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Abstract. Alpha-dicarbonyl compounds are believed to form
brown carbon in the atmosphere via reactions with ammo-
nium sulfate (AS) in cloud droplets and aqueous aerosol
particles. In this work, brown carbon formation in AS and
other aerosol particles was quantified as a function of rel-
ative humidity (RH) during exposure to gas-phase gly-
oxal (GX) in chamber experiments. Under dry conditions
(RH < 5 %), solid AS, AS–glycine, and methylammonium
sulfate (MeAS) aerosol particles brown within minutes upon
exposure to GX, while sodium sulfate particles do not. When
GX concentrations decline, browning goes away, demon-
strating that this dry browning process is reversible. Declines
in aerosol albedo are found to be a function of [GX]2 and are
consistent between AS and AS–glycine aerosol. Dry methy-
lammonium sulfate aerosol browns 4 times more than dry
AS aerosol, but deliquesced AS aerosol browns much less
than dry AS aerosol. Optical measurements at 405, 450, and
530 nm provide an estimated Ångstrom absorbance coeffi-
cient of −16± 4. This coefficient and the empirical relation-
ship between GX and albedo are used to estimate an up-
per limit to global radiative forcing by brown carbon formed
by 70 ppt GX reacting with AS (+7.6× 10−5 W m−2). This
quantity is < 1 % of the total radiative forcing by secondary
brown carbon but occurs almost entirely in the ultraviolet
range.

1 Introduction

Brown carbon is the name given to light-absorbing organic
molecules present in atmospheric aerosol. Estimates of the
global direct radiative effect of brown carbon aerosol range
from +0.05 to 0.27 W m−2 (Tuccella et al., 2020; Laskin
et al., 2015; Zhang et al., 2020; Wang et al., 2018). This
absorption occurs mainly at ultraviolet (UV) and near-UV
wavelengths, suppressing photochemistry in areas with high
loadings (Mok et al., 2016). Limiting emissions of brown
carbon aerosol and its precursor species could provide im-
mediate climate benefits. Approximately 30 % of brown car-
bon is secondary (Mukai and Ambe, 1986; Hecobian et al.,
2010), formed from gas-phase species often through reac-
tions taking place in clouds, fog, and aqueous aerosol parti-
cles (Hecobian et al., 2010). Reactions between small, mul-
tifunction aldehydes such as glyoxal (GX) and ammonium
salts (Shapiro et al., 2009; Kampf et al., 2012) and oxidation
reactions of phenolic species (Chang and Thompson, 2010)
are two examples of aqueous-phase brown carbon formation
processes.

Glyoxal uptake to deliquesced ammonium sulfate parti-
cles is rapid (Kroll et al., 2005) but is difficult to detect on
dry aerosol (Corrigan et al., 2008). Glyoxal reacts to form
brown carbon imidazole derivatives in solutions containing
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ammonium ions (Shapiro et al., 2009; Noziere et al., 2009;
Galloway et al., 2009; Yu et al., 2011; Kampf et al., 2012;
Maxut et al., 2015) or primary amine species such as glycine
or methylamine (De Haan et al., 2009a, b). While in bulk
aqueous solution these reactions take hours to days (Shapiro
et al., 2009; Noziere et al., 2009; Powelson et al., 2014), they
can occur in minutes in aqueous aerosol particles, likely due
to surface reactivity of glyoxal in its monohydrate form (De
Haan et al., 2009a).

In this work, we report rapid and reversible browning of
dry ammonium sulfate (AS), AS–glycine, and methylammo-
nium sulfate (MeAS) aerosol particles upon exposure to gas-
phase glyoxal. This browning process is not accompanied by
appreciable particle growth and is reversed upon addition of
water vapor.

2 Methods

2.1 Large chamber experiments

CESAM is a 4.2 m3 temperature- and pressure-controlled,
stirred, stainless steel chamber (Wang et al., 2011) with so-
lar simulator lamps (Harris et al., 2017) and held just above
ambient pressure with automated flows of high-purity O2
and liquid N2 boil-off at a respective 20/80 v/v ratio. The
chamber-gas-phase contents were monitored by a relative
humidity (RH) sensor (Vaisala HMP234 Humicap), long-
path Fourier-transform infrared (FTIR) spectroscopy (Bruker
Tensor 37, 182.5±0.5 m path length; Wang et al., 2011; gly-
oxal integrated band intensity at 2950–2700 cm−1

= 6.34×
10−18 cm molec.−1; Eurochamp, 2020), and high-resolution
proton transfer reaction mass spectrometry (PTR-MS, KORE
Tech. Series II, inlet temperature 100 ◦C, proton transfer re-
actor P = 1.64 mbar, glow discharge P = 1.94 mbar, PTR
entry voltage = 400 V, E/N ratio = 130). Polydisperse seed
particles (TSI 3076 atomizer) were diffusion-dried before
addition to the dry chamber. They were then continuously
sampled through a 1 m Nafion drying tube to scanning mo-
bility particle sizing (SMPS; TSI, 20–900 nm) and cavity-
attenuated phase shift single-scattering albedo (CAPS-ssa;
450 nm; Aerodyne; Onasch et al., 2015) spectrometers. A
particle-into-liquid sampler (PILS; Brechtel Manufacturing)
sampled N2-diluted chamber aerosol through an activated
carbon denuder into a capillary waveguide UV–vis spec-
trometer (LWCC-100, 0.94 m path length). Water vapor was
added in bursts from a stainless steel boiler (Wang et al.,
2011), and chamber RH was subsequently stabilized by rout-
ing inlet N2 flow through a heated high-purity water bub-
bler. A droplet spectrometer (Palas Welas Digital 2000, 0.5
to 15 µm diameter, on chamber flange; Wang et al., 2011) ex-
tended the size range of detected aerosol into supermicron
particles. CAPS-ssa aerosol extinction and scattering signals
were zeroed against filtered chamber air every 5 min to en-
sure that any gas-phase species absorbing light at 450 nm

does not influence measurements and averaged to SMPS scan
frequency. SMPS number and concentrations and PTR-MS
signals were corrected for dilution caused by flows into the
chamber. SMPS size distributions were also corrected using
size-dependent wall losses measured for AS particles in the
chamber.

2.2 Small chamber experiments

Additional experiments were conducted in a 300 L collapsi-
ble Tedlar chamber. Aerosols were generated from 0.1 %
w/w aqueous solutions (TSI 3076 atomizer) and diffusion-
dried (except in experiments on “wet” aerosol). Glyoxal
production was monitored at the inlet by absorbance at
405 nm using a cavity ring-down (CRD) spectrometer and a
cross section of 4.491×10−20 cm2 molec.−1 (Volkamer et al.,
2005b). Glyoxal concentrations at the chamber outlet were
measured in test experiments to determine wall loss rates (∼
6.7× 10−4 s−1). Glyoxal inlet concentrations, flow mixing
ratios, and wall loss rates were then used to estimate glyoxal
chamber concentrations. Aerosol particles were sampled via
diffusion driers by a quadrupole aerosol mass spectrometer
(Q-AMS; Aerodyne), CAPS-ssa (Aerodyne, 450 nm), SMPS
(TSI), CRD (405 and 530 nm; Ugelow et al., 2017), and pho-
toacoustic spectrometers (PASs; 405 and 530 nm; Ugelow et
al., 2017), all of which were periodically baselined through
filters to eliminate interferences by gas-phase species. RH
sensors monitored humidity levels at the aerosol inlet, cham-
ber outlet, and dried chamber outlet flows. Water vapor was
added in certain experiments by passing inlet flows through
Nafion humidifiers.

2.3 Chemicals

Reagents were used as received from Sigma-Aldrich un-
less otherwise mentioned. Solutions for aerosol generation
were generated by dilution of glycine (>99 %) to 5 mM,
AS (>99 %) to 1.2–10 mM, or sodium sulfate (≥ 99 %) to
7 mM in deionized water (> 18 M�, ELGA Maxima). MeAS
was generated by mixing methylamine and sulfuric acid
(Mallinckrodt) solutions at a 2 : 1 molar ratio; after dilution
to 6.3 mM, solution pH was 4.5. Gas-phase glyoxal was gen-
erated by heating solid mixtures of glyoxal trimer dihydrate
(Fluka, > 95 %) and P2O5 (99 %) to 110–150 ◦C; the glyoxal
produced was flushed into the chamber with dry N2 (Volka-
mer et al., 2009).

3 Results

Chamber experiments in which aerosol particles were ex-
posed to gas-phase glyoxal are summarized in Table 1.
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Table 1. Summary of glyoxal gas addition experiments.

Experiment no. [GX]a Aerosol Seed aerosol Seed RH at Mass Albedo
(ppm) type conc. density glyoxal increase change,

(µg m−3) (g cm−3) addition (%) (µg m−3) 450 nm

1a 0.05 AS 145 1.77 < 5 < 0.3 −0.034b

1b 0.50 AS 145 1.77 < 5 −3 (decr) −0.233b

2 0.25 AS–gly 100 1.30 < 5 < 1 −0.094b

3c 0.04d AS 90 1.77 < 5 0.9e,f
−0.001

4c 0.30d AS 40f 1.77 < 5 < 1 −0.069
5c 0.14d MeAS 80f 1.44g < 5 < 1 −0.15
6c 2.0d Na2SO4 70f 1.46h 35 < 1 0
7c 1.1d wet AS 180f 1.24i 81 < 1 −0.012
8c

∼ 1.2d wet AS 170 1.43i 38 < 1 −0.010
9 0.12j wet AS 90 1.26i 77 < 1.6 −0.013b

GX: glyoxal; AS: ammonium sulfate; gly: glycine; MeAS: methylammonium sulfate. a Tabulated GX concentrations are peak values
measured by PTR-MS with a ±20 % relative uncertainty unless otherwise stated. b Occurring within 5 min of GX pulse addition.
c Experiment performed in 300 L Tedlar bag. d GX added gradually rather than in pulse; max concentration estimated from PAS
measurements at chamber inlet. e Organic aerosol growth. f Measured by Q-AMS spectrometry. g From Qiu and Zhang (2012). h From
Merck (1983), for the decahydrate. i From AIM model IV (Clegg and Wexler, 2011). j Estimated from addition of bulb pressure and
comparison of PTR-MS signals of m/z 72 imine product.

3.1 Dry AS and AS–glycine aerosol (Experiments 1–4)

Experiment 1, in which dry AS aerosol was sequentially ex-
posed to 0.05 and then 0.50 ppm glyoxal at t = 4:47 and
5:16 h, respectively, is summarized in Fig. 1. Both glyoxal
additions were detectable by PTR-MS at m/z 31 and 59.
The m/z 59 signal, however, is elevated in the clean and dry
chamber before glyoxal is added, indicating background in-
terference by another chemical species or its fragment in the
mass spectrometer. SMPS data, which have been corrected
for wall losses and for dilution, show no observable aerosol
growth after either glyoxal gas addition. This lack of ob-
served growth at < 5 % RH is consistent with previous studies
under very dry conditions (Kroll et al., 2005; De Haan et al.,
2017). However, as the optical and chemical measurements
described below show, this lack of growth does not indicate
a lack of glyoxal reactivity.

The addition of 0.05 ppm glyoxal gas at t = 4:47 h trig-
gered a short-lived drop in albedo by 0.034 that was observed
by CAPS-ssa spectrometry at 450 nm. A second, larger gly-
oxal addition (0.50 ppm) at t = 5:16 h caused albedo to plum-
met to 0.75, a change 7 times greater than the first. Even
though particle sizes did not increase after either glyoxal
addition, the significant albedo declines indicate that gly-
oxal reactions rapidly produced light-absorbing products at
dry AS particle surfaces. Over the next 30 min, as glyoxal
gas-phase concentrations decreased by half (likely to due to
chamber wall losses), aerosol albedo recovered proportion-
ately, indicating that this surface brown carbon formation un-
der dry conditions is fully reversible.

At t = 5:46 h (Fig. 1), the chamber was humidified to 50 %
RH, a level which would not deliquesce the AS seeds (Biskos
et al., 2006) but which may produce as many as 1–2 mono-

layers of adsorbed water at aerosol surfaces consisting of
solid AS (Denjean et al., 2014; Romakkaniemi et al., 2001)
or glyoxal reaction products (Hawkins et al., 2014). Humid-
ification to 50 % RH caused significant changes to both the
gas and aerosol phases. Glyoxal PTR-MS signals and aerosol
albedo returned back to near-baseline levels within a few
minutes, while the dried aerosol mass measured by SMPS
spectrometry jumped downward by 15 %. The loss of gas-
phase glyoxal, again without aerosol growth, suggests that
water greatly accelerated glyoxal loss rates to the steel cham-
ber walls. The simultaneous albedo recovery and SMPS mass
loss indicate that humidification destroyed all brown car-
bon products that absorb 450 nm light, converting some frac-
tion of them to gas-phase products. A proposed mechanism
for this process is discussed below. It is significant that no
browning was observed in PILS-sampled aerosol at any point
during Experiment 1, presumably due to the same mecha-
nism occurring during wet sampling.

The 15 % aerosol mass loss upon humidification to 50 %
RH is surprising given that no corresponding mass gain was
recorded during exposure to glyoxal under dry conditions.
However, the lack of mass gain under dry conditions can-
not be interpreted as a lack of glyoxal uptake or reactivity
given the large observed drop in albedo. Instead, the mass
loss upon humidification suggests that at least 15 % of the
volume of AS seeds had been replaced under dry conditions
by glyoxal reaction products that could break down into gas-
phase species once water was added. Simultaneous increases
in gas-phase PTR-MS signals for m/z 47 (formic acid) and
61 (acetic acid) indicate that these acids were two of the gas-
phase products generated by humidification. Formic acid is a
known byproduct of imidazole production by aqueous-phase
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Figure 1. Pulse glyoxal addition Experiment 1 on dry AS aerosol in
CESAM chamber. Top: chamber RH. Middle panels: dilution- and
water-corrected PTR-MS traces for gas-phase glyoxal (m/z= 59,
green line), a glyoxal fragment (m/z 31, dotted dark green line),
formic acid (m/z 47, red line); SMPS particulate mass corrected for
wall losses and dilution (assuming aerosol density = 1.77 g cm−3,
open black circles), with increasing mass for the first 90 min indi-
cating AS aerosol addition to chamber. Bottom: single-scattering
albedo (red dots) and albedo values calculated from data immedi-
ately following instrument baseline on gas-phase contents of cham-
ber (red triangles), measured by CAPS-ssa spectrometry at 450 nm.
Sequential gas “(g)” additions of 0.05 and 0.50 ppm glyoxal (verti-
cal dotted line) and water vapor addition (dashed lines) are labeled.
Elapsed time is measured from the start of N2 addition to the evac-
uated chamber.

glyoxal–ammonia reactions (De Haan et al., 2009a; Yu et al.,
2011).

Dried seed aerosol particles atomized from AS–glycine
mixtures were also exposed to 0.25 ppm glyoxal under dry
conditions in Experiment 2 (Fig. S1 in the Supplement). The
response of these internally mixed seeds to glyoxal expo-
sure was comparable to that of pure AS seeds. No growth
was observed by SMPS spectrometry, and aerosol albedo at
450 nm was anticorrelated with PTR-MS glyoxal signals at
m/z 59, as before. The most significant difference between
the experiments is that there was no 15 % loss of aerosol
mass observed by SMPS spectrometry upon humidification

of the chamber to 50 % RH even though acetic and formic
acid were again released into the gas phase. This may be due
to the lower volatility of deprotonated seed particle materials
(glycine vs. ammonia). In addition, most glycine-derivatized
imidazole products have permanent positive charges and are
not in equilibrium with volatile neutral forms (De Haan et
al., 2009a).

To better understand the reactive processes happening in
the dry aerosol particles, further experiments were conducted
in a 300 L Tedlar chamber probed by Q-AMS, SMPS, CAPS-
ssa, CRD, and PAS spectrometry. Figure S2 shows an AMS
ion correlation plot comparing average signals before and af-
ter 40 ppb glyoxal was added over a period of 25 min to the
dry chamber containing AS aerosol in Experiment 3. Unsur-
prisingly, the slow addition of this smaller amount of glyoxal
did not cause observable net particle growth or a decline in
aerosol albedo at 450 nm. A marginal (0.9 µg m−3, S/N =
1.6) increase in total organic aerosol was observed by Q-
AMS spectrometry during glyoxal addition, associated with
significant increases (+30 % or more relative to conserved
aerosol species) in ion signals at m/z 15 (CH+3 or NH+

fragments), 23 (Na+), 29 (CHO+ fragment), 47 (formic
acid + H+ or a CH3O+2 fragment), 69 (imidazole-H+), 81
(pyrazine-H+), and 97 and 119 (imidazole carboxaldehyde,
IC, ionized by H+ or Na+, respectively). Slight decreases in
aerosol water signals were observed atm/z 16. The detection
of particle-phase imidazole, pyrazine, and IC suggests the
presence of larger, light-absorbing molecules such as 2,2’-
biimidazole and N-heterocycle derivatives that are typically
associated with the products detected here (Kampf et al.,
2012; Hawkins et al., 2018; Grace et al., 2019). However,
detection of the larger product molecules directly from dry
aerosol may require a soft, direct ionization technique such as
extractive electrospray ionization mass spectrometry (EESI-
MS).

Proposed chemical mechanisms for brown carbon produc-
tion at AS particle surfaces are summarized in Schemes 1
and S1 in the Supplement. Except for steps where new N-
heterocyclic rings are formed, all processes are reversible
(Kampf et al., 2012). Thus, a reduction in gas-phase gly-
oxal concentrations will shift reversible reactions away from
brown carbon back towards simple N-heterocycle prod-
ucts, which do not absorb 450 nm light. Humidification to
50 % RH accelerates this shift by removing more glyoxal
from the gas phase and perhaps also by hydrolysis of dou-
ble bonds and dilution effects (Rincón et al., 2010; Phillips
and Smith, 2014, 2015). Humidification also triggers the ob-
served evaporation of formate as formic acid and perhaps the
evaporation of other small N-containing products.

The anticorrelation of albedo with glyoxal concentrations
in Experiments 1–4 is summarized in Fig. 2. Although AS–
glycine–glyoxal bulk aqueous mixtures have been shown to
brown more than mixtures without glycine (Trainic et al.,
2012; Powelson et al., 2014), here we see that dry AS and
AS–glycine aerosol particles brown similarly for a given
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Scheme 1. Proposed brown carbon formation pathways of glyoxal
reacting at solid AS aerosol particle surfaces. Products detected in
this study are shown in blue. IC: 1H-imidazole-2-carboxaldehyde.
BI: 2,2’-biimidazole (Kampf et al., 2012). AS: ammonium sulfate.
GX: glyoxal. We assume, following Kampf et al., 2012, that all re-
actions are reversible except for formation of N-heterocycle rings.
See Scheme S1 for corresponding diagram of pathways under con-
ditions of humidification.

concentration of gas-phase glyoxal. This may indicate that
glycine is not at the aerosol surface or that glycine surfaces,
when present, are less able to retain adsorbed water in the
dry chamber. We therefore fit the combined dataset from all
four experiments. Albedo shows a clear downward curva-
ture at high glyoxal concentrations such that the relationship
is best fit by a second-order polynomial. This suggests that
the formation of the compounds absorbing at 450 nm is pro-
portional to [glyoxal]2. While glyoxal–ammonium reactions
are first-order in glyoxal in dilute solution when [glyoxal] ×
[NH+4 ] < 1.2 M, they switch to second-order at higher con-
centrations (Noziere et al., 2009), which are likely in these
dry experiments.

Reversible surface browning of AS aerosol under dry
conditions was also recently observed during exposures to
methylglyoxal gas (De Haan et al., 2017). The albedo val-
ues observed before and after two methylglyoxal additions
are shown for comparison in Fig. 2. Although the data show
a slight negative offset due to particle size effects, judging
by the slope it is clear that methylglyoxal’s effect on the
albedo of dry AS aerosol is significantly less than glyoxal.
This is the opposite of the trend in brown carbon production
in bulk aqueous solutions at pH 5, where methylglyoxal is
much more effective in generating light-absorbing products
(Powelson et al., 2014), perhaps due to the fact that its ketone
functional group is far less likely to be inactivated by hydra-
tion than the aldehyde groups on both molecules. However,
in these dry aerosol experiments in which water is scarce,
glyoxal’s greater attraction to water (seen in its much higher

Figure 2. Top: anticorrelation of particle single-scattering albedo
at 450 nm (with a 3–7 min delay) with gas-phase concentrations of
glyoxal (Experiments 1, 3, and 4: dry AS, red +; Experiment 2:
dry AS–glycine, filled red squares; Experiment 5: dry MeAS, green
circles) and methylglyoxal (black triangles, from De Haan et al.,
2017) as measured by PTR-MS (Experiments 1–2 and methylgly-
oxal data) or photoacoustic spectroscopy (Experiments 3–5).

Henry’s law coefficient; Betterton and Hoffmann, 1988; Ip et
al., 2009; Kampf et al., 2013) may allow it to interact with
small amounts of adsorbed water at the AS aerosol surface
far more effectively than methylglyoxal.

3.2 Dry MeAS or sodium sulfate aerosol (Experiments
5–6)

Gas-phase glyoxal was added to a few other types of seed
particles in the small chamber. In experiments on MeAS
seeds (Experiment 5, Fig. 3, top panel), the slow addition
of 140 ppb of glyoxal caused a matching drop of −0.15
in aerosol albedo measured by CAPS-ssa spectrometry at
450 nm and an increase in aerosol absorbance to 28 Mm−1

measured by the PAS at 405 nm. The albedo decline at
450 nm (Fig. 2, green circles) is 4 times greater than ob-
served on AS seeds at similar glyoxal concentrations. This
result is consistent with earlier aqueous-phase studies show-
ing greater browning in glyoxal–methylamine mixtures than
in glyoxal–AS mixtures at the same pH (Powelson et al.,
2014).

Albedo at 405 nm was calculated from PAS and CRD sig-
nals in Experiment 5 (Fig. S3), showing that albedo had
dropped to 0.30 by 13:11 and remained at this level for
45 min. These albedo values indicate that maximum light ab-
sorbance at 405 nm was 4.7 times greater than at 450 nm and
persisted for a longer period of time after glyoxal gas con-
centrations declined. At even longer wavelengths (530 nm),
PAS aerosol absorbance reached only 0.9 Mm−1, further in-
dicating highly wavelength-dependent light absorption. The
absorption spectra of atmospheric brown carbon are typi-
cally well fit by exponential decay functions. Such feature-
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Figure 3. Gradual glyoxal addition experiments in a small Tedlar
chamber on (a) dry methylammonium sulfate aerosol (Experiment
5) and (b) dry sodium sulfate aerosol (Experiment 6). Aerosol ab-
sorbance measured by PASs at 405 nm (purple lines) and 530 nm
(green lines), aerosol albedo measured by CAPS-ssa at 450 nm
(blue triangles, blue axis), and estimated glyoxal concentrations in
the chamber (red line, red axis; calculated using GX measurements
at inlet, flow mixing ratios, and GX wall loss rate= 6.7×10−4 s−1).
CRD, SMPS, and 405 nm albedo data for these experiments are dis-
played in Figs. S3 and S4.

less spectra can be characterized by an Ångstrom absorp-
tion coefficient α, which is the slope of a log(absorbance)
vs. log(wavelength) plot. Comparing the amount of light ab-
sorbance at 405, 450, and 530 nm at 13:11 in Experiment 5
gives α =−12.7± 0.8 (Fig. S5). A similar analysis of Ex-
periment 4 (Figs. S6 and S7, dry AS–glyoxal), the only other
experiment with measurable absorbance at all three wave-
lengths, gives a comparable α =−16± 4. Thus, it appears
that brown carbon formed by glyoxal under dry conditions
on AS and MeAS aerosol absorbs light with similar wave-
length dependence.

In an experiment on dry sodium sulfate seeds at ∼
35 % RH in the small Tedlar chamber (Experiment 6,
Fig. 3) glyoxal concentrations were increased from zero to
∼ 2000 ppb over 30 min. During this time, albedo at 450 nm
remained at 1± 0.005, and no aerosol absorbance was mea-
sured by PASs at either 530 or 405 nm. The lack of browning
observed even at such high glyoxal concentrations confirms
that ammonium or methylammonium ions (or ammonia or
methylamine) are necessary reaction partners with glyoxal

in the browning process observed in Experiments 1–5. It also
confirms that our CAPS-ssa and PAS measurements are not
biased by absorbance due to gas-phase glyoxal.

3.3 Deliquesced AS aerosol (Experiments 7–9)

Finally, three experiments exploring browning on wet rather
than dry AS aerosol were conducted at RH ranging from
38 % to 81 %. The highest-humidity experiment (Experiment
7) is summarized in Fig. S8. In Experiments 7–9, albedo de-
clines of 0.013 or less were observed following addition of
1.1, 1.2, and 0.12 ppm of glyoxal gas, respectively. If graphed
in Fig. 2, the resulting slopes for Experiments 7–8 would
be more than 1000 times flatter than the methylglyoxal data
shown for comparison. While some of the glyoxal gas added
may have been quickly lost to the walls of the humid cham-
bers as an equilibrium is established (Kroll et al., 2005),
especially in Experiments 7 and 9, it is clear that wet AS
aerosol particles brown much less than dry AS, AS–glycine,
or MeAS aerosol upon exposure to glyoxal.

Enhanced AS aerosol browning under dry conditions is
surprising given that glyoxal Maillard chemistry is normally
considered to be an aqueous-phase process. One clue to the
nature of the dry browning process is seen in the slight deple-
tion of water signals observed in all dry experiments probed
by Q-AMS spectrometry (nos. 3, 4, 5, Figs. S2 and S9) af-
ter browning caused by glyoxal exposure (most water is re-
moved from aerosol particles in the AMS inlet). The ex-
tra water depletion associated with glyoxal exposure of dry
aerosol, which was not observed in deliquesced aerosol ex-
periments probed by Q-AMS spectrometry (nos. 7–8), sug-
gests that even under dry conditions, glyoxal is able to ac-
cess and deplete trace amounts of aerosol-phase surface wa-
ter. Any adsorbed water would be saturated with ammonium
(or methylammonium) sulfate, and the presence of dissolved
AS is known to greatly increase glyoxal uptake via a “salting-
in” effect (Kampf et al., 2013; Waxman et al., 2015), while
methylglyoxal solubility is reduced by salting out (Waxman
et al., 2015). Thus, both glyoxal and AS are expected to be
concentrated in any surface-adsorbed water present. In a pre-
vious study, similar reasoning was used to explain glyoxal
uptake on solid seed particles at RH levels as low as 10 %
(Corrigan et al., 2008). Furthermore, the scarcity of water
will favor dehydration of products, helping to form light-
absorbing conjugated double bonds.

4 Discussion

Since methylglyoxal is generally less abundant in the atmo-
sphere than glyoxal (Igawa et al., 1989; Munger et al., 1995;
Matsumoto et al., 2005) and since the browning of dry AS
by methylglyoxal is much less than that of glyoxal, likely
due to salting effects (Kampf et al., 2013; Waxman et al.,
2015), we focus on the effects of instantaneous browning of
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atmospheric aerosol particles due to interaction with glyoxal.
We assume that all tropospheric sulfate particles contain am-
monium and, as an upper limit, that solid-phase tropospheric
sulfate particles would brown as much as the pure, fully dry
AS particles used in this study regardless of the presence of
additional aerosol species. The first assumption is generally
reasonable (Jimenez et al., 2009) since acidic sulfate aerosol
takes up ammonia in the atmosphere, while the second as-
sumption will clearly result in the estimation of an upper
limit since the presence of other materials at aerosol particle
surfaces has been shown to limit the extent of the interac-
tions between glyoxal and ammonium ions (Drozd and Mc-
Neill, 2014), and few locations in the troposphere are as dry
as in this study. Tropospheric aerosol particles are typically
semisolid- or solid-phase except low over the Amazon and
Arctic (Shiraiwa et al., 2017).

Using the function for albedo of −0.97[GX]2−
0.16[GX] + 1.00 from Fig. 2, a global 24 h average
glyoxal concentration of ∼ 70 ppt (Fu et al., 2008; Zhou and
Mopper, 1990; Munger et al., 1995; Spaulding et al., 2003;
Matsunaga et al., 2004; Müller et al., 2005; Ieda et al., 2006)
would lower particle albedo at 450 nm (1Albedo(450)) by
only 1.1× 10−5. Using our measured Ångstrom absorption
coefficient α =−16 for glyoxal–AS brown carbon formed
under dry conditions, we estimated albedo depression at
other wavelengths (1Albedo(λ)) between 280 and 4000 nm
using Eq. (1):

α =
log

(
1Albedo(λ)

1Albedo(450 nm)

)
log

(
λ

450

) . (1)

These albedo decreases were multiplied by the solar spec-
trum (ASTM G173-03) times the wavelength-dependent
scattering function of AS aerosol (Nemesure et al., 1995) at
each wavelength (Fig. S10) and then integrated across the
spectrum. A total of 97 % of the solar energy absorbed by this
brown carbon source is predicted to be in the UV range, with
the absorbed energy peaking near 330 nm. The total fraction
of energy absorbed by glyoxal–AS brown carbon (absorp-
tion × solar spectrum × scattering function) is calculated to
be 1.9× 10−4, relative to the total energy scattered by AS
aerosol (solar spectrum× scattering function). We then mul-
tiply this energy fraction times the magnitude of global di-
rect radiative forcing due to sulfate scattering, estimated by
the Intergovernmental Panel on Climate Change (IPCC) to
be −0.4± 0.2 W m−2 (Ramaswamy et al., 2018), to quan-
tify a global radiative forcing of +7.6× 10−5 W m−2 by dry
browning of ammonium sulfate aerosol. This climate forc-
ing is negligible compared to the global net aerosol direct
effect (−0.45± 0.5 W m−2) or absorption by black carbon
(+0.4+0.4

−0.35 W m−2; Ramaswamy et al., 2018) and is less than
1 % of estimates of radiative forcing by secondary brown
carbon (+0.015 to +0.081 W m−2; Mukai and Ambe, 1986;
Hecobian et al., 2010; Shamjad et al., 2015; Tuccella et al.,
2020). While dry browning of ammonium sulfate aerosol in

the presence of ambient glyoxal thus does not appear to be
globally significant in terms of radiative forcing, it may be re-
gionally significant in polluted areas where glyoxal concen-
trations can greatly exceed 70 ppt (Volkamer et al., 2005a),
where larger loadings of AS aerosol are present, or where
aerosol browning by glyoxal occurs in the upper troposphere
(Zhang et al., 2017).

Data availability. The underlying data are publicly available
at https://doi.org/10.22371/02.2020.006 (De Haan et al., 2020).
Datasets from experiments 1, 2, and 9 are also accessible in the Eu-
rochamp database (Expt 1: https://data.eurochamp.org/data-access/
chamber-experiments/1401b4e7-8a02-481e-8ab0-3ebcfe94fbf2,
Doussin, 2020a; Expt 2: https://data.eurochamp.org/data-access/
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Doussin, 2020b; Expt 9: https://data.eurochamp.org/data-access/
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Doussin, 2020c).
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