
HAL Id: hal-03330628
https://hal.science/hal-03330628

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ensuring License Compliance in Linked Data with
Query Relaxation

Benjamin Moreau, Patricia Serrano-Alvarado

To cite this version:
Benjamin Moreau, Patricia Serrano-Alvarado. Ensuring License Compliance in Linked Data with
Query Relaxation. Transactions on Large-Scale Data- and Knowledge-Centered Systems XLIX, LNCS.
TLDKS - 12920, , pp.97-129, 2021, Lecture Notes in Computer Science. Transactions on Large-Scale
Data- and Knowledge-Centered Systems, 978-3-662-64148-4. �10.1007/978-3-662-64148-4_4�. �hal-
03330628�

https://hal.science/hal-03330628
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Ensuring License Compliance in Linked Data
with Query Relaxation

Benjamin Moreau1 and Patricia Serrano-Alvarado2

1 OpenDataSoft {Name.Lastname}@opendatasoft.com
2 Nantes University, LS2N, CNRS, UMR6004, 44000 Nantes, France

{Name.LastName@}univ-nantes.fr

Abstract. When two or more licensed datasets participate in evaluat-
ing a federated query, to be reusable, the query result must be protected
by a license compliant with each license of the involved datasets. Due
to incompatibilities or contradictions among licenses, such a license does
not always exist, leading to a query result that cannot be licensed nor
reused on a legal basis. We propose to deal with this issue during the
federated query processing by dynamically discarding datasets of con-
flicting licenses. However, this solution may generate an empty query
result. To face this problem, we use query relaxation techniques. Our
problem statement is, given a SPARQL query and a federation of li-
censed datasets, how to guarantee a relevant and non-empty query result
whose license is compliant with each license of involved datasets? To de-
tect and prevent license conflicts, we propose FLiQue, a license-aware
query processing strategy for federated query engines. Our challenge is
to limit communication costs when the query relaxation process is neces-
sary. Experiments show that FLiQue guarantees license compliance, and
if necessary, can find relevant relaxed federated queries with a limited
overhead in terms of execution time.

Keywords: Linked Data, federated queries, licenses, query relaxation, compat-
ibility of licenses.

1 Introduction and Motivation

The Linked Data is a network of distributed and interlinked data sources. Fed-
erated query processing allows to query such a network of live and up-to-date
datasets. A federated SPARQL query can retrieve information from several RDF
data sources distributed across the Linked Data. Since the beginning of Linked
Data, licensing has been an important issue [1, 36]. To legally facilitate reuse,
data owners should systematically associate licenses with resources before shar-
ing or publishing them. There are still several open issues to legally access and
reuse linked data, as shown in recent Dagstuhl seminars [2,12] and surveys [14].

When two or more licensed datasets participate in evaluating of a federated
query, the query result must be protected by a license that is compliant with each
license of involved datasets. Licenses specify precisely the conditions of reuse of

2 Benjamin Moreau and Patricia Serrano-Alvarado

data, i.e., what actions are permitted, obliged, and prohibited. Machine-readable
licenses are necessary to ensure automatic license compliance. The W3C Open
Digital Rights Language (ODRL) [17] allows defining machine-readable licenses.
The Data Licenses Clearance Center (DALICC) [25], proposes a library of well-
known standard machine-readable licenses.

We consider that a license lj is compliant with a license li if a resource
licensed under li can be licensed under lj without violating li. If lj is compliant
with li, then li is compatible with lj . Unfortunately, it is not always possible
to find a license compliant with each license of datasets involved in a federated
query [22]. If such a license does not exist, the query result cannot be licensed
and, thus, should not be reused nor published.

We consider that a query whose result set cannot be licensed should not be
executed. Notice that having the rights to query several datasets individually
does not mean having the rights to execute a federated query involving these
datasets.

CC
BY

KEGG

ChEBI

Affymetrix

New York Times

Geonames

Linked MDB

SW Dog Food

CC
BY-NC-

SA
Jamendo

License

Dataset

Compatible with
Has license

CC
BY-SA

CC
BY-NC

Linked TCGA

Drug bank

DBpedia

Fig. 1: The compatibility graph of licenses for datasets of LargeRDFBench.

Consider datasets of LargeRDFBench [32], a benchmark for federated query
processing. Figure 1 shows the compatibility graph of licenses3 that protect Larg-
eRDFBench datasets. By transitivity, license CC BY is compatible with itself,
with CC BY-SA, CC BY-NC, and CC BY-NC-SA. Thus, datasets protected by
CC BY can be queried along with other datasets protected by these licenses.
However, the whole set of datasets of Figure 1 cannot be queried together be-
cause there is no license compliant with the fourth licenses. For instance, there
is no license with which CC BY-SA and CC BY-NC-SA are both compatible.

3 This compatibility graph conforms to the license compatibility chart shown in https:
//wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility.

https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility
https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility

Ensuring License Compliance in Linked Data with Query Relaxation 3

One solution to the incompatibility of licenses is negotiating with data prov-
iders to change a conflicting license, e.g., to ask DBpedia to change its license to
CC BY or CC BY-NC. Nevertheless, negotiation takes time and is not always
possible. A second solution is to discard datasets that are protected by conflicting
licenses. However, this solution can lead to a query with an empty result set. To
face this problem, we use query relaxation techniques. That is, we use relaxation
rules to relax the query constraints to match triples of other datasets.

CC
BY

D1

CC
BY-NC-

SA

License

Dataset

Compatible with
Has license

CC
BY-SA

CC
BY-NC D3D2

Sub-federation
F2 with D1 and

D3

Sub-federation
F1 with D1 and

D2

Fig. 2: Compatibility graph of licenses for datasets D1, D2, and D3. As there
is no license compatible with licenses of these datasets, sub-federations F1 and
F2 should be created. Queries (or relaxed queries) can be evaluated over these
sub-federations to produce licensable results.

SELECT ? student WHERE {
? student rd f : type ex : Student . #tp1@{D3} CC BY−NC
? student ex : e n r o l l e d I n ? course . #tp2@{D3} CC BY−NC
? course ex : heldAt ex : Univers i tyOfNantes . #tp3@{D1} CC BY
ex : Ben ex : t eaches ? course . #tp4@{D2} CC BY−SA

}

Listing 1.1: A SPARQL query Q.

Consider the compatibility graph of licenses for datasets D1, D2, and D3 of
Figure 24 and the federated query Q of Listing 1.1, which asks for students
enrolled in a course held at the University of Nantes taught by ex:Ben. The query
is annotated with the datasets over which each triple pattern can be evaluated.
D2 and D3 should not be queried together because their licenses are respectively
CC BY-SA and CC BY-NC, and there is no license compliant with both. Thus,

4 To simplify, we show the same licenses as in Figure 1. However, a compatibility graph
of licenses can contain many more licenses and not limited to Creative Commons
ones.

4 Benjamin Moreau and Patricia Serrano-Alvarado

the result set of the query cannot be licensed. Creating a sub-federation of sources
with compatible licenses withoutD2makes the result set licensable with CC BY-
NC or with another license compliant with CC BY-NC (e.g., CC BY-NC-SA).
The problem is that the query gives no result because there is no more dataset to
evaluate tp4. The case is similar with a sub-federation with compatible licenses
discarding D3 because there is no more dataset to evaluate tp1 and tp2.

As none subset of licence compatible sources can produce a non-empty result
set for Q, we propose using query relaxation techniques. For instance, in such
relaxation, instead of asking for students in tp1, the federated query could ask
for persons, or instead of asking for courses taught by ex:Ben in tp4, the fed-
erated query could ask for courses taught by anybody. The number of possible
relaxed queries can be huge. To find the most relevant relaxed federated queries
efficiently, we use approaches that compute relaxed queries from the most to the
least similar to the original query [7,8,15,16]. Though, the most similar queries
may produce no results. In a distributed environment, verifying each relaxed fed-
erated query is not feasible. So the challenge is to find the most similar relaxed
queries that return a non-empty result from datasets with compatible licenses
while limiting communication costs.

Our research question is, given a SPARQL query and a federation of licensed
datasets, how to guarantee a relevant and non-empty query result whose license
is compliant with each license of involved datasets? The challenge is to limit the
communication cost when the relaxation process is necessary.

We propose FLiQue5, a Federated License-aware Query processing strategy.
FLiQue is designed to detect and prevent license conflicts and gives informed
feedback with licenses able to protect a result set of a federated query. If nec-
essary, it applies distributed query relaxation to propose a set of most similar
relaxed federated queries whose result set can be licensed. Our solution com-
bines existing approaches, namely, CaLi [22] to maintain a compatibility graph
of licenses dynamically and to detect license conflicts, OMBS [8] to efficiently
find relaxed queries and data summaries of CostFed [34] to limit communication
overhead during the federated query relaxation. Our contributions are:

– an efficient license-aware federated query processing strategy able to relax
federated queries,

– an implementation of a license-aware federated query engine, and
– an experimental evaluation of our solution.

In the next, Section 2 overviews related works, Section 3 introduces FLiQue,
Section 4 shows experimental results, and Section 5 concludes.

2 Related Work

To our knowledge, there is no federated query engine that ensures license com-
pliance with all licenses involved in query execution.
5 In French, FLiQue is a homophone of flic, which means cop.

Ensuring License Compliance in Linked Data with Query Relaxation 5

Many works focus on access control over linked data using policy-based [5,
19, 20, 28], view-based [9], or query-rewriting [24] approaches. In these works,
datasets are protected by access control rules that prevent non-authorized users
from querying data of each dataset. These approaches do not resolve our problem
statement because having the right to query datasets individually does not mean
that it should be possible to execute a federated query involving these datasets.

2.1 Compatibility graph of licenses

To know if a result set can be licensed, we need to know the license(s) with
whom all licenses of datasets involved in a federated query are compatible. Au-
tomatic license compatibility requires machine-readable licenses. License expres-
sion languages such as CC REL6, ODRL, or L4LOD7 enable fine-grained RDF
description of licenses. Works like [31] and [3] use natural language process-
ing to automatically generate RDF licenses from licenses described in natural
language. Other works such as [13, 30] propose a set of well-known licenses in
RDF described in CC REL and ODRL8. Thereby, we suppose that there exist
consistent licenses described in RDF.

A compatibility graph of licenses contains a set of licenses partially ordered
by compatibility. It can be defined by hand using, for instance, the license com-
patibility chart of Creative Commons. But licenses used in the Linked Data are
not limited to Creative Commons licenses. For instance, the license library of
DALICC has at least 60 licenses9.

Works like [37] address the problem of license compatibility and license com-
bination. If licenses are compatible, a new license compliant with combined ones
is generated. This approach allows defining the compatibility graph of licenses
progressively. However, it does not allow us to know all the compliant licenses
that can be used to protect a query result set. That is, all licenses that are
compliant to all licenses involved in a query.

In the context of Free Open Source Software (FOSS), [18, 38] propose com-
patibility graphs of well-known licenses. Based on a directed acyclic graph, they
propose to detect license violations in existing software packages. They consider
that license li is compatible with lj if the graph contains a path from li to lj .
The combined software can be protected by the license lj , possibly with addi-
tions from li. However, as such a graph is built from a manual interpretation
of each license, its generalisation and automation is not possible. In particular,
with these approaches it is not possible to add automatically a new license to
the compatibility graph of licenses.

CaLi [21, 22], is a lattice-based model for license orderings. It automatically
positions a license over a set of licenses in terms of compatibility and compliance.

6 https://creativecommons.org/ns
7 https://ns.inria.fr/l4lod/
8 Creative Commons also proposes its licences in RDF https://github.com/
creativecommons/cc.licenserdf/tree/master/cc/licenserdf/licenses

9 https://www.dalicc.net/license-library

https://creativecommons.org/ns
https://ns.inria.fr/l4lod/
https://github.com/creativecommons/cc.licenserdf/tree/master/cc/licenserdf/licenses
https://github.com/creativecommons/cc.licenserdf/tree/master/cc/licenserdf/licenses
https://www.dalicc.net/license-library

6 Benjamin Moreau and Patricia Serrano-Alvarado

The originality of CaLi is to pass through a restrictiveness relation to partially
order10 licenses in terms of compatibility and compliance. In a license, actions
(e.g., read, modify, distribute, etc.) can be distributed in status (e.g., permis-
sions, duties, and prohibitions). To decide if a license li is less restrictive than lj ,
it is necessary to know if an action in a status is considered less restrictive than
the same action in another status. li is said to be less restrictive than lj if for all
actions a ∈ A, the status of a in li is less restrictive than the status of a in lj . The
restrictiveness relation between licenses can be obtained automatically, accord-
ing to the status of actions. Thus, based on lattice-ordered sets, CaLi defines
a restrictiveness relation among licenses. If two licenses have a restrictiveness
relation, then they may have a compatibility relation too.

To identify the compatibility among licenses, CaLi refines the restrictive-
ness relation with two types of constraints (license constraints and compatibility
constraints). The goal is to take into account the semantics of actions.

– License constraints allow to identify non-valid licenses and can be defined
as a set of conditions. A condition of a license constraint defines if an action
should exist or not in a status. For instance the condition (cc:CommercialUse
/∈Duty) means that a valid license should not have the action cc:CommercialUse
as a duty. The condition (cc:ShareAlike /∈ Prohibition) means that a valid
license should not prohibit the cc:ShareAlike action.

– A compatibility constraint concerns two licenses where one is more restrictive
than another. For instance, consider the action cc:ShareAlike which requires
that the distribution of derivative works be under the same license only.
The compatibility constraint (cc:ShareAlike /∈ Duty) /∈ li means that li is
compatible with lj if the action cc:ShareAlike is not a duty in li. In another
example, the compatibility constraint (cc:DerivativeWorks /∈ Prohibition)
/∈ li means that li is compatible with lj if li does not prohibit the distribution
of a derivative resource, regardless of the license.

CaLi is able to define all the licenses that can be expressed with a set of
actions over a lattice of status11. For instance, the CaLi ordering for the set of
7 actions used by Creative Commons has 972 licenses12. CaLi can provide all
the licenses that can protect a result set ordered by restrictiveness. It can also
identify which licenses are in conflict. Knowing the compatibility of a license
allows estimating the reusability of the protected resource. On the other hand,
knowing the compliance of a license allows knowing to which extent other licensed
resources can be reused13.
10 A partial order is any binary relation that is reflexive, antisymmetric, and transitive.
11 A demonstration tool to define, step by step, a compatibility graph of licenses with

the CaLi approach can be found here https://saas.ls2n.fr/cali/.
12 That is |S||A| minus the licenses discarded by constraints, where S is a set of status

and A a set of actions. The three status considered by Creative Commons licenses
are: permissions, duties, and prohibitions.

13 Next compatibility graphs of licenses illustrate the CaLi approach:
http://cali.priloo.univ-nantes.fr/ld/graph,
http://cali.priloo.univ-nantes.fr/rep/graph

https://saas.ls2n.fr/cali/
http://cali.priloo.univ-nantes.fr/ld/graph
http://cali.priloo.univ-nantes.fr/rep/graph

Ensuring License Compliance in Linked Data with Query Relaxation 7

In this work, we use CaLi to verify license compliance thanks to its facilities
to add dynamically new licenses to the compatibility graph of licenses.

When the result set of a federated query cannot be licensed, we propose to
define sub-federations that avoid license conflicts. If there is no sub-federation
able to produce a licensable and non-empty result set for the user query, we
propose alternative queries through query relaxation.

2.2 Query relaxation

Our goal is to provide users with a means to automatically identify new queries
that are similar to the user query and whose result set can be licensed.

The OPTIONAL clause of SPARQL14 was defined to allow query users to
add supplementary information to a query solution. That is, if available, the
solution of optional triple patterns is added to the query solution. This clause
allows users to relax some query’s conditions because triple patterns defined
as optional extend the query result of the non-optional triple patterns. As this
clause is not added dynamically (query users define which triple patterns are
OPTIONAL), it cannot be useful when a license compatibility problem arises
during the source selection phase of the query execution.

Query relaxation techniques are used to provide an alternative for queries
producing no result. Transformations are applied to user queries to relax con-
straints in order to generalize the query so that it can produce more answers.
The solution espace grows in a combinatorial way with the number of relaxation
steps and the size of the query. Existing works propose techniques to reduce this
espace producing the most similar relaxed queries. We are interested in query
relaxation techniques that could be used to relax efficiently a federated query.

There are works that focus on symbolic forms of semantic similarity that
can be represented with graph patterns [7]. They identify similar entities based
on common graph patterns. Their approach is a symbolic form of the k-nearest
neighbours where numerical distances are replaced by graph patterns that pro-
vide an intelligible representation of how similar two nodes are. The drawback
of this approach is that it needs all possible answers of relaxed queries (i.e., the
entities). As we do not consider a centralized RDF graph with all datasources,
this solution applied to a distributed environnement would be very expensive in
communication and execution time.

Other works focus on ontology-based similarity measures to retrieve addi-
tional answers of possible relevance [8,15,16]. They use logical relaxation of the
query conditions based on RDFS entailment and RDFS ontologies.

[16] proposes a RELAX clause as a generalization of the OPTIONAL clause
for the conjunctive part of a SPARQL query. Their goal is to relax the query
without simply dropping the optional triple pattern. The idea consists of relax-
ation rules that use information from the ontology; these include relaxing a class
to its super-class, relaxing a property to its super-property, etc. Other relax-
ations can be entailed without an ontology, which include replacing constants
14 https://www.w3.org/TR/rdf-sparql-query/#OptionalMatching

https://www.w3.org/TR/rdf-sparql-query/#OptionalMatching

8 Benjamin Moreau and Patricia Serrano-Alvarado

with variables, suppressing join dependencies and dropping triple patterns. All
possible relaxed queries are organized in a lattice called relaxation graph. They
propose to rank the results of a query based on how closely they satisfy the query.
Their ranking is based on the relaxation graph, in which relaxed versions of the
original query are ordered from less to more general from a logical standpoint.
Given two relaxed queries of the user query, if one is subsumed by the other,
then the former relaxed query is better. Subsumption is based on the hypothe-
sis that if c1 is a subclass of c2, c2 is the class that subsumes c1 and c2 (idem
for subproperties). The size of the relaxation graph grows combinatorially with
the number of relaxation rules, the richness of the ontology, and the relaxation
possibilities of each triple pattern in the original query.

[8, 15] focus on obtaining a certain number of alternative results (top-k) by
relaxing a query that produces no results. Their challenge is to execute as less
as possible relaxed queries to obtain the top-k results. Relaxed queries are exe-
cuted in a similarity-based rank order to avoid executing all relaxed queries in
the relaxation graph. Information content [29] is used to measure the similarity
between a relaxed query and the original query. That is, statistical information
about the concerned dataset, like the number of entities per class and the num-
ber of triples per property. Nevertheless, the number of failing relaxed queries
executed before obtaining the top-k results can be large. Thus, it is necessary
to identify unnecessary relaxations that do not generate new answers. Relaxed
queries containing unnecessary relaxation should not be executed.

[15] proposes OBFS (Optimized Best First Search algorithm) to identify
unnecessary relaxations in a similarity-based relaxation graph. It is based on the
selectivity of relaxations using the number of entities per class or the number of
triples per property. If the selectivity is the same before and after the relaxation,
the relaxation is considered unnecessary. That is, if the number of entities of a
class is equal to the number of entities of its super-class, then the class relaxation
does not generate new answers. The same idea is used for property relaxation.

[8] proposes OMBS (Optimized Minimal-failing-sub-queries-Based Search
algorithm) as an improvement to OBFS. The contribution of OMBS is to iden-
tify the minimal sets of triple patterns in failing queries that fail to return an-
swers. These failing sets of triple patterns are called Minimal Failing Sub-queries
(MFS). MFS existing in a query must be relaxed, otherwise, the query fails in
producing results. Relaxed queries where the MFS are not relaxed are considered
unnecessary. OMBS defines optimal similarity-based relaxation graphs where re-
laxed queries producing no results (based on MFS), or not new results (based
on selectivity) are not executed.

Table 1 overviews these three approaches from four dimensions: (1) RDFS
properties used, (2) similarity definition, (3) information needed for the query
relaxation process and (4) methods used to prune the relaxation graph.

1. The RDFS properties used in the relaxation rules proposed by [16], con-
cern the domain, the range, the subproperties and the subclasses of a class
used in a triple pattern. [15] and [8], base their relaxation rules only on the
subproperties and subclasses of a class used in a triple pattern.

Ensuring License Compliance in Linked Data with Query Relaxation 9

RDFS properties Similarity definition Information needed Pruning method

[16]

rdfs:domain
rdfs:range
rdfs:subPropertyOf
rdfs:subClassOf

Subsumption relation among
relaxed queries Ontology Discards indirect ontology relations

[15] rdfs:subPropertyOfrdfs:subClassOf

Based on information content measures
between the original query
and the relaxed queries

Ontology and
dataset statistics

Based on the number of instances
Based on join dependency

[8] rdfs:subPropertyOf
rdfs:subClassOf

Based on information content measures
between the original query
and the relaxed queries

Ontology and
dataset statistics Based on failure causes of triple patterns

Table 1: An analysis of existing approaches about ontology-based query relax-
ation.

2. The similarity definition of [16], is only based on the relations of the re-
laxation graph, where relaxed queries are ordered based on the subsumption
relation of their result sets. This partial order makes that it is not always
possible to compare two relaxed queries. [15] and [8] use information con-
tent measures to obtain a total order between the original query and the
relaxed queries. Such similarity is computed using statistical information of
the concerned dataset, e.g., the number of entities per class and the number
of triples per property.

3. Concerning the information needed, these works use the dataset ontology.
[15] and [8] also use dataset statistics to calculate the information content
of relaxed queries.

4. For pruning the relaxation graph, [16] avoids redundant query relaxation
by reducing ontologies, e.g., it uses the ontology without saturation. [15] uses
the number of entities per classes and the number of triples per properties
to identify query relaxation that does not generate new results. Finally, [8]
identifies the set of triple patterns that fail to return results. Thus, it only
keeps relaxed queries that do not contain failing triple patterns.

We consider that these three approaches [8,15,16] can be used to relax feder-
ated queries because they can produce relaxed queries using the dataset ontology
and statistical information (to calculate selectivity) without needing the RDF
graph (i.e., the instances). We use OMBS to find relaxed queries because it op-
timizes obtaining the number of relaxed queries that potentially give non-empty
results.

2.3 Data summaries

In this work, we need data summaries to calculate similarity measures (based
on information content), selectivity, but also to limit the communication over-
head, during the distributed query relaxation process. A very complet survey
of the state-of-the about summarization methods for semantic RDF graphs is
proposed in [4]. In federated query processing, some federated query engines,
use statistics to reduce the number of requests sent to data sources during the
source selection and the query optimization steps [10, 27, 33, 34]. Analysis of
state-of-the-art federated query engines can be found in [23,26,32].

10 Benjamin Moreau and Patricia Serrano-Alvarado

VoID15, is the Vocabulary of Interlinked Datasets [6]. It allows to formally de-
scribe linked RDF datasets with metadata like contact, topic, licenses, SPARQL
endpoint, url of data dumps, basic statistics, etc. In particular, with VoID de-
scriptions is possible to describe dataset instances, i.e., the number of instances
of a given class and the number of triples that have a certain predicate.

DARQ [27] (from Distributed ARQ)16 is the first query engine that allows
querying multiple, distributed SPARQL endpoints. DARQ introduced service
descriptions which provide a declarative description of the data available from
an SPARQL endpoint17. Service descriptions include statistical information used
for query optimization represented in RDF. A service description describes the
data available from a data source in form of capabilities. Capabilities define what
kind of triple patterns can be answered by the data source. The definition of capa-
bilities is based on predicates. Statistical information includes the total number
of triples in data sources and average selectivity estimates for combinations of
subject, predicate, and object.

SPLENDID [10], a query optimization strategy for federating SPARQL end-
points, uses VoID descriptions of datasets to speed-up query processing. The
statistical information for every predicate and type are organized in inverted
indexes which map predicates and types to a set of tuples containing the data
source and the number of occurrences in the data source. For triple patterns
with bound variables which are not covered in the VoID statistics, SPLENDID
uses SPARQL ASK queries including the triple pattern to all pre-selected data
sources and remove failing sources. This improves the source selection efficiency.

HIBISCuS [33], a join-aware source selection algorithm, discards dataset that
are relevant for a triple pattern, but that do not contribute to a query result. It
proposes detailed data summaries, dataset capabilities, containing all the distinct
properties with all the URI authorities of their subjects and objects. HIBISCuS
has been implemented over the federated query engines FedX [35] and SPLEN-
DID.

CostFed [34], an index-assisted federated engine for SPARQL endpoints, ex-
tends and improves the join-aware source selection of HIBISCuS by considering
URI prefixes instead of URI authorities. It uses such prefixes to prune irrelevant
data sources more effectively than the state-of-the-art approaches. In particular,
HIBISCuS fails to prune the data sources that share the same URI authority.
CostFed overcomes this problem by using source specific sets of strings that
many URIs in the data source begin with (these strings are the prefixes of the
URI strings). The CostFed query planner also considers the skew distribution of
subjects and objects per predicate in each data source. In addition, separate car-
dinality estimation is used for multi-valued predicates. The dataset capabilities
calculated by CostFed are more efficient than other state-of-the-art approaches,
its source selection chooses, in general, more pertinently the data sources for
each query.

15 https://www.w3.org/TR/void/
16 DARQ is an extension of ARQ http://jena.sourceforge.net/ARQ/
17 The VoID vocabulary was proposed after DARQ.

https://www.w3.org/TR/void/
http://jena.sourceforge.net/ARQ/

Ensuring License Compliance in Linked Data with Query Relaxation 11

In our work we use VoID descriptions to calculate similarity measures and
the join-aware source selection of CostFed to limit communication costs during
the distributed query relaxation process.

3 A Federated License-Aware Query Processing Strategy

To legally facilitate reuse of query results when retrieving information from sev-
eral RDF data sources distributed across the Linked Data, we propose FLiQue, a
federated license-aware query processing strategy to detect and prevent license
conflicts. The goal of FLiQue is to empower federated query engines to produce
licensable query results.

A federation is a set of SPARQL endpoints. We consider that a sub-federation
is a subset of endpoints of a federation.

FLiQue gives informed feedback with the set of licenses that can protect a
result set of a federated query. When the result set of a federated query can-
not be licensed, FLiQue defines sub-federations that avoid license conflicts. If
there is no sub-federation able to produce a licensable and non-empty result set,
FLiQue proposes alternative relaxed federated queries.

Figure 3 shows the global architecture of a license-aware federated query en-
gine using FLiQue. We consider that there exist a federation of endpoints whose
datasetes are associated to licenses18. FLiQue is located between the source se-
lection and the query optimization functions of a federated query engine. A
join-aware source selection [34], selects the capable datasets for each triple pat-
tern of a query. Using a compatibility graph of licenses [22], we search for li-
censes compliant with each license of the chosen capable datasets. Then, the
query is executed and the result set returned with the licenses that can pro-
tect it. If no compliant license exists, we identify the license conflicts and define
sub-federations that avoid these conflicts. If one sub-federation can produce a
licensable and non-empty result, the query is executed. Otherwise, based on the
OMBS approach [8], we propose to the query issuer a set of relaxed queries whose
result sets are licensable and non-empty.

Several sub-federations may produce a licensable and non-empty result. In
that case, it is possible to choose the sub-federation that produces a result set
licensable by the least restrictive license19.

Consider the query Q of Listing 1.1, and the federation containing datasets
D1, D2, and D3 shown in Tables 2-4. As there is no license compliant with the
licenses of D2 and D3, the result set of Q cannot be licensed. Thus, our strategy
defines the sub-federations F1={D1, D2} and F2={D1, D3} that avoid license
conflicts (cf. Figure 2). The source selection for Q over F1 and F2 fails to obtain
a data source for each triple pattern. This launches a process of federated query
relaxation for each sub-federation.
18 Datasets without licenses can be associated with the most permissive license (e.g.,

CC Zero, and ODbL) or can be discarded from the federation.
19 Other choices could be defined, for example, based on the cardinality estimations of

result sets or based on the number of involved data sources.

12 Benjamin Moreau and Patricia Serrano-Alvarado

Query parsing

Source selection

Query optimization

Query execution

Federated query engine

Data
source

Data
source

Data
source

Data
source

Endpoint Endpoint EndpointEndpoint

License-aware Query
processing strategy

(FLiQue)

SPARQL query

Client side

Servers side

License License License License

Compatibity
graph of
licenses

Licensable query result

Summa
ries

Fig. 3: Global architecture of a federated license-aware query engine using
FLiQue.

To avoid verifying that the result set of an important number of relaxed
queries is not empty, our strategy defines, by sub-federation, an optimal similarity-
based relaxation graph. When we find one licensable and non-empty relaxed
query, we stop the relaxation process.

Figure 4 shows Q and three relaxed queries. Figure 5 shows the ontology
used in our example. As we explain next, Q′4b and Q′4d are the most similar
licensable, and non-empty relaxed query for the sub-federations F1 and F2 re-
spectively. Identifying sub-federations with compatible licenses and queries (or
relaxed queries) that produce non-empty results are the contributions of FLiQue.

In the next, Section 3.1 shows the relaxation techniques we use. Section 3.2
presents the information content measures that allow us to rank relaxed queries.
Section 3.3 shows the data summaries that allow limiting communication costs.
Finally, Section 3.4 explains the global algorithm of FLiQue and how we define
the similarity-based relaxation graph.

3.1 Query relaxation techniques used in FLiQue

In this work, we use query relaxation using RDFS entailment and RDFS ontolo-
gies. We consider that ontologies of datasets are accessible and that SPARQL

Ensuring License Compliance in Linked Data with Query Relaxation 13

Subject Predicate Object
ex:UniversityOfNantes rdf:type ex:University
ex:SemanticWeb rdf:type ex:Course
ex:SemanticWeb ex:heldAt ex:UniversityOfNantes
ex:Databases rdf:type ex:Course
ex:Databases ex:heldAt ex:UniversityOfNantes

Table 2: Dataset D1 containing courses. D1 has licence CC BY.

Subject Predicate Object
ex:Ben rdf:type ex:Teacher
ex:Ben rdf:type ex:Person
ex:Ben ex:attends ex:SemanticWeb
ex:Ben ex:teaches ex:SemanticWeb
ex:Mary rdf:type ex:Teacher
ex:Mary rdf:type ex:Person
ex:Mary ex:attends ex:Databases
ex:Mary ex:teaches ex:Databases
my:William rdf:type ex:Student
my:William rdf:type ex:Person
my:William ex:attends ex:Databases
my:William ex:enrolledIn ex:Databases

Table 3: Dataset D2 containing
teachers and students. D2 has li-
cence CC BY-SA.

Subject Predicate Object
ex:Elsa rdf:type ex:Student
ex:Elsa rdf:type ex:Person
ex:Elsa ex:attends ex:SemanticWeb
ex:Elsa ex:enrolledIn ex:SemanticWeb

Table 4: Dataset D3 containing
students. D3 has licence CC BY-
NC.

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D3}
 ?student ex:enrolledIn ?course . #tp2@{D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ex:Ben ex:teaches ?course . #tp4@{D2}
 }

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ?x ex:teaches ?course . #tp4’b@{D2}
 }

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ?x ex:attends ?course . #tp4’d@{D2,D3}
 }

Q’4b with Simple relaxation Result licensable
Sim=0.66 in F1 if D3 excluded

Q’4d with Simple and Property relaxations Result licensable
Sim=0,33 in F2 if D2 excluded

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ?y . #tp3b@{D1}
 ?x ex:teaches ?course . #tp4’b@{D2}
 }

Q’3b4b with Simple relaxations Result licensable
 Sim=0.44 in F1 if D3 excludedQ (original query) Result no licensable

Fig. 4: Example of SPARQL query Q and some relaxed queries Q’.

Fig. 5: Ontology representing courses in a university. �sc is rdfs:subClassOf, �sp

is rdfs:subPropertyOf, ←↩d is rdfs:domain, and ↪→r is rdfs:range.

14 Benjamin Moreau and Patricia Serrano-Alvarado

tp4
(ex: Ben ex:teaches ?course)

(ex:Ben ex:attends ?course)

(?x ex:attends ?course)

(?x ?y ?course)

(?x ex:teaches ?course)

(ex: Ben ?y ?course)

tp4’a tp4’b

tp4’c tp4’d

tp4’e

Level 1

Level 2

Level 3

Fig. 6: Relaxation lattice of triple pattern tp4 of query Q.

endpoints expose saturated RDF data (or support on-the-fly entailment) accord-
ing to the RDFS entailment rules rdfs7 and rdfs9. We use the relaxations of triple
patterns and queries as proposed in [15].

Triple Pattern Relaxation. Given two triple patterns tp and tp′, tp′ is a re-
laxed triple pattern obtained from tp, denoted tp ≺ tp′, by applying one or more
triple pattern relaxations. We use the three following triple pattern relaxations:

– Simple relaxation replaces a constant of a triple pattern by a variable.
For example, tp4 = 〈ex:Ben, ex:teaches, ?course〉, can be relaxed to tp′4 =
〈?x, ex:teaches, ?course〉, thus tp4 ≺s tp

′
4.

– Type relaxation replaces a class C of a triple pattern with its super-class C ′.
It is based on the rdfs9 rule (rdfs:subClassOf).
For example, tp1 = 〈?student, rdf:type, ex:Student〉, can be relaxed to tp′1 =
〈?student, rdf:type, ex:Person〉, thus tp1 ≺sc tp

′
1.

– Property relaxation replaces a property P of a triple pattern with its super-
property P ′. It is based on the rdfs7 rule (rdfs:subPropertyOf). For example,
tp1 = 〈?student, ex:enrolledIn, ?course〉, can be relaxed to tp′1 = 〈?student,
ex:attends, ?course〉, thus tp1 ≺sp tp′1.

The set of all possible relaxed triple patterns of tp can be represented as a lattice
called a relaxation lattice of a triple pattern. Figure 6 shows this lattice for triple
pattern tp4 of Q. tp4′b, tp4′c and tp4′e show simple relaxations. tp4′a shows a
property relaxation. This lattice has three levels of relaxation.

Query Relaxation. Given two queries Q and Q′, Q′ is a relaxed query obtained
from Q, denoted Q ≺ Q′, by applying one or more triple pattern relaxations
to triple patterns of Q. ≺ is a partial order over the set of all possible relaxed
queries of Q. This order can be represented as a lattice, called a relaxation lattice

Ensuring License Compliance in Linked Data with Query Relaxation 15

of a query (or relaxation graph). Figure 4 shows the query Q and three relaxed
queries of its relaxation graph where, Q ≺ Q′4b ≺ Q′4d and Q ≺ Q′4b ≺ Q′3b4b.

3.2 Information content measures used in FLiQue

Analyzing all relaxed queries is time-consuming and unnecessary. We use in-
formation content measures to compute the similarity of relaxed queries to the
original query. To avoid the analysis of an important number relaxed queries, our
approach generates and executes relaxed queries from the most to the least sim-
ilar. This execution allows to verify that the result set is not empty. It is stopped
when the first result is returned. We use the similarity mesures proposed in [15],
and explained in the following.

Similarity between terms. FLiQue uses three similarity measures for terms
in a triple pattern. They correspond to the three relaxations described in Section
3.1.

– Similarity between classes is Sim(C,C ′) = IC(C′)
IC(C) where IC(C) is the in-

formation content of C: −logPr(C), where Pr(C) = |Instances(C)|
|Instances| is the

probability of finding an instance of class C in the RDF dataset.
For example, if the subject or object of a triple pattern is a class c1 and is
relaxed to its super class c2 using type relaxation, the similarity between c1
and c2 is Sim(c1, c2).
Notice that, the similarity between classes is zero when all the instances in
the RDF dataset belong to the super class C ′, i.e., Pr(C ′) = 1 and thus
−logPr(C ′) = 0. Notice also that the similarity between classes is undefined
when all the instances belong to the super class C ′, and none to C, i.e.,
Pr(C) = 0 and thus −logPr(C ′) = undefined.

– Similarity between properties is Sim(P, P ′) = IC(P ′)
IC(P) where IC(P) is the

information content of P : −logPr(P), where Pr(P) = |Triples(P)|
|Triples| is the

probability of finding a property of P in triples of the RDF dataset.
For example, if the predicate of a triple pattern is a property p1 and is relaxed
to its super property p2 using property relaxation, the similarity between p1
and p2 is Sim(p1, p2).
Notice that as the similarity between classes, the similarity between prop-
erties is zero when all the triples in the RDF dataset belong to the super
property P ′, and the similarity between properties is undefined when all the
triples belong to the super property P ′, and none to P .

– Similarity between constants and variables is Sim(Tconst, Tvar) = 0.
For example, if the object of a triple pattern tconst is a class and is relaxed
to a variable tvar using simple relaxation, the similarity between tconst and
tvar is 0.

16 Benjamin Moreau and Patricia Serrano-Alvarado

Similarity between triple patterns Given two triple patterns tp and tp′,
such that tp ≺ tp′, the similarity of the triple pattern tp′ to the original triple
pattern tp, denoted Sim(tp, tp′), is the average of the similarities between the
terms of the triple patterns:

Sim(tp, tp′) =
1

3
.Sim(s, s′) +

1

3
.Sim(p, p′) +

1

3
.Sim(o, o′)

where s, p, o, s′, p′ and o′ are respectively the subject, predicate and object of
the triple pattern tp and the relaxed triple pattern tp′. If tp′ and tp′′ are two
relaxations obtained from tp and tp′ ≺ tp′′ then Sim(tp, tp′) ≥ Sim(tp, tp′′).

Similarity between queries. Given two queries Q and Q′, such that Q ≺
Q′, the similarity of the original query Q′ to the original query Q, denoted
Sim(Q,Q′), is the product of the similarity between triple patterns of the query:

Sim(Q,Q′) =

n∏
i=1

wi.Sim(tpi, tp
′
i)

Where tpi is a triple pattern of Q, tp′i a triple pattern of Q′, tpi ≺ tp′i, and
wi ∈ [0, 1] is the weight of triple patterns tpi. Weight can be specified by the
user to take into account the importance of a triple pattern tpi in query Q. Thus
Sim(Q,Q′) ∈ [0, 1] is a function that defines a total order among relaxed queries.

This similarity function is monotone, i.e., given two relaxed queriesQ′(tp′1, ..., tp′n)
andQ′′(tp′′1 , ..., tp

′′
n) of the user queryQ, ifQ′ ≺ Q′′ then Sim(Q,Q′)≥ Sim(Q,Q′′).

Considering the query Q and datasets D1 and D2, Sim(Q,Q′4b) = 0.66 is
greater than Sim(Q,Q′3b4b) = 0.44. This verifies the ordering of these relaxed
queries, Q′4b ≺ Q′3b4b, where Q′4b is analyzed first to see if it returns some
results.

3.3 Data summaries used in FLiQue

FLiQue collects dataset summaries and ontologies before executing queries. A
data summary is a compact structure that represents an RDF dataset. Using
dataset statistics and dataset capabilities as in [34], allow us to limit communi-
cation cost in the similarity calculation and the source selection process.

Dataset statistics contain VoID descriptions, such as the number of entities per
class and the number of triples per property. Having dataset statistics is twofold;
they allow computing similarities, and they help in the source selection process.
Tables 5 and 6 show respectively statistics about properties and classes for sub-
federations F1 and F2. In Table 5, the property ex:teaches has no triples in F2.
So there is no data source for tp4 and tp4′b (cf. Figure 6). That allows to identify
whatever query including these triple patterns as failing queries if executed over
F2.

Ensuring License Compliance in Linked Data with Query Relaxation 17

Dataset capabilities contain the properties of a dataset with the common pre-
fixes of their subjects and objects. We recall that prefixes are strings that many
URIs in the data source begin with. The rdf:type property, is treated differently.
The prefixes of its objects are replaced by all the classes used in the dataset.
Dataset capabilities are used in the source selection process. The goal is to dis-
card datasets that individually return results for a triple pattern, but that fail
to perform joins with other triple patterns of the query. For multiple triple pat-
terns of a query sharing a variable, the dataset capabilities allow identifying
data sources that do not share the same URIs prefixes and thus whose joins
yield empty results. This information allows performing an optimal source se-
lection by limiting the communication with the data sources. Table 7 shows the
capabilities of F1 and F2.

Consider tp4′a: 〈ex:Ben ex:attends ?cours〉
Statistics in Table 5 show one triple for ex:attends in F2 but capabilities of

this property in F2 show only one subject prefix that is ex: Elsa, not ex:Ben.
Thus, capabilities of F2 allow to identify tp4′a as failing if executed over F2.

Consider also the join tp3 . tp4′c, that is a subject-object join:
{?course ex:heldAt ex:UniversityOfNantes . ex:Ben ?y ?course }
Statistics in Table 5 show two triples for ex:heldAt in both sub-federations.

But, analyzing the subject and object capabilities of whatever property (the
predicate of tp4′c is a variable) of F2, we notice that when there exists ex:Seman-
ticWeb in the object, the subject contains ex: Elsa, not ex:Ben, so the join depen-
dency on ?course cannot be satisfied. Thus, thanks to the dataset capabilities
of F2, we identify that whatever query with this join will be identified as failing
query. Notice that this join over F1 cannot be discarded with the statistiques
and dataset capabilities. Indeed, this join returns results over F1.

3.4 Global FLiQue algorithm and the similarity-based relaxation
graph

Algorithm 1 shows the global approach of FLiQue. After a process of source
selection for a federated query Q, FLiQue checks if the result set can be licensed
(Line 5). If that is the case (L == ∅ is false), the query plan as long as the set of
licences that can protect the result set are returned (Line 18). Then the query
is optimized and executed as usual.

When the result set cannot be licensed because there is no license compliant
to every license of selected datasets, FLiQue calls for a source selection over
each sub-federation (Line 6).Each sub-federation that can evaluate the query is
returned as long as with the corresponding set of compliant licenses (Line 10).

If all source selections fail (Line 11), FLiQue relaxes the query conditions and
proposes alternative relaxed federated queries. We consider that a source selec-
tion process fails if it does not identify at least one data source to evaluate each
triple pattern of the federated query. Based on techniques of query relaxation in

18 Benjamin Moreau and Patricia Serrano-Alvarado

Number of triples
Property F1 = {D1, D2} F2 = {D1, D3}

ex:enrolledIn 1 1
ex:teaches 2 0
ex:heldAt 2 2
ex:attends 3 1
rdf:type 9 5
Total 17 9

Table 5: Statistics of properties in federations F1 and F2.

Number of entities
Class F1 = {D1, D2} F2 = {D1, D3}

ex:University 1 1
ex:Student 1 1
ex:Teacher 2 0
ex:Course 2 2
ex:Person 3 1
Total 6 4

Table 6: Statistics of classes in federations F1 and F2.

F1 = {D1, D2} F2 = {D1, D3}
Property subjPrefixes objPrefixes subjPrefixes objPrefixes

rdf:type ex:
my: William

ex:Person
ex:Student
ex:Teacher

ex:

ex:University
ex:Course
ex:Student
ex:Person

ex:heldAt ex: ex:UniversityOfNantes ex: ex:UniversityOfNantes

ex:attends ex:
my: William ex: ex: Elsa ex:SemanticWeb

ex:teaches ex: ex:
ex:enrolledIn my: William ex:Database ex: Elsa ex:SemanticWeb

Table 7: Capabilities of sub-federations F1 and F2.

RDF [8] (Line 13), FLiQue proposes to the query issuer a relaxed query for each
sub-federation whose result set is licensable and non-empty (line 16).

The result of the algorithm is a set of triplets representing what we call
candidate queries. A triplet 〈Q,E,L〉 is a query Q that returns a non-empty
result set when executed on a sub-federation of endpoints E that can be protected
by a set of licenses L.

When the distributed query relaxation is necessary, we define an optimal
similarity-based relaxation graph by sub-federation. The goal is to avoid verify-
ing that the result set of an important number of relaxed queries is not empty.
Relaxed queries are generated and executed from the most to the least similar.
When we find one licensable and non-empty candidate query, we stop the relax-
ation process. OMBS [8] guarantees that a candidate query is the most similar
to Q for a sub-federation.

In the following, we explain how FLiQue finds the candidate query for the
sub-federation F2. First, the algorithm computes the MFS of the original query,
MFS(Q)={ex:Ben ex:teaches ?course}. It contains only tp4 because F2 does not
contain a data source to evaluate tp4. Using the MFS, the algorithm considers
only relaxed queries that contain a relaxation of tp4.

Ensuring License Compliance in Linked Data with Query Relaxation 19

Algorithm 1: The global approach of FLiQue.
1 Function FLiQue(Q, F , E, S, C):

Data: Q: RDF Query,
F : Federation of endpoints,
E ⊆ F : Set of pertinent endpoints for Q,
S: Dataset summaries,
C: Compatibility graph of licenses.
Result: A set of tuples 〈Q,E,L〉 representing candidate queries with

corresponding pertinent endpoints and compliant licenses.
2 Fs = {F ′ ⊆ F | compliantLicenses(F ′, C) 6= ∅}
3 Candidates = ∅
4 L = compliantLicenses(E,C)
5 if L == ∅ then
6 for F ′ ∈ Fs do
7 E′=sourceSelection(Q,F ′, S)
8 if E′ can evaluate Q then

// The original query can be executed on E′.
9 L = compliantLicenses(E′,C)

10 Candidates = Candidates ∪ 〈Q,E′,L〉

11 if Candidates == ∅ then
// Compute most similar queries.

12 for F ′ ∈ Fs do
13 Q′ = queryRelaxation(Q, F ′, S)
14 E′=sourceSelection(Q′, F ′, S)

// The relaxed query Q′ can be executed on E′.
15 L = compliantLicenses(E′,C)
16 Candidates = Candidates ∪ 〈Q′, E′,L〉

17 else
// The original query can be executed on E.

18 Candidates = {〈Q,E,L〉}
19 return Candidates

The relaxation algorithm uses a query queue ordered by similarity. This query
queue gives the analysis order of relaxed queries. Figure 7(a) shows a relaxation
sub-graph where tp4, that is the MFS, is relaxed, and Figure 7(b) shows the
analysis process of relaxed queries with the query queue (failing relaxed queries
are in gray).

Relaxed queries of the first level, Q′4a and Q′4b, are generated and inserted
in the queue, see (1) in Figure 7(b). The most similar relaxed query Q′4a is
analyzed. It is identified as a failing query (cf. Section 3.3), thus it is relaxed,
so Q′4c, and Q′4d are generated and inserted in the query queue (2). Then, the
first relaxed query in the queue, now Q′4b, is analyzed. It is also identified as a
failing query so it is relaxed in Q′4d, which is already in the queue (3). Then,
the first relaxed query in the queue, now Q′4c, is analyzed and identified as a

20 Benjamin Moreau and Patricia Serrano-Alvarado

tp1 tp2 tp3 tp4
Q, sim=1

tp1 tp2 tp3 tp4’a
Q’4a, sim=0.66

tp1 tp2 tp3 tp4’b
Q’4b, sim=0.66

tp1 tp2 tp3 tp4’c
Q’4c, sim=0.66

tp1 tp2 tp3 tp4’e
Q’4e, sim=0.33

tp1 tp2 tp3 tp4’d
Q’4d, sim=0.33

Q’4a
Q’4b

Q’4b
Q’4c
Q’4d

Q’4c
Q’4d

Q’4d
Q’4e

Q’4a Q’4cQ’4b

(b) Similarity-ordered query queue(a) Relaxation sub-graph

(1) (2) (3) (4)

Fig. 7: Relaxation sub-graph of Q over F2 with relaxations of tp4.

failing query, so it is relaxed into Q′4e, which is inserted in the queue (4). Then,
the first relaxed query in the queue, now Q′4d, is analyzed. It is not identified
as a failing query. It is executed, and it returns a non-empty result set. Thus,
Q′4d (in bold) is the candidate query of query Q for the federation F2, and the
relaxation process stops.

The MFS and the failing relaxed queries of this example are identified thanks
to data summaries without making requests to data sources (cf. Section 3.3).

In this example, we found a candidate query only with the relaxation of
tp4. But the relaxation may continue until all triple patterns are composed of
variables. A threshold of similarity can be used to avoid such a worst case.

Figure 4 shows the candidate query Q′4d, whose similarity with Q is 0.33.
This query asks for students attending a course held at the University of Nantes.

The candidate query for federation F1 is Q′4b, whose similarity with Q is
0.66. Figure 4 shows Q′4b, this query asks for students enrolled in a course held
at the University of Nantes and taught by someone.

CC BY-SA can protect relaxed queries for F1. Relaxed queries for F2 can
be protected by CC BY-NC but also by CC BY-NC-SA because both licenses
are compliant with licenses of D1 and D3. Table 8 shows the feedback returned
to the query issuer so that she can choose which query to execute.

Sub-federation Query Similarity Compliant licenses
F1={D1, D2} Q’4b 0.66 CC BY-SA
F2={D1, D3} Q’4d 0.33 CC BY-NC, CC BY-NC-SA

Table 8: FLiQue feedback with candidate queries for the user query Q.

Ensuring License Compliance in Linked Data with Query Relaxation 21

4 Experimental evaluation

The goal of our experimental evaluation is to measure the overhead produced
by the implementation of our proposal. In particular, (a) when the result set of
the original query is licensable, and (b) when the original query is relaxed.

4.1 Setup and implementation

FLiQue is implemented over CostFed, which relies on a join-aware triple-wise
source selection. Recent studies show that the source selection of CostFed least
overestimates the set of capable data sources, with a small number of ASK
requests [32,34]. These performances make CostFed a good choice for our license-
aware query processing strategy. The join ordering of CostFed is based on left-
deep join trees. It implements bind and symmetric hash joins.

Our test environment uses LargeRDFBench [32]. A benchmark with more
than 1 billion triples for SPARQL endpoints. This benchmark contains 32 feder-
ated queries that are executed over a federation of 11 interlinked data sources (we
consider the three Linked TCGA datasets as only one). We identified the license
of each dataset (cf. Figure 1). We use a Creative Commons CaLi ordering [22]
to verify compatibility and compliance among licenses.

LargeRDFBench was defined to evaluate and compare federated query en-
gines. It is composed of 14 simple queries (S1-S14), 10 complex queries (C1-C10),
and 8 large queries (L1-L8). The number of triple patterns in queries varies from
2 to 12 (the average is 7). Simple queries range from 2 to 7 triple patterns and
their execution time is small (few seconds). Complex queries add constraints to
simple queries. They range from 8 to 12 triple patterns and their evaluation is
costly in time (few minutes). Large queries were defined to be evaluated over
large datasets and involve large intermediate result sets. They range from 5 to
11 triple patterns and their evaluation is very costly (it can exceeds one hour).

In our experiments we are not interested in obtaining the complete query
results of all these queries but in showing that preserving licences during fed-
erated query processing is possible. Thus, queries were executed until obtaining
the first result (LIMIT 1 was added to all queries).

Our experiment runs on a single machine with a 160xIntel(R) Xeon(R) CPU
E7-8870 v4 2.10GHz 1,5 Tb RAM. Each dataset of LargeRDFBench is satu-
rated and made available using a single-threaded Virtuoso endpoint in a docker
container with 4 Gb RAM. Between each query execution, caches are reset.

4.2 Performance of FLiQue vs CostFed

To measure the overhead produced by FLiQue, we compare two different fed-
erated query engines: CostFed and CostFed+FLiQue (that we call FLiQue to
simplify). They correspond to the original implementation of CostFed20 and our

20 https://github.com/dice-group/CostFed

https://github.com/dice-group/CostFed

22 Benjamin Moreau and Patricia Serrano-Alvarado

Conflicting sources Conflicting licenses Queries
DBP, DB CC BY-SA, CC BY-NC S1, S10, C9
DBP, TCGA CC BY-SA, CC BY-NC L7
DBP, JA CC BY-SA, CC BY-NC-SA L6
DBP, DB, TCGA CC BY-SA, CC BY-NC C10
DBP, DB, TCGA, JA CC BY-SA, CC BY-NC, CC BY-NC-SA S6, S8, S9, C3, C5, C8, L1, L3,

L5, L8
Table 9: The 16 queries of LargeRDFBench whose result set cannot be licensed.
DBP (DBpedia), DB (Drug bank), TCGA (Linked TCGA), JA (Jamendo).

Fig. 8: Average time to get the first result of the 22 queries of LargeRDFBench
that can produce a licensable result set without relaxation.

extension of CostFed that includes FLiQue21. CostFed executes a query without
considering licenses while FLiQue guarantees license compliance of the result set.

We executed all queries 5 times with each federated query engine. We mea-
sured the time in milliseconds to return the first result of each query.

Using the capable data sources by query, and the compatibility graph of li-
censes, we identified 16 queries whose result set cannot be licensed. Table 9 shows
these queries, their conflicting capable data sources and conflicting licenses. 10
queries need to be relaxed, they are shown in bold. We recall that the DBpedia
license (CC BY-SA) is not compliant with the licenses of Jamendo (CC BY-NC-
SA), Linked TCGA and Drug bank (CC BY-NC). The average time to check
license conflicts is 296 milliseconds which is negligible.

Evaluation of queries that do not need relaxation. Figure 8 presents the
execution time of the 22 queries of LargeRDFBench that do not need relaxation.
We identify two sets of queries.

– For 16 queries, {S2, S3, S4, S5, S7, S11, S12, S13, S14, C1, C2, C4, C6,
C7, L2, L4}, FLiQue finds a license that can protect the result set when
the query is executed on the complete federation. For these queries, the
overhead of FLiQue is negligible and corresponds to the time to check license

21 https://github.com/benjimor/FLiQuE

https://github.com/benjimor/FLiQuE

Ensuring License Compliance in Linked Data with Query Relaxation 23

conflicts among the capable datasets. This overhead depends on the number
of distinct licenses that protect the capable datasets.

– For 6 queries, {S1, S6, S9, C3, L1, L3}, FLiQue does not find a license that
can protect the result set when the query is executed over the complete
federation. However, it finds a sub-federation such that the original query
returns a non-empty result set that is licensable. In this case, the overhead
of FLiQue corresponds to the time to check license conflicts, to compute sub-
federations, and to execute the original query on these sub-federations until
the first result is returned. This overhead depends on the number of tested
sub-federations. The number of sub-federations depends on the number of
distinct conflicting licenses by query. In our test environment, this number
is always 2. For instance, conflicting licenses CC BY-SA, CC BY-NC, and
CC BY-NC-SA can be separated into two non-conflicting sets {CC BY-SA}
and {CC BY-NC, and CC BY-NC-SA}. These sub-federations are ordered
by the number of datasets in the federation. In the benchmark, the average
time to generate the sub-federations and find a non-empty result set is 11020
milliseconds. For these 6 queries, we remark that this overhead is almost con-
stant. That is because, a non-empty result set is found when FLiQue executes
the original query on the second sub-federation.

Evaluation of queries that are relaxed. Figure 9 presents the execution of
the 10 queries of LargeRDFBench that need relaxation to return a non-empty
result set that can be protected by a license. For each query, we compare the
time to get the first result of the original query for CostFed, and the time to get
the first result of the first candidate query found by FLiQue.

Fig. 9: Average time to get the first result of the 10 queries of LargeRDFBench
that need relaxation to produce a licensable result set.

The FLiQue overhead corresponds to the time to check license conflicts to
compute sub-federations, and to find the first candidate query.

24 Benjamin Moreau and Patricia Serrano-Alvarado

Fig. 10: Number of generated and executed failing relaxed queries until finding
each candidate query.

We remark that the execution time of an original query and a candidate query
is not comparable. They are not the same query, and they are not executed on the
same number of data sources. The candidate queries are more general. To have
an idea (non-representative) of the similarities, the maximum is 0.811 (L5’), the
minimum is 0.077 (C8’), the average is 0.487, and the median is 0.603. Candidate
queries and their similarities are included in Annex A.

Overhead varies a lot depending on the queries. It depends on the number of
generated and executed failing relaxed queries, before finding the first candidate
query. Figure 10 shows the number of failing relaxed queries, (1) generated, and
(2) executed before finding each candidate query. Most of the relaxed queries
generated are identified as failing thanks to data summaries. The candidate query
C5′, is found after generating 69 failing relaxed queries, but only 3 were executed
until finding the first one with non-empty result. In contrast, candidate query
S8′ is found after generating 3 failing relaxed queries but executing only one.
For 6 out of 10 relaxed queries, FLiQue does not need to execute any generated
relaxed query to identify them as failing.

With this benchmark, on average FLiQue generates 21.4 failing relaxed queries,
and executes 1.75 failing relaxed queries. Thus, we consider that FLiQue succeeds
in limiting communication costs during the relaxation of queries whose result set
cannot be licensed.

4.3 Discussion

[8,15] used in their experiments the datasets generated with the LUBM bench-
mark [11]. LUBM generates synthetic data as one data source and was developed
to evaluate systems with different reasoning capabilities. [15] used 7 queries with
a number of triple patterns ranging from 2 to 5. [8] modified these 7 queries to
added constraints. In their modified queries, triple patterns range from 2 to 15,

Ensuring License Compliance in Linked Data with Query Relaxation 25

the average is 7. Their experimental goal was to show the number of relaxed
queries executed until obtaining top-k results.

Our goal is different. We aim to show that preserving licenses during feder-
ated query processing is possible. LargeRDFBench is the only benchmark with
federated queries. It is composed of several real-world interlinked datasets whose
federated queries were designed by domain specialists. This benchmark was not
defined for reasoning. As it does not include ontologies22 we searched them23.
Several properties or classes of some datasets are not defined in the found on-
tologies, and hierarchies in concept ontologies are frequently undefined.

As LargeRDFBench was defined to evaluate federated query processing, its
federated queries have many variables. Very few triple patterns have classes in
objects or subjects. That is why query relaxation was mainly based on prop-
erty relaxation. Only two classes in objects were relaxed (dbo:Drug in S10 and
dbpedia:Drug in C9).

LargeRDFBench datasets are of multiple domains. They were chosen because
they are interlinked, i.e., they have owl:sameAs relationships, the subject/ob-
ject of one dataset exists in another dataset, or some predicates (like title and
genericName) have the same literal values. The choice of these datasets was not
focused on common classes or predicates, but on instances. That is why almost
all relaxations ended in simple relaxations (except for L5 and L8 where foaf:name
was relaxed to rdfs:label).

Although LargeRDFBench is not the ideal benchmark for evaluating FLiQue,
we were able to demonstrate that federated query processing can ensure license
compliance using query relaxation.

5 Conclusion and perspectives

In this work, we propose FLiQue, a federated license-aware query processing
strategy that guarantees that a license protects the result set of a federated
SPARQL query. FLiQue is designed to detect and prevent license conflicts and
gives informed feedback with licenses able to protect a result set of a federated
query. If necessary, it applies distributed query relaxation to propose a set of
most similar relaxed federated queries whose result set can be licensed. To our
knowledge, this is the first work that uses query relaxation in a distributed envi-
ronment. Our implementation extends an existing federated query engine with
our license-aware query processing strategy. Our prototype demonstrates the
feasibility of our approach. Experimental evaluation shows that FLiQue ensures
license compliance with a limited overhead in terms of execution time. FLiQue is
a step towards facilitating and encouraging the publication and reuse of licensed
resources in the Web of Data. FLiQue is not a data access control strategy.

22 https://github.com/dice-group/LargeRDFBench
23 This is a compilation of all ontologies we found for LargeRDFFech datasets:

https://raw.githubusercontent.com/benj-moreau/FLiQue/master/flique/
ontologies/ontology.n3.

https://raw.githubusercontent.com/benj-moreau/FLiQue/master/flique/ontologies/ontology.n3
https://raw.githubusercontent.com/benj-moreau/FLiQue/master/flique/ontologies/ontology.n3

26 Benjamin Moreau and Patricia Serrano-Alvarado

Instead, it empowers well-intentioned data users in respecting the licenses of
datasets involved in a federated query.

This work has several perspectives. One perspective considers other aspects
of licenses related to usage contexts like jurisdiction, dates of reuse, etc. Another
perspective is about estimating the selectivity of relaxed queries and use it to
help users choose the best-relaxed query for their purposes. Information content
measures are currently used to define similarity between queries; nevertheless,
semantic similarity may also be used, for instance, owl:sameAs relationships.

A perspective not directly related to FLiQue but to the used benchmark, is
to analyze the ontologies of datasets composing LargeRDFBench and complete
them. Furthermore, it will be interesting to modify the federated queries to
include more classes in subjects and objects.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data: The Story so Far. In: Seman-
tic services, interoperability and web applications: emerging concepts. IGI global
(2011)

2. Bonatti, P.A., Decker, S., Polleres, A., Presutti, V.: Knowledge graphs: New Di-
rections for Knowledge Representation on the Semantic Web (Gagstuhl seminar
18371). In: Dagstuhl Reports (2019)

3. Cabrio, E., Aprosio, A.P., Villata, S.: These Are Your Rights. In: European Se-
mantic Web Conference (ESWC) (2014)

4. Čebirić, Š., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu, I., Troullinou,
G., Zneika, M.: Summarizing Semantic Graphs: a Survey. The VLDB Journal 28(3)
(2019)

5. Costabello, L., Villata, S., Gandon, F.: Context-Aware Access Control for RDF
Graph Stores. In: European Conference on Artificial Intelligence (ECAI) (2012)

6. Cyganiak, R., Hausenblas, M.: Describing Linked Datasets - On the Design and
Usage of voiD, the ”Vocabulary of Interlinked Datasets“. In: Linked Data on the
Web Workshop (LDOW) (2009)

7. Ferré, S.: Answers Partitioning and Lazy Joins for Efficient Query Relaxation and
Application to Similarity Search. In: Extended Semantic Web Conference (ESWC)
(2018)

8. Fokou, G., Jean, S., Hadjali, A., Baron, M.: RDF Query Relaxation Strategies
Based on Failure Causes. In: Extended Semantic Web Conference (ESWC) (2016)

9. Gabillon, A., Letouzey, L.: A View Based Access Control Model for SPARQL. In:
International Conference on Network and System Security (NSS) (2010)

10. Görlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In: Workshop Consuming Linked Data (COLD) collocated
with ISWC (2011)

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics 3(2-3) (2005)

12. Hartig, O., Vidal, M.E., Freytag, J.C.: Federated Semantic Data Management
(Dagstuhl Seminar 17262). In: Dagstuhl Reports (2017)

13. Havur, G., Steyskal, S., Panasiuk, O., Fensel, A., Mireles, V., Pellegrini, T.,
Thurner, T., Polleres, A., Kirrane, S.: DALICC: A Framework for Publishing and
Consuming Data Assets Legally. In: International Conference on Semantic Systems
(SEMANTICS),Poster&Demo (2018)

Ensuring License Compliance in Linked Data with Query Relaxation 27

14. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C.,
Gayo, J.E.L., Kirrane, S., Neumaier, S., Polleres, A., Navigli, R., Ngomo, A.N.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J.F., Staab, S., Zimmermann,
A.: Knowledge Graphs. CoRR abs/2003.02320 (2020)

15. Huang, H., Liu, C., Zhou, X.: Approximating Query Answering on RDF Databases.
Journal of World Wide Web 15 (2012)

16. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query Relaxation in RDF. Journal
on Data Semantics X (2008)

17. Iannella, R., Villata, S.: ODRL Information Model 2.2. W3C Recommendation
(2018)

18. Kapitsaki, G.M., Kramer, F., Tselikas, N.D.: Automating the License Compatibil-
ity Process in Open Source Software With SPDX. Journal of Systems and Software
131 (2017)

19. Khan, Y., Saleem, M., Iqbal, A., Mehdi, M., Hogan, A., Ngomo, A.C.N., Decker,
S., Sahay, R.: SAFE: Policy Aware SPARQL Query Federation Over RDF Data
Cubes. In: Semantic Web Applications and Tools for Life Sciences (SWAT4LS)
(2014)

20. Kirrane, S., Abdelrahman, A., Mileo, A., Decker, S.: Secure Manipulation of Linked
Data. In: International Semantic Web Conference (ISWC) (2013)

21. Moreau, B., Serrano-Alvarado, P., Perrin, M., Desmontils, E.: A License-Based
Search Engine. In: Extended Semantic Web Conference (ESWC), Demo (2019)

22. Moreau, B., Serrano-Alvarado, P., Perrin, M., Desmontils, E.: Modelling the Com-
patibility of Licenses. In: Extended Semantic Web Conference (ESWC) (2019)

23. Oguz, D., Ergenc, B., Yin, S., Dikenelli, O., Hameurlain, A.: Federated Query Pro-
cessing on Linked Data: a Qualitative Survey and Open Challenges. The Knowledge
Engineering Review 30(5) (2015)

24. Oulmakhzoune, S., Cuppens-Boulahia, N., Cuppens, F., Morucci, S., Barhamgi,
M., Benslimane, D.: Privacy Query Rewriting Algorithm Instrumented by a
Privacy-Aware Access Control Model. Annals of Telecommunications 69 (2014)

25. Pellegrini, T., Havur, G., Steyskal, S., Panasiuk, O., Fensel, A., Mireles, V.,
Thurner, T., Polleres, A., Kirrane, S., Schönhofer, A.: DALICC: A License Manage-
ment Framework for Digital Assets. Proceedings of the Internationales Rechtsin-
formatik Symposion (IRIS) 10 (2019)

26. Qudus, U., Saleem, M., Ngomo, A.N., Lee, Y.: An empirical evaluation of cost-
based federated SPARQL query processing engines. CoRR abs/2104.00984
(2021), https://arxiv.org/abs/2104.00984

27. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:
European Semantic Web Conference (ESWC) (2008)

28. Reddivari, P., Finin, T., Joshi, A., et al.: Policy-Based Access Control for an
RDF Store. In: Workshop Semantic Web for Collaborative Knowledge Acquisition
(SWeCKa) collocated with IJCAI (2007)

29. Resnik, P.: Using Information Content To Evaluate Semantic Similarity in a Tax-
onomy. International Joint Conference on Artificial Intelligence (IJCAI) (1995)

30. Rodríguez Doncel, V., Gómez-Pérez, A., Villata, S.: A Dataset of RDF Licenses.
In: Legal Knowledge and Information Systems Conference (ICLKIS) (2014)

31. Sadeh, N., Acquisti, A., Breaux, T.D., Cranor, L.F., et.al.: Towards Usable Privacy
Policies: Semi-Automatically Extracting Data Practices from Websites’ Privacy
Policies. In: Symposium on Usable Privacy and Security (SOUPS) (2014), poster

32. Saleem, M., Hasnain, A., Ngomo, A.C.N.: LargeRDFBench: a Billion Triples
Benchmark for SPARQL Endpoint Federation. Journal of Semantic Web 48 (2018)

https://arxiv.org/abs/2104.00984

28 Benjamin Moreau and Patricia Serrano-Alvarado

33. Saleem, M., Ngomo, A.C.N.: HIBISCuS: Hypergraph-Based Source Selection For
SPARQL Endpoint Federation. In: Extended Semantic Web Conference (ESWC)
(2014)

34. Saleem, M., Potocki, A., Soru, T., Hartig, O., Ngomo, A.N.: CostFed: Cost-Based
Query Optimization for SPARQL Endpoint Federation. In: International Confer-
ence on Semantic Systems (SEMANTICS) (2018)

35. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimiza-
tion Techniques for Federated Query Processing on Linked Data. In: International
Semantic Web Conference (ISWC) (2011)

36. Seneviratne, O., Kagal, L., Berners-Lee, T.: Policy-Aware Content Reuse on the
Web. In: International Semantic Web Conference (ISWC) (2009)

37. Villata, S., Gandon, F.: Licenses Compatibility and Composition in the Web of
Data. In: Workshop Consuming Linked Data (COLD) collocated with ISWC (2012)

38. Wheeler, D.A.: The Free-Libre/Open Source Software (FLOSS) License Slide.
https://www.dwheeler.com/essays/floss-license-slide.pdf (2007)

https://www.dwheeler.com/essays/floss-license-slide.pdf

Ensuring License Compliance in Linked Data with Query Relaxation 29

A Supplemental material

Listing 1.2: Query S8 followed by the candidate query S8’.
1 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /

drugbank/>
2 PREFIX dbo : <http :// dbpedia . org / onto logy/>
3
4 SELECT ?drug ?melt WHERE {
5 { ?drug drugbank : melt ingPoint ?melt . }
6 UNION
7 { ?drug dbo : melt ingPoint ?melt . }
8 }
9

10
11 SELECT ?drug ?melt WHERE {
12 { ?drug drugbank : melt ingPoint ?melt . }
13 UNION
14 { ?drug ?1HmoLC ?melt . }
15 }
16
17 # S im i l a r i t y : 0.666666666666666

Listing 1.3: Query S10 followed by the candidate query S10’.
1 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /

drugbank/>
2 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
3 PREFIX dbo : <http :// dbpedia . org / onto logy/>
4
5 SELECT ?Drug ? IntDrug ? I n tE f f e c t WHERE {
6 ?Drug a dbo : Drug .
7 ?y owl : sameAs ?Drug .
8 ? Int drugbank : in te ract ionDrug1 ?y .
9 ? Int drugbank : in te ract ionDrug2 ? IntDrug .

10 ? Int drugbank : t ext ? I n tE f f e c t .
11 }
12
13
14 SELECT ?Drug ? IntDrug ? I n tE f f e c t WHERE {
15 ?Drug ?zkB8o2 ?OKS9kY .
16 ?y ?Y2df3t ?Drug .
17 ? Int drugbank : in te ract ionDrug1 ?y .
18 ? Int ?Q6kLIS ? IntDrug .
19 ? Int drugbank : t ext ? I n tE f f e c t .
20 }
21
22 # S im i l a r i t y : 0 .11111111111

30 Benjamin Moreau and Patricia Serrano-Alvarado

Listing 1.4: Query C5 followed by the candidate query C5’.
1 PREFIX linkedmdb : <http :// data . linkedmdb . org / r e sou r c e /movie/>
2 PREFIX dcterms : <http :// pur l . org /dc/ terms/>
3 PREFIX dbpedia : <http :// dbpedia . org / onto logy/>
4 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
5
6 SELECT ? actor ?movie ? movieTit le ?movieDate ? birthDate ?spouseName
7 {
8 ? actor r d f s : l a b e l ?actor_name_en .
9 ? actor dbpedia : b irthDate ? birthDate .

10 ? actor dbpedia : spouse ? spouseURI .
11 ? spouseURI rd f s : l a b e l ?spouseName .
12 ? imdbactor linkedmdb : actor_name ?actor_name .
13 ?movie linkedmdb : ac to r ? imdbactor .
14 ?movie dcterms : t i t l e ? movieTit le .
15 ?movie dcterms : date ?movieDate .
16 FILTER(STR(? actor_name_en) = STR(? actor_name))
17 }
18
19 SELECT ? actor ?movie ? movieTit le ?movieDate ? birthDate ?spouseName
20 {
21 ? actor r d f s : l a b e l ?actor_name_en .
22 ? actor ?SxzR4W ? birthDate .
23 ? actor ?1OCiE4 ?spouseURI .
24 ? spouseURI rd f s : l a b e l ?spouseName .
25 ? imdbactor linkedmdb : actor_name ?actor_name .
26 ?movie linkedmdb : ac to r ? imdbactor .
27 ?movie dcterms : t i t l e ? movieTit le .
28 ?movie dcterms : date ?movieDate .
29 FILTER(STR(? actor_name_en) = STR(? actor_name))
30 }
31 # S im i l a r i t y : 0 .44444444444

Ensuring License Compliance in Linked Data with Query Relaxation 31

Listing 1.5: Query C8 followed by the candidate query C8’.
1 PREFIX swc : <http :// data . semanticweb . org /ns/swc/ onto logy#>
2 PREFIX swrc : <http :// swrc . ontoware . org / onto logy#>
3 PREFIX eswc : <http :// data . semanticweb . org / con f e r ence /eswc/>
4 PREFIX iswc : <http :// data . semanticweb . org / con f e r ence / iswc /2009/>
5 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
6 PREFIX pur l : <http :// pur l . org / onto logy /bibo/>
7 PREFIX dbpedia : <http :// dbpedia . org / onto logy/>
8 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
9

10 SELECT DISTINCT ∗ WHERE
11 {
12 ?paper swc : i sPartOf iswc : proceed ings .
13 iswc : proceed ings swrc : address ? proceedingAddress .
14 ? paper swrc : author ? author .
15 ? author swrc : a f f i l i a t i o n ? a f f i l i a t i o n ;
16 ? author r d f s : l a b e l ? fu l lnames ;
17 ? author f o a f : based_near ? p lace .
18 ? p lace dbpedia : c a p i t a l ? c a p i t a l .
19 ? p lace dbpedia : populat ionDens i ty ? populat ionDens i ty .
20 ? p lace dbpedia : governmentType ?governmentType .
21 ? p lace dbpedia : language ? language .
22 ? p lace dbpedia : l e a d e rT i t l e ? l e a d e rT i t l e .
23 }
24
25
26 SELECT DISTINCT ∗ WHERE
27 {
28 ?paper swc : i sPartOf iswc : proceed ings .
29 iswc : proceed ings swrc : address ? proceedingAddress .
30 ? paper swrc : author ? author .
31 ? author swrc : a f f i l i a t i o n ? a f f i l i a t i o n .
32 ? author r d f s : l a b e l ? fu l lnames .
33 ? author f o a f : based_near ? p lace .
34 ? p lace ?mM9RIT ? c ap i t a l .
35 ? p lace ?cZP8iP ? populat ionDens i ty .
36 ? p lace ?Pp7c1t ?governmentType .
37 ? p lace ?z2uYJB ? language .
38 ? p lace ?de7OQZ ? l e a d e rT i t l e .
39 }
40
41 # S im i l a r i t y : 0 .07777777777

32 Benjamin Moreau and Patricia Serrano-Alvarado

Listing 1.6: Query C9 followed by the candidate query C9’.
1 PREFIX dbpedia : <http :// dbpedia . org / onto logy/>
2 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /

drugbank/>
5
6 SELECT ∗ WHERE
7 {
8 ?Drug rd f : type dbpedia : Drug .
9 ?drugbankDrug owl : sameAs ?Drug .

10 ? InteractionName drugbank : in te ract ionDrug1 ?drugbankDrug .
11 ? InteractionName drugbank : in te ract ionDrug2 ?drugbankDrug2 .
12 ? InteractionName drugbank : t ext ? I n tE f f e c t .
13 OPTIONAL
14 {
15 ?drugbankDrug drugbank : a f fectedOrganism ’Humans and other mammals ’ .
16 ?drugbankDrug drugbank : d e s c r i p t i o n ? d e s c r i p t i o n .
17 ?drugbankDrug drugbank : s t r u c tu r e ? s t ru c tu r e .
18 ?drugbankDrug drugbank : casRegistryNumber ? casRegistryNumber .
19 }
20 }
21 ORDER BY (? drugbankDrug)
22
23
24 SELECT ∗ WHERE
25 {
26 ?Drug ?0OgzMk ?Cvqg5H .
27 ?drugbankDrug ?c5DqMr ?Drug .
28 ? InteractionName drugbank : in te ract ionDrug1 ?drugbankDrug .
29 ? InteractionName drugbank : in te ract ionDrug2 ?drugbankDrug2 .
30 ? InteractionName drugbank : t ext ? I n tE f f e c t .
31 OPTIONAL
32 {
33 ?drugbankDrug drugbank : a f fectedOrganism ’Humans and other mammals ’ .
34 drugbank : d e s c r i p t i o n ? d e s c r i p t i o n .
35 drugbank : s t r u c tu r e ? s t ru c tu r e .
36 drugbank : casRegistryNumber ? casRegistryNumber .
37 }
38 }
39 ORDER BY (? drugbankDrug)
40
41 # S im i l a r i t y : 0 .222222222222

Ensuring License Compliance in Linked Data with Query Relaxation 33

Listing 1.7: Query C10 followed by the candidate query C10’.
1 PREFIX tcga : <http :// tcga . d e r i . i e /schema/>
2 PREFIX kegg : <http :// b i o2 rd f . org /ns/kegg#>
3 PREFIX dbpedia : <http :// dbpedia . org / onto logy/>
4 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /

drugbank/>
5 PREFIX pur l : <http :// pur l . org /dc/ terms/>
6
7 SELECT DISTINCT ? pat i en t ? gender ? country ? popDensity ?drugName ?

i nd i c a t i o n ? formula ?compound
8 WHERE
9 {

10 ? u r i tcga : bcr_patient_barcode ? pa t i en t .
11 ? pa t i en t tcga : gender ? gender .
12 ? pa t i en t dbpedia : country ? country .
13 ? country dbpedia : populat ionDens i ty ? popDensity .
14 ? pa t i en t tcga : bcr_drug_barcode ? drugbcr .
15 ? drugbcr tcga : drug_name ?drugName .
16 ?drgBnkDrg drugbank : genericName ?drugName .
17 ?drgBnkDrg drugbank : i nd i c a t i o n ? i nd i c a t i o n .
18 ?drgBnkDrg drugbank : chemicalFormula ? formula .
19 ?drgBnkDrg drugbank : keggCompoundId ?compound .
20 }
21
22
23 SELECT DISTINCT ? pat i en t ? gender ? country ? popDensity ?drugName ?

i nd i c a t i o n ? formula ?compound
24 WHERE
25 {
26 ? u r i tcga : bcr_patient_barcode ? pa t i en t .
27 ? pa t i en t tcga : gender ? gender .
28 ? pa t i en t dbpedia : country ? country .
29 ? country ?7 sqC60 ?popDensity .
30 ? pa t i en t tcga : bcr_drug_barcode ? drugbcr .
31 ? drugbcr tcga : drug_name ?drugName .
32 ?drgBnkDrg drugbank : genericName ?drugName .
33 ?drgBnkDrg drugbank : i nd i c a t i o n ? i nd i c a t i o n .
34 ?drgBnkDrg drugbank : chemicalFormula ? formula .
35 ?drgBnkDrg drugbank : keggCompoundId ?compound .
36 }
37
38 # S im i l a r i t y : 0 .66666666666

34 Benjamin Moreau and Patricia Serrano-Alvarado

Listing 1.8: Query L5 followed by the candidate query L5’.
1 PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
2 PREFIX dbprop : <http :// dbpedia . org / property/>
3 PREFIX dbowl : <http :// dbpedia . org / onto logy/>
4 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
5 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
6 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
7 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
8 PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
9 PREFIX factbook : <http ://www4. wiwiss . fu−b e r l i n . de/ factbook /ns#>

10 PREFIX mo: <http :// pur l . org / onto logy /mo/>
11 PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
12 PREFIX fb : <http :// rd f . f r e eba s e . com/ns/>
13
14 SELECT ∗ WHERE {
15 ?a dbowl : a r t i s t dbpedia : Michael_Jackson .
16 ?a rd f : type dbowl :Album .
17 ?a f o a f : name ?n .
18 }
19
20
21 SELECT ∗ WHERE {
22 ?a dbowl : a r t i s t dbpedia : Michael_Jackson .
23 ?a rd f : type dbowl :Album .
24 ?a rd f s : l a b e l ?n .
25 }
26
27 # S im i l a r i t y : 0.8115399282213058

Listing 1.9: Query L6 followed by the candidate query L6’.
1 PREFIX dbpedia : <http :// dbpedia . org / r e sou r c e/>
2 PREFIX dbowl : <http :// dbpedia . org / onto logy/>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX linkedMDB : <http :// data . linkedmdb . org / r e sou r c e/>
5 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
6 PREFIX geo : <http ://www. geonames . org / onto logy#>
7
8 SELECT ∗ WHERE {
9 ? d i r e c t o r dbowl : n a t i o n a l i t y dbpedia : I t a l y .

10 ? f i lm dbowl : d i r e c t o r ? d i r e c t o r .
11 ?x owl : sameAs ? f i lm .
12 ?x f o a f : based_near ?y .
13 ?y geo : o f f i c i a lName ?n .
14 }
15
16
17 SELECT ∗ WHERE {
18 ? d i r e c t o r dbowl : n a t i o n a l i t y dbpedia : I t a l y .
19 ? f i lm dbowl : d i r e c t o r ? d i r e c t o r .
20 ?x owl : sameAs ? f i lm .
21 ?x ?6GKJwd ?y .
22 ?y geo : o f f i c i a lName ?n .
23 }
24
25 # S im i l a r i t y : 0 .66666666666

Ensuring License Compliance in Linked Data with Query Relaxation 35

Listing 1.10: Query L7 followed by the candidate query L7’.
1 PREFIX tcga : <http :// tcga . d e r i . i e /schema/>
2 PREFIX dbpedia : <http :// dbpedia . org / onto logy/>
3 SELECT DISTINCT ? pat i en t ?p ?o
4 WHERE
5 {
6 ? u r i tcga : bcr_patient_barcode ? pa t i en t .
7 ? pa t i en t dbpedia : country ? country .
8 ? country dbpedia : populat ionDens i ty ? popDensity .
9 ? pa t i en t tcga : bcr_aliquot_barcode ? a l i quo t .

10 ? a l i quo t ?p ?o .
11 }
12
13
14 SELECT DISTINCT ? pat i en t ?p ?o
15 WHERE
16 {
17 ? u r i tcga : bcr_patient_barcode ? pa t i en t .
18 ? pa t i en t dbpedia : country ? country .
19 ? country ?cG4icP ?popDensity .
20 ? pa t i en t tcga : bcr_aliquot_barcode ? a l i quo t .
21 ? a l i quo t ?p ?o .
22 }
23
24 # S im i l a r i t y : 0 .66666666666

Listing 1.11: Query L8 followed by the candidate query L8’.
1 PREFIX kegg : <http :// b i o2 rd f . org /ns/kegg#>
2 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /

drugbank/>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
5 PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
6
7 SELECT ∗ WHERE {
8 ?drug drugbank : drugCategory drugbank : mic ronutr i ent .
9 ?drug drugbank : casRegistryNumber ? id .

10 ?drug owl : sameAs ? s .
11 ? s f o a f : name ?o .
12 ? s skos : sub j e c t ? sub .
13 }
14
15
16 SELECT ∗ WHERE {
17 ?drug drugbank : drugCategory drugbank : mic ronutr i ent .
18 ?drug drugbank : casRegistryNumber ? id .
19 ?drug ?XKeC36 ? s .
20 ? s r d f s : l a b e l ?o .
21 ? s skos : sub j e c t ? sub .
22 }
23
24 # S im i l a r i t y : 0.5410266188142039

	Ensuring License Compliance in Linked Data with Query Relaxation

