systems. We also compare our new implementations to other State-of-the-Art versions.

II. CUDA GPU OPTIMISATIONS

As shown in [START_REF] Petreto | Energy and execution time comparison of optical flow algorithms on SIMD and GPU architectures[END_REF], figure 1 illustrates a data consumer/producer representation of the main steps of one iteration of the TV-L1 algorithm. Part a) represents the 5 steps:

-V to estimate the relaxation term -Div to compute the divergence -U to update the optical flow estimation U = (u 1 , u 2) -fG to compute the forward gradient -P to update the double vector field P = (p 1 , p 2) = (p 1x , p 1y , p 2x , p 2y) The divergence is estimated with backward differences and the forward gradient with forward differences [START_REF] Pérez | TV-L1 optical flow estimation[END_REF]. A pyramidal approach is used to compute displacements larger than 1 pixel. A warping step between each scale is used to propagate the solution across pyramid levels. Warps consist in a movement compensation using interpolation (in our case bicubic). Additional warps can be performed on each level to get more robust and accurate results.

The main algorithmic transformation used in this work for GPU implementations is operator fusion [START_REF] Petreto | Energy and execution time comparison of optical flow algorithms on SIMD and GPU architectures[END_REF], [START_REF] Lacassagne | High level transforms for SIMD and low-level computer vision algorithms[END_REF]. This reduces the number of memory accesses, improves data locality and improves arithmetic intensity. This also reduces the total kernel launch overhead due to many kernel calls (between 2 and 5 µs per kernel call). Part b) of the figure 1 shows the 2 main steps of the TV-L1 algorithm after fusion: one step to update U and one step to update P . This representation also illustrates the difficulty to further regroup those two remaining steps into one due to data dependencies.

Those data dependencies also make pipelining difficult even after algorithmic fusion. The main advantage of iterations pipeline is to improve the data reuse within fast local memory.

On GPU this can be done by using the shared memory. This memory is faster than the global memory and is accessible by all the threads of a thread block. However, on the embedded GPU we tested, we were not able to pipeline more than 2 iterations. Because of the dependencies, an apron proportional to the pipeline depth is needed. There is not enough shared memory available to fit all the necessary data to pipeline more than 2 iteration of TV-L1. global implements the algorithmic fusion shown in figure 1b using only the global GPU memory. shared_fusion computes both U and P in one step using the shared memory. All the elements, including a border outside of the thread block, are loaded in shared memory for intermediate data reuse.

global and shared_fusion are declined in both 32-bit (F 32) and 16-bit (F 16) floating point versions. As shown in [START_REF] Piskorski | Customizing cpu instructions for embedded vision systems[END_REF] the use of F 16 is sufficient for optical flow. Furthermore, the original implementation in [START_REF] Zach | A duality based approach for realtime TV-L1 optical flow[END_REF] already uses F 16 for parts of the algorithm on GPU. We also used CUDA vector types __float2 (resp. __half2) in our f32x2 (resp. f16x2) implementations. The __half2 type allows us to use subword parallelism not available with __float2 type.

III. EXPERIMENTAL EVALUATION

A. Evaluation Benchmark

For our experimentation we used three Nvidia Jetson embedded platforms detailed in table 1. Three kinds of evaluation are performed. We first compare the execution time of CPU and GPU implementations on the three considered systems. We measure the execution time of a mono-scale configuration with 1 bicubic warping step and 10 iterations. We use square images of size from 128 × 128 up to 2048 × 2048 pixels and the computation time is normalised in nano-seconds per pixel (ns/pix). Next, we evaluate the power consumption of the same implementations by means of an external electronic board developed to this effect. We vary the GPU clock from the lowest to the highest frequency and record both the time and the energy taken to compute 1 warp and 10 iterations on images of size 2048 × 2048 pixels. The energy results are also normalised in nano-joules per pixel (nJ/pix). We explore the (time per pixel, energy per pixel) space to find the fastest and most energy efficient implementations and platforms.

Finally, we compare our work to State-of-the-Art TV-L1 GPU implementations.

B. Timing Result Analysis

Figure 2 shows the processing time in ns/pix depending on the image size on each platform. Our fastest version called Best is compared to the open source GPU implementation of TV-L1 provided by OpenCV. Overall the results are similar on each boards with a speedup of 2.8× on the AGX, 2.5× on the TX2 and 2.9× on the Nano. As such, we focus the rest of our analysis on the AGX which possesses the newest GPU architecture (Volta), the biggest and fastest GPU (512 cores, 1.3 GHz) out of the three tested Jetson boards.

Figure 3 shows the processing speed of different implementations of TV-L1 on the AGX board, namely:

-OpenCV XX: F 32 OpenCV implementation on the XX architecture (CPU or GPU) -XX_neon CPU: Optimised Neon SIMD CPU version using XX (F 32 or F 16) computation format, -XX_base: GPU baseline version using XX format -XX_global: GPU optimised implementation with operator fusion using only the global memory and XX format -XX_shared_fusion: GPU optimised implementation with operator fusion using shared memory and XX format The timing results in figure 3 version for images less than 400 × 400 pixels and the f16_neon CPU version is faster for images less than 800 × 800. Our f16x2_shared_fusion GPU version is 3× faster than OpenCV GPU and 7× faster than f32_base. Better data reuse, less reads and writes to global memory, along with smaller data size due to the use of F 16 lead to a lower memory footprint of our implementations. Table 2 shows this increase in the effective memory bandwidth.

Figure 4 shows a more detailed comparison between GPU implementations. We can see that all the F 32 versions ultimately plateau at 8.4 ns/pix. In F 32 , the use of shared memory or f32x2 does not provide any speedup. In F 16 however, f16_shared_fusion (4.9 ns/pix) performs better than f16_global (5.6 ns/pix) thanks to more reuse of data in shared memory. More data can be allocated in shared memory since F 16 are twice as small as F 32 . Furthermore, the f16x2_shared_fusion is even faster at 4.3 ns/pix since f16x2 enables us to use subword parallelism which increases computational throughput as shown in table 2. This parallelism is not supported in F 32 .

C. Power Consumption Result Analysis

Figure 5 presents the results in the (time per pixel, energy per pixel) space for our TV-L1 implementations on GPU along with the optimised Neon CPU versions and the GPU OpenCV version. Each point along each curve corresponds to a different clock frequency. Only the maximum frequency is shown here for each Neon CPU versions. The AGX achieves the best performance in both terms of runtime and energy consumption. The TX2 board is a close second in terms of energy consumption. The fastest GPU implementation is f16x2_shared_fusion and is 4× faster and 3.4× more power efficient than the best CPU version (f16_neon) on the AGX. It is also 3× faster and 2.6× more energy efficient than OpenCV. The f16x2_shared_fusion version is both the fastest and the most power efficient implementation on every platform.

The figure 6 provides more detailed results for the AGX on 2048 × 2048 pixels image at various GPU frequencies. Figure 6a, shows the board's total energy consumption in nJ/pix. In figure 6b, the system's idle energy consumption is subtracted from the total energy. Figure 6c shows the computation time in CPP. There is no significant difference in energy consumption between the frequency minimising energy consumption and the highest frequency for the f16x2_shared_fusion version.

We can see that for f16x2_shared_fusion the energy consumption is almost constant for all frequencies. As shown in c, this can be explained by an almost linear computation speedup compared to frequency augmentation (the CPP are constant). This is not the case with the other implementations where at some point the CPP and the energy consumption start to increase. This change appears when the GPU frequency grows too high compared to the memory frequency. From this point on the memory bandwidth becomes a bottleneck. This behaviour remains valid for all 3 platforms.

D. State-of-the-Art Comparison

In this section we compare our implementations to other State-of-the-Art ones. Since source codes are no longer available, we were not able to perform a real comparison on identical platforms. Thus, the execution time for each algorithm is normalised according to GPU hardware and the algorithm configuration with the following formula:

C = T × F N cores × N pix × N iter
where C is the number of cycles per core per iteration, T is the time of a given benchmark, F is the GPU frequency, N cores the number of GPU cores, N pix the number of pixel in the image and N iter the number of iterations. Table 3 presents the execution time comparison between State-of-the-Art and f16x2_shared_fusion implementations. Equivalent configurations and parameters (i.e. same number of scales, warps per scales and iterations per warps and same optical flow dataset) were used whenever possible. The first part of the table corresponds to the "light" TV-L1 configuration found in other publications with 3 scales, 1 warp per scale and 50 iterations per warp. Here, the biggest acceleration is with [START_REF] Zach | A duality based approach for realtime TV-L1 optical flow[END_REF] with a speedup of 143.7×. We should note that this version uses both an older GPU architecture and language (Cg). For the same algorithm on close GPU architectures, we observe a runtime acceleration of 7.9×. The second part of the table corresponds to a heavier and slower configurations with 5 scales, 25 warps per scale and 10 iterations per warp yielding more accurate results. Compared to the other implementations, a speed-up of 4.4× is achieved.

IV. CONCLUSION

In this paper, we show several optimisation technique for the TV-L1 optical flow iterative algorithm on embedded GPUs. Thanks to more data reuse, using the shared memory and using F 16 and sub-word parallelism, we can achieve 3× speedup as well as a 2.6× decrease in energy consumption, compared to other State-of-the-Art GPU implementations. On the newest AGX board, our best embedded GPU implementation is 4× faster and consumes 2.6× less energy than our fastest CPU SIMD implementation. Real-time processing at 25 frames per second for images up to 2048×2048 pixels can be achieved on GPU while lowering energy consumption. These optimisations can be applied to any optical flow algorithms and any iterative stencil-like algorithm.

 -L1 iteration without algorithmic fusion.

 TV-L1 iteration with fusion.

Figure 1 :

 1 Figure 1: Consumer/Producer representation of a TV-L1 iteration. The white squares corresponds to the central pixels and the grey squares to the left, right, upper or lower pixels.

Figure 2 :

 2 Figure 2: TV-L1 execution time (ns/pix) comparison with OpenCV on CPU. Our best implementation here corresponds to the f16x2_shared_fusion version on GPU.

Figure 4 :

 4 Figure 4: F32 and F16 execution time (ns/pix) on AGX.

Figure 5 :

 5 Figure 5: Time (ns/pix) and energy (nJ/pix) operating points for several TV-L1 implementations on each Jetson boards. Several clock are tested for each versions.

 energy consumption at different frequencies b) Energy consumption without idle energy at different frequencies c) Cycles per pixel at different frequencies

Figure 6 :

 6 Figure 6: Energy (nJ/pix) with/without idle consumption and time (Cycles Per Pixel: CPP) on the AGX board for 2048 × 2048 pixels images.

Table 1 :

 1 Technical specifications of the NVIDIA Jetson boards.

	Board Process	CPU	Fmax (GHz)	GPU	Fmax (GHz)
	TX2 16 nm	4×A57 + 2×Denver 2	2.00	256 C Pascal	1.3
	AGX 12 nm 8×Carmel 2.27	512 C Volta	1.4
	Nano 12 nm	4×A57	1.43 128 C Maxwell 0.9

 The Jetson AGX Xavier uses the latest Nvidia GPU architecture available on embedded systems, the Volta architecture, which only allows up to 48 KB of shared-memory per thread block. For a 3-iteration pipeline, we would need 12 intermediate 7x7 buffers which would require 75 KB of shared memory using 32-bit floating point numbers.

There is not enough shared memory per block on GPU to launch such a kernel. Moreover, no newer Nvidia architecture has been announced for embedded systems yet. The AGX platform will last a long time before being obsolete. With only 2 iterations pipelined, there is not enough data reuse and the computation is slower than without pipeline.

We present two kinds of TV-L1 optimisation: global and shared_fusion.

 shows that the optimised CPU Neon versions are faster than the f32_base GPU version. The f32_neon CPU version is also faster than the OpenCV GPU

		70							
		60							
	Time (ns/pix)	30 40 50					OpenCV CPU f32_neon CPU f16_neon CPU OpenCV GPU f32_base GPU f32x2_global GPU f16x2_shared_fusion GPU
		20							
		10							
		0	256	512	768	1024	1280	1536	1792	2048
						Image Size		
	Figure 3: Execution time (ns/pix) of TV-L1 implementations on AGX.
		28							
	Time (ns/pix)	24 26 6 8 10						f32_base f32_global f32_shared_fusion f32x2_global f16_base f16_global f16_shared_fusion f16x2_shared_fusion
		4							
		2							
			256	512	768	1024	1280	1536		2048
						Image Size		

Table 2 :

 2 Execution time, memory bandwidth and computational throughput of several TV-L1 implementations on the Jetson AGX.

	Version	Time (ns/pix)	Bandwidth (GB/s)	Throughput (GFLOP/s)
	OpenCV CPU (F32)	56	40.0	14.6
	f32_neon CPU	26	51.3	24.3
	f16_neon CPU	16	41.7	39.4
	OpenCV GPU (F32)	12	125.2	51.2
	f32x2_shared_fusion GPU	8	178.1	79.7
	f16x2_shared_fusion GPU	4	243.2	119.3

Table 3 :

 3 Execution time comparison between State-of-the-Art TV-L1 implementation and our fastest versions.

ACKNOWLEDGEMENT

This work has been partially funded by the Direction générale de l'armement (DGA), french Ministry of Armed Forces.