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Relation between understandings of linear algebra
concepts in the embodied world and in the symbolic world

Mitsuru Kawazoe

Abstract. For the use of embodied notions in teaching linear algebra, some studies indicate that it is helpful, whereas other
studies indicate that it could be problematic or becomes an obstacle. Hence, additional research is needed. This study is focused on
linear (in)dependence and basis, and investigates the relation between their understandings in the embodied and symbolic worlds.
Moreover, we investigated the effectiveness of a teaching method that emphasized geometric images. The main results of the study
were as follows: the conceptual understanding of linear dependence of four spatial vectors, such that any three of them do not lie
on the same plane, was positively associated with the understanding of basis in the symbolic world; however, the understanding
of linear dependence of such vectors was not been improved by a geometrical instruction. Although a furthur study is needed to
examine whether the geometric instruction in this study can be improved, the result imply that a space spanned by three linearly
independent spatial vectors, which is an object in the embodied world, becomes a learning object for students.

Keywords. linear algebra, understanding, visualization, APOS theory, Tall’s model of three worlds, metaphor theory

Résumé. En ce qui concerne l’utilisation de notions incarnées dans l’enseignement de l’algèbre linéaire, certaines études indiquent
qu’elle est utile, tandis que d’autres études indiquent qu’elle pourrait être problématique ou devenir un obstacle. Des recherches
supplémentaires sont donc nécessaires. Cette étude se concentre sur l’(in)dépendance linéaire et la base, et examine la relation entre
leurs compréhensions dans les mondes incarné et symbolique. En outre, nous avons étudié l’efficacité d’une méthode d’enseignement
qui met l’accent sur les images géométriques. Les principaux résultats de l’étude sont les suivants : la compréhension conceptuelle de
la dépendance linéaire de quatre vecteurs spatiaux, telle que trois d’entre eux ne se trouvent pas sur le même plan, est positivement
associée à la compréhension de la base dans le monde symbolique ; cependant, la compréhension de la dépendance linéaire de ces
vecteurs n’a pas été améliorée par une instruction géométrique. Bien qu’une étude plus approfondie soit nécessaire pour examiner
si l’enseignement géométrique dans cette étude peut être amélioré, les résultats impliquent qu’un espace couvert par trois vecteurs
spatiaux linéairement indépendants, qui est un objet dans le monde incarné, devient un objet d’apprentissage pour les étudiants.

Mots-Clés. algèbre linéaire, compréhension, visualisation, théorie APOS, modèle des trois mondes de Tall, théorie des métaphores
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1. Introduction

It is widely recognized that linear algebra is a difficult subject to learn because of its abstract and
formal nature. Dorier et Sierpinska (2001) stated that “linear algebra remains a cognitively and
conceptually difficult subject.” Therefore, overcoming the difficulties in teaching linear algebra has
been a challenge. Despite many studies in the past two decades, “research results continue to show
that students find it difficult to understand its main concepts” (Trigueros & Wawro, 2020). Hence,
how to teach linear algebra remains an open research question.

Different approaches to teaching linear algebra have been investigated. A popular approach is to
use embodied notions—namely visual images or geometry—to teach linear algebra concepts. Many
existing linear algebra textbooks use geometry (Harel, 2018). It might seem natural to teach linear
algebra by using visual images, and such way of teaching might seem to be helpful for students;
however, this is not easy. Some researchers identified that visual images help students understand
concepts in linear algebra: (Stewart & Thomas, 2007), (Stewart & Thomas, 2009), (Thomas & Stewart,
2011), (Hannah, Stewart, & Thomas, 2013), (Hannah, Stewart, & Thomas, 2014), and (Donevska-
Todorova, 2018, p.268). The effectiveness of the use of dynamic geometry software in teaching of
linear algebra was also reported: (Gol Tabaghi & Sinclair, 2013), (Dogan, 2018). However, other
studies indicated that using visual images may be problematic in teaching linear algebra (Sierpinska,
2000, p.244) and become an obstacle in learning linear algebra concepts Hillel (2000). Therefore, these
studies indicate that the use of visual images in teaching linear algebra and its effectiveness should be
additionally investigated.

Despite two separate indications on the use of visual images in teaching linear algebra in the
literature, as mentioned above, it seems that both studies are based on a belief that students can
understand linear algebra concepts easily in the embodied world, that is, the world of geometric
vectors, and discuss only whether students’ understanding of linear algebra concepts in the embodied
world can be generalized to the understanding of abstract linear algebra concepts. For example, a
question discussed by Gueudet-Chartier (2004) was whether it is “possible for students to learn linear
algebra by abstracting from geometry,” related to the main question “should we teach linear algebra
through geometry?”, which is the title of the paper. To the best of our knowledge, the belief itself
has never been examined deeply in the literature. Howerver, it remains unclear whether we can rely
on such a naive belief. We consider that it should be examined before we discuss the effectiveness of
visual images in teaching linear algebra. That is a motivation of our research to investigate students’
understanding of linear algebra concepts in the context of geometric vectors.

Our previous studies focused on the notion of linear independence and dependence, and we ex-
manined students’ understanding of this notion in the context of geometric vectors, especially spatial
vectors. In a series of our studies, we observed the following results: (1) Many students failed to
determine linear dependence of four spatial vectors such that any three of them do not lie on the same
plane (Kawazoe, Okamoto, & Takahashi, 2014); (2) Some of those students required a longer time
to imagine that three spatial vectors not lying on the same plane span the whole space (Kawazoe &
Okamoto, 2016) and (Kawazoe, 2018). Details of our results are described in Section 2. Although
our previous studies identified some limitations of students’ understanding in the context of geometric
vectors, we have not investigated how these observations were related to understanding of concepts



Understandings of linear algebra concepts in the embodied world and in the symbolic world 3Understandings of linear algebra concepts in the embodied world and in the symbolic world 3

and procedures in linear algebra. In this study, we examine the relation between understandings in
the context of geometric vectors and in the general context.

Therefore, in this study, we focused on concepts of linear (in)dependence and basis, and we in-
vestigated the following research questions: (1) Is geometrical understanding of linear (in)dependence
in the embodied world related to understanding of linear (in)dependence and basis in the symbolic
world?; (2) Can geometrical understanding of linear (in)dependence in the embodied world, includ-
ing the case of four vectors, be improved by an instruction emphasizing a geometric image of linear
(in)dependence?

The structure of this article is as follows. Section 2. briefly summarizes of the results of our
previous studies. In Section 3., we describe theoretical frameworks used in the present study. Section
4. presents the context, tasks, and the methodology of this study. In Section 5., we show the results
of each task and analyzes the relations between them. In Section 6., we discuss our research questions
based on the results of Section 5. and implications of the study regarding the use of geometric images
in the teaching of linear algebra.

2. Results of our previous studies

For the convenience of the readers, we briefly summarize our two previous studies (Kawazoe et al.,
2014) and (Kawazoe & Okamoto, 2016) closely related to the present study, because the details of
(Kawazoe et al., 2014) have not been described in the paper and (Kawazoe & Okamoto, 2016) is
written in Japanese.

2.A. Results of the first study

In our first study (Kawazoe et al., 2014), we examined students’ understanding of linear independence
in the context of geometric vectors by using the following task. In the study, students’ understanding
of subspace in the context of numerical vector spaces was also examined, but we omit it here to focus
on the results related to the present study.

Task A. Determine whether vectors in the following pictures are linearly independent and
explain the reasons. Moreover, when they are linearly dependent, give a maximal set of
linearly independent vectors.

(1) (2) (3)

a

b

c

a

b
c

a

b

c
d

Participants of this study were 107 first-year university engineering students who attended a linear
algebra course. The test was conducted in linear algebra classes. Results are shown in Table 1.

correct incorrect no answer
(1) 85.05% 5.61% 9.35%
(2) 87.85% 3.74% 8.41%
(3) 62.62% 23.37% 14.02%

Table 1 – Results of (1), (2), (3)

The percentage of correct answers for (3) was lower than for (1) and (2). The following example
of a student’s reasoning for (3) shows a typical error:
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“As the space generated by three vectors does not contain the other vector, these vectors
are linearly independent.” (This was originally written in Japanese and translated into
English by the author.)

The error indicated that this student failed to understand that three linearly independent spatial
vectors span the whole space. However, we could not determine the exact students’ difficulties in un-
derstanding the case of (3). Hence, a further study was needed to investigate students’ understanding
of linear (in)dependence in the context of geometric vectors including the case of (3). For this aim,
we conducted the second study (Kawazoe & Okamoto, 2016).

2.B. Results of the second study

The second study (Kawazoe & Okamoto, 2016) was designed as a two-round survey. Participants in
this study were 71 first-year university engineering students attending a linear algebra course. In the
first round, we conducted a paper-based test by using the following task.

Task B. Determine whether spatial vectors given in each picture are linearly independent.
Answer “yes” or “no” for each case. Note that each vector lies on a line or a plane shown
in the picture. (If there are multiple planes, each vector lies on one of them.)

(1) (2) (3) (4) (5)

a

b
c

a

b
c

a

b

a

b

c a

b

(6) (7) (8) (9) (10)

a

b

a

b

c
d

a

b

c

a

b

c

a

bc

d

The test items included the three pictures used in the first study. The test was conducted in the
class after students learned the notions of abstract vector space, subspace, spanned space, and linear
independence and depenence. The percentatges of correct answers for the above question were as
follows: (1) 84.5%, (2) 87.3%, (3) 90.1%, (4) 84.5%, (5) 94.4%, (6) 97.2%, (7) 45.1%, (8) 87.3%, (9)
88.7%, (10) 84.5%. Therefore, the percentage of correctness for (7) was significantly lower compared
with the others. The picture in (7) is the same as the third picture in Task A in the first study. In
this round, we again observed that the case of four spatial vectors, in which any three of them do not
lie on the same plane, was quite difficult for students.

In the second round, we conducted a semi-structured interview. This round aimed to investigate
why so many students fail to answer (7) correctly. We selected 17 participants among 71 students who
attended the first round. The participants were students who had never missed a class until the time
the interview was requested, and we distinguished the following two groups: (A) a group of 7 students
who answered correctly in all cases, (B) a group of 10 students who failed (7) but answered correctly
all the other cases. In the interview, the participants were first asked the following question.

Q1. Explain how you determined linear independency in each question.

If a participant did not use the fact that linear independence can be determined by checking
whether some vector can be represented as a linear combination of the others, then the interviewer
reminded the participant this fact. Subsequently, all participants were asked the following question.

Q2. What is the geometric figure of the set of all linear combinations of the vectors a, b, c
in (7)?
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For the participants who felt difficulty in imagining the geometric figure asked in Q2, the following
question was additionally asked.

Q2’. Why do you feel difficulty in imagining the set of all linear combinations?

In this study, additional two questions were asked for the participants who answered Q2’, but we
omit them here to focus on the main results. During the interview, the participants looked at the test
paper used in the first round, and they answered by drawing diagrams or arrows on paper if necessary.
Interviews were video-recorded.

The obtained data were qualitatively analyzed to investigate the difference between Group A and
Group B. We observed the following results. No difference was found in the conceptions of linear
(in)dependence of two to three geometric vectors, and spanned spaces with one or two dimensions.
However, the difference was found in the conceptions of linear (in)depedence of four geometric vectors
and of spanned space generated by three linearly independent geometric vectors. Although all students
in Group B could answer for Q2 correctly, six of them showed some difficulties. Among them, four
students answered that they need a longer time for imagining that three linearly independent geometric
vectors span the whole space. It was observed that their imagining processes were common. Their
image starts from some shape in a space, then it gradually extends, and finally fills the whole space.
There were three types of a starting object. One is a parallelepiped created by three vectors. The
second one is a triangular pyramid created by three vectors. And the third one is a plane spanned
by two vectors with a cylindrical object along the third vector. Though a starting object is different,
those students imagine a space spanned by linearly independent three spatial vectors as a gradually
expanding three-dimensional object, which finally fills the whole space.

The second study identified some limitations of students’ understanding in the context of geometric
vectors. However, it was not investigated how these observations were related to understanding of
concepts and procedures in linear algebra. The present study aims to investigate this relation.

3. Theoretical framework

We describe the present study starting from this section. As a theoretical framework, we use three
theories by (Tall, 2013), (Arnon et al., 2014), and (Lakoff & Núñez, 2000), together with a combined
framework of (Tall, 2013) and (Arnon et al., 2014) used by Stewart et Thomas (2007).

3.A. Tall’s model of three worlds

Tall (2013) described the development of mathematical thinking in terms of three worlds: embodied
world, symbolic world, and formal world. He proposed these three worlds based on his observation of
three different ways in which mathematical thinking can develop: conceptual embodiment, operational
symbolic, and axiomatic formalism. Tall (2013) illustrated the outline of the development of the three
worlds of mathematics as Figure 1.

According to Tall’s model, a mathematical concept is a blend of embodiment, symbolism, and
formalism. For example, the real number system is a blend of a number line in the embodied world,
decimal symbols in the symbolic world, and a complete ordered field R with operations + and × in
the formal world.

“The whole development of number—from whole number to fraction, to positive and neg-
ative numbers, to finite and infinite decimals represented as points on a number line—is a
succession of extensional blends, broadening one number system to a larger one with richer
properties.” (Tall, 2013, p.25)

For higher (university) levels of pure mathematics, Tall stated that “the combination of embodied
and symbolic mathematics can be seen as a preliminary stage to the axiomatic formal presentation of
mathematics” (Tall, 2013, p.18). In this study, we consider the three wolrds in the context of linear
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(Tall, 2013, p.17, Figure 1.5)

Figure 1 – Preliminary outline of the development of the three worlds of mathematics

algebra. In linear algebra, the embodied world is a world of geometric vectors (e.g., arrows), the
symbolic world is a world of numerical vectors, matrices, polynomials, and operations represented by
symbols, and the formal world is a world of axiomatic vector spaces.

3.B. APOS theory

APOS theory is “a theory of how mathematical concepts can be learned” (Arnon et al., 2014, p.1). It
is a constructivist theory rooted in the work of Piaget, which gives us a tool for describing a mental
structure of a student’s conception. With APOS theory, we can distinguish student’s conceptions into
four levels: Action, Process, Object, and Schema (hence, the acronym APOS). From the viewpoint of
APOS theory, conceptions of mathematical knowledge develop as A→P→O→S (Figure 2), though it
is noted that “the development does not always proceed linearly” (Arnon et al., 2014, p.9).

(Arnon et al., 2014, p.18, Fig. 3.1)

Figure 2 – Mental structures and mechanisms for the construction of mathematical knwoledge

In general, a student who needs to manipulate explicit expressions to think about the concept
and cannot skip any step is considered to have an Action conception. When some actions has been
interiorized in a student’s mind, the student is considered to have a Process conception. When some
process has been encapsulated into a cognitive object in a student’s mind, the student is considered
to have an Object conception. In (Arnon et al., 2014, p.25), Schemas are described as “structures that
contain the descriptions, organization, an exemplifications of the mental structures that an individual
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has construicted regarding a mathematial concept.”
Action, Process, Object, and Schema depend on the context. In (Arnon et al., 2014), their examples

in linear algebra are given as follows:

Action: “The construction of the concept of n-tuple may begin by performing the Action
that consists in taking a specified quantity of numbers and placing them in a particular
order.” (Arnon et al., 2014, p.20)

Process: “When the Actions involved in the construction of an n-tuple are interiorized into
a Process, the subject can construct an n-tuple mentally even when n is not specified; he
or she can also consider the construction of n-tuples in any vector space, including infinite
dimensional spaces. It is also possible for the individual to think about the elements of
the tuple, considering that the elements may repeat, but the order in which they appear
cannot be changed.” (Arnon et al., 2014, p.21)

Object (Encapsulation of Process): “Comparing n-tuples or performing binary oper-
ations on n-tuples are Actions on n-tuples. For these Actions to be applied successfully,
the Process of forming an n-tuple must be encapsulated into an Object.” (Arnon et al.,
2014, p.22)

Schema: “a Schema for vector space may include n-tuples and matrices as Objects and
polynomials and functions as Processes. All these structures may be related by the fact that
they share some properties, such as satisfying a set of axioms that define a vector space.
Coherence of this Schema lies in the mathematical definition of vector space which the
individual uses to determine whether or not the Schema is applicable to a given situation.”
(Arnon et al., 2014, p.25)

In this study, we use Action, Process, and Object in the context of linear (in)dependence and of
spanned space. For linear (in)dependence, Action, Process, and Object are considered as follows.

Action: Students having an Action conception need to draw a linear combination explicitly
in a discussion of linear (in)dependence.
Process: Students having a Process conception can use a partial set of linear combinations
in a discussion of linear (in)dependence, but they cannot use a spanned space correctly.
Object: Students having an Object conception understand any two non-parallel geometric
vectors and any three spatial vectors not lying on the same plane are linearly independent.
They also understand any four spatial vectors are always linearly dependent. Moreover,
they can consider linear (in)dependence of a sum of two sets of linearly (in)dependent
vectors.

For spanned space, Action, Process, and Object are considered as follows.
Action: Students need to draw (or calculate) linear combinations of given vectors explic-
itly, or they can only consider a partial set of linear combinations of given vectors.
Process: Students can consider all linear combinations of given vectors as a set.
Object: Students having Object conception can completely understand a spanned space
generated by any set of vectors correctly. For example, they understand any two non-
parallel geometric vectors span a plane, any three spatial vectors not lying on the same
plane span the whole space. Moreover, students having an Object conception can consider
a sum of spanned spaces as a vector space.

3.C. Combined framework of Tall’s model of three worlds and APOS theory

As Action, Process, Object, and Schema in APOS theory depend on the context, their descriptions
may differ in each of three worlds in Tall’s model. Stewart et Thomas (2007) and Stewart et Thomas
(2010) used a combined framework of Tall’s model of three worlds and APOS theory in their study.
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In (Stewart & Thomas, 2007) and (Stewart & Thomas, 2010), they described Action, Process, and
Object conceptions of some notions in linear algebra in each of the three worlds (Figure 3).

(Stewart & Thomas, 2007)

Figure 3 – A part of framework for linear algebra concepts

In this study, we consider how students’ understanding of linear algebra concepts in the embodied
world are related to their understanding in the symbolic world. To do this, we have to investigate
students’ understanding in each world. Hence, the combined framework used by Stewart et Thomas
(2007) is helpful for our study. We use this framework to analyze students’ understanding in each
world.

3.D. Metaphor theory by Lakoff and Núñez

We use the metaphor theory by Lakoff et Núñez (2000) in designing linear algebra lessons implemented
in this study. In general, it is important to design lessons according to students’ cognitive process
of understanding new concepts. Although Tall’s model of three worlds and APOS theory give some
insight about it, we think that metaphor theory (Lakoff & Núñez, 2000) is helpful for designing lessons
in this study.

For example, the “Basic Metaphor of Infinity (BMI)” proposed in (Lakoff & Núñez, 2000) can be
applied to students’ cognitive process of imagining a spanned space that we observed in the second
study (Kawazoe & Okamoto, 2016). Lakoff et Núñez (2000) explain this metaphor as follows:

“We hypothesize that all cases of actual infinity—infinite sets, points at infinity, limits
of infinite series, infinite intersections, least upper bounds—are special cases of a single
general conceptual metaphor in which processes that go on indefinitely are conceptualized
as having an end and an ultimate result. We call this metaphor the Basic Metaphor of
Infinity, or the BMI for short.” (Lakoff & Núñez, 2000, p.158)

As we stated in Section 2.B., we observed students’ cognitive process of imagining a space spanned
by three linearly independent spatial vectors as a gradually expanding three-dimensional object which
finally fills the whole space. By applying the BMI to this case, a spanned space in such process
can be explained as the “final resultant state” obtained by BMI from an infinite sequence of three-
dimensional objects, which is getting larger step by step. In the case of a space spanned by three
linearly independent spatial vectors, each three-dimensional object is a subset of the whole space, and
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difference between the whole space and the object is getting smaller when the object becomes larger.
This leads to a cognition that a space spanned by three linearly independent spatial vecotrs as the
final resultant state obtained by BMI coincides with the whole space.

The metaphor theory can also be applied to the concept of basis of vector space. With the viewpoint
of Lakoff et Núñez (2000), space is naturally continuous, but due to Descartes’s invention of analytic
geometry, it is also conceptualised as “a set of points.” Using the word of Lakoff et Núñez (2000), the
latter conceptualization is called “discretization” of space. Lakoff et Núñez (2000) identified a central
metaphor at the heart of the discretization. The metaphor is called “A Space Is a Set of Points.”
With this metaphor, a space is regarded as a set of n-tuples of numbers, where a point in the set
corresponds to a location in the space. To obtain a location in the space, axes are needed, and each
axis is a number line. From the viewpoint of Lakoff et Núñez (2000), discretization in the case of
three-dimensional space is obtained by a “conceptual blend” of three number lines and the Euclidean
space. Discretization of space can be easily applied to vector spaces, because a coordinate system of
a vector space is given by a basis of it, where a basis determines axes of the space.

Therefore, the metaphor theory by Lakoff et Núñez (2000) seems to be useful in designing linear
algebra lessons in which students naturally understand concepts from a geometric viewpoint. In this
study, we use the above two metaphors in designing and implementing linear algebra lessons on spanned
space, linear (in)dependence, basis, and dimension in which geometrical viewpoint is emphasized.

4. Context: the course, students, design of lessons and tasks

The study was conducted in a linear algebra course for engineering students at our university, but in
a special class for students who failed to pass it in their first year. The course consists of a spring
semester class and a fall semester class. The former is a 2-credit class, meeting for 90 minutes each
week for 15 weeks. The latter is a 4-credit class, meeting for 180 minutes each week for 15 weeks.
Each of them is followed by an examination period. The course covers usual linear algebra topics:
numerical vector space, matrix, Gaussian elimination, system of linear equations, determinant, etc.,
in the spring semester; formal vector space, spanned space, linear (in)dependence, basis, dimension,
linear map, inner product, orthogonal basis, eigenvalue, eigenvector, and diagonalization, etc., in the
fall semester. This study was conducted during the first five weeks in the fall semester. In these weeks,
students learned the concepts of formal vector space, spanned space, linear (in)dependence, basis, and
dimension.

4.A. Design of lessons

Each lesson included a lecture part and an exercise part. Lectures and exercises were given in the
first and second half of the lesson, respectively. In the design of lessons, we regarded the notion of
spanned space as a key notion in understanding linear (in)dependence, basis, and dimension. Hence,
the instruction of spanned space was carefully implemented so that all students could have a geometric
image of it in the embodied world, by considering our observations from the second study (Kawazoe
& Okamoto, 2016) and by applying the metaphor theory of Lakoff et Núñez (2000). The lecture part
was designed to emphasize geometric images of linear algebra concepts, especially by using the image
of a spanned space in the embodied world. In the lecture part, the teacher introduced linear algebra
concepts the following way.

First, the notions of linear combination and spanned space were introduced. A space spanned by
three linearly independent spatial vectors was shown to students by using teacher’s fingers, and it was
emphasized that linear combinations with negative coefficients were contained in the spanned space.
The teacher stressed the importance of imagining a part of the space consisting of linear combinations
with some (or all) coefficients being negative to grasp the correct concept of the spanned space.
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The notions of linear independence and dependence were introduced by using usual formal defini-
tions. The reason was as follows: the students in the class were students who failed to pass the course
in the previous years and hence they already learned the notions. Although we used usual formal
definitions, the meaning of linear independence and dependence of vectors v1,v2, . . . ,vn in a vector
space were explained in terms of spanned space as follows:

Vectors v1,v2, . . . ,vn are linearly dependent if and only if one of the n vectors can be
represented by a linear combination of the other n−1 vectors, that is, one of the n vectors
is contained in the space spanned by the other n− 1 vectors.

Vectors v1,v2, . . . ,vn are linearly independent if and only if none of the n vectors can
be represented by a linear combination of the other n − 1 vectors, that is, none of the n
vectors is contained in the space spanned by the other n− 1 vectors.

Such explanations emphasized geometric images of the notions. In the above explanations, the
teacher used the following drawings (Figure 4):

(a) (b)

Figure 4 – Drawings used in the explanations of (a) linear dependence and (b) independence

Moreover, it was also explained that linearly independent vectors v1,v2, . . . ,vn give an ascending
sequence of vector spaces V1 ( V2 ( · · · ( Vn, where Vk (k = 1, 2, . . . , n) is the space spanned by
v1,v2, . . . ,vk. Subsequently, the notion of basis was introduced by a usual formal definition:

Vectors v1,v2, . . . ,vn in a vector space V form a basis of V if and only if they are linearly
independent and any vector in V can be represented as their linear combination.

It was explained that the second condition is equivalent to that V is spanned by v1,v2, . . . ,vn. In
the introduction of basis, the role of basis was explained as to give a coordinate system, and a basis
was explained as a set of “axes.” Furthermore, it was explained that the second condition means that
it contains a sufficient number of axes to represent the whole space, and that the first condition means
that there is no extra axis in the set.

In the exercise part, students worked on paper-based exercises given by the teacher. Exercises
mainly included questions in the symbolic world. Howerver, some of them can be viewed as questions
in the embodied world through the correspondence betweenR2 and a plane or betweenR3 and a three-
dimensional space: determining linear (in)dependence of vectors in Rn (n = 2, 3, 4) or in polynomial
spaces, determining whether a given set of vectors in Rn (n = 2, 3, 4) or in polynomial spaces is a
basis, finding a basis and the dimension of given subspaces in Rn (n = 2, 3, 4) or in polynomial spaces,
etc. Many questions were computational. Some of them were related to the geometric instruction
given in the lecture part, and they can be answered with geometrical reasoning.

4.B. Design of tasks

The following four tasks, which were translated from Japanese, were used in this study. They were
designed to investigate students’ understanding of dimension, linear (in)dependence, and basis. As
the same items are used in Task 2 and Task 4, correct answers for Task 2 were not shown to the
students during the lessons.
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Task 1. Answer the following questions. If you do not know (or if you have not learned),
write your answer as “I don’t know.”

(1) What examples of one dimension, two dimension, and three dimension come to your
mind? Describe the image you have for each of them using figures and words freely.

(2) For vectors v1,v2, . . . ,vn,vn+1, assume that vectors v1,v2, . . . ,vn span an n-
dimensional space V , and that v1,v2, . . . ,vn,vn+1 span an (n+1)-dimensional space
W . When you draw a picture showing this situation, what kind of picture do you
draw? Draw a picture of your image.

Task 2. Determine whether spatial vectors given in each picture are linearly independent.
Note that each vector lies on a line or a plane shown in the picture. (If there are multiple
planes, each vector lies on one of them.)

(1) (2) (3) (4) (5)

a

b

a

b

a

bc

d

a

b

c

a

b

(6) (7) (8) (9) (10)

a

b

c

a

b
c

a

b

c
d

a

b

c
a

b
c

Task 3. (Q1) For vectors v1,v2, . . . ,vn in a vector space V overK, describe two conditions
(in the definition of basis) for v1,v2, . . . ,vn to be a basis of V . Write your answer in the
answer columns (A) and (B).
(Q2) Determine whether the following set of vectors is a basis. If it is not a basis, answer
which condition that you described in Q1 is not satisfied. In the latter case, write your
answer by using a symbol A or B, and write “A, B” in both cases. (Vector spaces are as
follows: (1) R4, (2) R3, (3) R2, (4) R3, (5) the space of polynomials f(x) with degree less
than 3 whose coefficients are in R, (6) the space of polynomials f(x) with degree less than
2 whose coefficients are in R.)

(1)

1
1
0
0

 ,

0
0
1
1

 ,

1
2
3
4

 (2)

(
1
1
0

)
,

(
1
2
0

)
,

(
0
0
−1

)
(3)

(
1
0

)
,

(
1
1

)
,

(
0
1

)

(4)

(
1
1
0

)
,

(
0
0
2

)
,

(
−1
−1
−5

)
(5) x+ 1, x2 (6) x− 1, x+ 1
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Task 4. (Q1) Determine whether spatial vectors given in each picture are linearly inde-
pendent and describe the reason.

(1) (2)

a

bc

d

a

b

c
d

(Q2) Determine whether the given vectors in R3 are linearly independent and describe the
reason.

(1)

(
1
1
0

)
,

(
1
2
0

)
,

(
0
1
1

)
,

(
0
0
1

)
(2)

(
1
1
0

)
,

(
1
2
0

)
,

(
−2
−3
0

)
,

(
0
0
1

)

4.C. A priori analysis of tasks

Task 1 and Task 2 are pretests conducted at the beginning of the semester. Task 1(1) can be answered
as “line,” “plane,” and “space.” Task 1(2) is a non-routine task to examine whether students have an
understanding that V is contained in W , or W extends outside of V as a space. Task 2 includes all
of the important cases of at most four spatial vectors regarding linear (in)dependence. Items in Task
2 are the same ones that we used in our previous study (Kawazoe & Okamoto, 2016). According to
the previous results, Task 2 (8) was expected to be difficult for the participants. Task 2 (8) contains
four vectors, and any three of them do not lie on the same plane; hence, it cannot be reduced to the
case of at most three vectors. Task 2 (3) also contains four vectors, but it can be reduced to the case
of three vectors because vectors a, b, c lie on the same plane. The terms “dimension,” “span,” and
“linearly independent” were used in the texts in these tasks. As the participants were in their second
year or higher, they had already learned these terms in their first year.

The aim of Task 3 is to investigate students’ understanding of the definition of basis. For any set
of vectors listed in (1)–(6), one can determine their linear (in)dependence without computation. Only
(2) and (6) are bases, and the others are not.

In Task 4, Q1 is a task in the embodied world, and Q2 is a task in the symbolic world. The
two pictures in Q1 were taken from Task 2. According to the result of our previous study (Kawazoe
& Okamoto, 2016), determining linear (in)dependence of four spatial vectors is problematic. Q1(1)
and Q2(2) present essentially the same situation, and Q1(2) and Q2(1) likewise. Q1(1) and Q1(2)
can be answered by drawing vectors representing linear combinations, or by using the fact on vector
subspaces spanned by two or three vectors. Q2(1) and Q2(2) can be answered by using numerical
computation (with or without the use of the Gaussian elimination), but they also can be answered
with geometrical reasoning.

4.D. Methodology and data collection

We implemented four-week lessons whose design is described in Section 4.A.. Task 1 and Task 2 were
offered at the beginning of the first lesson. Task 3 was at the third week, and Task 4 was at the
beginning of the fifth week. Participants’ answers for Task 1 were qualitatively analyzed whether they
understood the dimension at most three and the increment of dimension. Participants’ reasoning for
Task 4 Q1 was qualitatively analyzed using APOS theory. Participants’ reasoning for Task 4 Q2 was
classified into two types: algebraical and geometrical reasoning. For other tasks, participants’ answers
were evaluated depending on their correctness. Subsequently, the relations between the results of these
tasks were investigated by using a statistial analysis.

The study was conducted in the fall semester in the academic year 2018. All data were collected
during the first five weeks in the linear algebra class for engineering students who had failed in the
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previous year or before. The number of students in the class was 58. Among the 58 students, 38 of
them completed all the tasks, from Task 1 to Task 4. In this study, the data of the 38 participants
was qualitatively and statistically analyzed.

5. Results

First, we present the results of each task and distinguish several groups of students depending on the
results. Second, we statistically analyze the relations between the results of each task.

5.A. Results of each task and students’ groups

5.A.a. Results of Task 1

For Task 1 (1), almost all participants described their understanding of dimension 1, 2, 3, as a “line,”
“plane,” and “space,” respectively. For Task 1 (2), only 11 (28.9%) could draw their image of increment
of dimension as extending outside the space. We set two groups according to the result of Task 1 (2):
GI+ is the group of 11 participants who provided a geometric image of increment of dimension (Figure
5), GI− is the group of the others.

Figure 5 – Examples of students’ geometric images of increment of dimension

5.A.b. Results of Task 2

The percentages of correct answers for Task 2 were as follows: (1) 97.4%, (2) 94.7%, (3) 65.8%, (4)
97.4%, (5) 89.5%, (6) 94.7%, (7) 86.8%, (8) 52.6%, (9) 89.5%, (10) 86.8%. Therefore, the percentages
of correctness for (3) and (8) were significantly lower than for the others. The pictures of (3) and (8)
contain four vectors. The number of vectors in the others is less than four. The result of Task 2 was
almost the same as the one in our previous study (Kawazoe & Okamoto, 2016), except for the result
of (3). In the previous study, the percentage of correct answers for (3) was 84.5%. The median of the
number of correct answers per participant was 9. We set two groups according to the result of Task
2: GV+ is the group of participants who answered correctly to more than 8 questions, and GV− is
the group of the others.

5.A.c. Results of Task 3

For Q1, the number of participants who could describe two conditions in the definition of basis correctly
was 23 (60.5%). Although 34 (89.5%) of the participants described linear independence of the vectors
correctly as one of the conditions, 24 (63.2%) of them described correctly that the vectors span V or
that any vector in V can be represented as a linear combination of the vectors. 8 (21.1%) of them
described dimV = n as one of the conditions, which is a wrong answer because dimV is defined after
the definition of basis is introduced.

For Q2, although the percentages of correct answers for (2), (3), and (4) were high, those of (1),
(5), and (6) were relatively low: (1) 78.9%, (2) 97.4%, (3) 94.7%, (4) 94.7%, (5) 78.9%, (6) 65.8%.



14 M. Kawazoe14 M. Kawazoe

As for reasoning in (1), (3), (4), and (5), we evaluated whether a participant could answer correctly
based on the necessary and sufficient conditions to be a basis. Hence, for a participant who described
dimV = n in Q1, we evaluated whether his/her answer for Q2 was logically correct based on his/her
answer in Q1. The percentages of correct answers for reasoning were as follows: (1) 65.8%, (3) 63.2%,
(4) 36.8%, (5) 65.8%. The median of the number of errors in Q2 (including errors in reasoning in
the case of non-basis) per participant was 2. We set two groups according to the number of incorrect
answers for Task 3 Q2: B+ is the group of participants whose incorrect answers were at most 2, and
B− is the group of the others.

5.A.d. Results of Task 4

The percentages of correct answers for Task 4 were as follows: Q1(1) 89.5%, Q1(2) 55.3%, Q2(1)
86.8%, Q2(2) 89.5%. The pictures in Q1(1) and Q1(2) are the same as in Task 2 (3) and Task 2 (8),
respectively. Although the percentage of correct answers for Q1(2) remained low, the one for Q1(1)
was much improved from the result of Task 2 (3). Though Q1(2) is essentially the same as Q2(1) from
a geometrical viewpoint, their results were different. According to the reasoning in Q1, we set the
following groups: For j = 1, 2, Oj+ is the group of participants showing Object conceptions in the
reasoning for Q1(j), Oj− is the group of participants showing Action/Process conceptions or giving
no reason in the reasoning for Q1(j). According to the reasoning in Q2(j), we set the following groups:
For j = 1, 2, GRj+ is the group of participants using geometrical reasoning for Q2(j), GRj− is the
group of the others.

5.B. Relations between the results of each task

In the following statistical analysis, we used Fisher’s exact test instead of the Chi-square test because
of small numbers in cross-tabulation.

5.B.a. Relation between understandings in the embodied world and understanding of
basis

Fisher’s exact test indicated that having a geometric image of increment of dimension (Task 1 (2))
and the result of Task 3 Q2 were positively associated (p < 0.05, Table 2). Moreover, showing an
Object conception in reasoning for Task 4 Q1(2) and the result of Task 3 Q2 were positively associated
(p < 0.05, Table 3). However, we could not find any significant relation between O1+/− and B+/−.

B+ B−
GI+ 9 2
GI− 11 16

Table 2 – Relation between the results of Task
1(2) and Task 3 Q2

B+ B−
O2+ 9 2
O2− 11 16

Table 3 – Relation between having an Object
conception and the result of Task 3 Q2

5.B.b. Relation between understandings in the embodied world and in the symbolic
world

Fisher’s exact test indicated that showing an Object conception in reasoning for Task 4 Q1(2) and
the number of correct answers in determining linear (in)dependence in Task 4 were positively asso-
ciated (p < 0.01, Table 4), where NC means the number of correct answers in determining linear
(in)dependence in Task 4. However, we could not find any significant relation between O1+/− and
the result of Task 4. Fisher’s exact test also indicated that the use of geometrical reasoning for Task 4
Q2 and the number of correct answers in determining linear (in)dependence in Task 4 were positively
associated (p < 0.05, Table 5), where GR+ = GR1 + ∪GR2+, GR− = GR1 − ∩GR2−, and NC is
the same as in Table 4. Moreover, it indicated significant correlations for GR1+/− (p < 0.05) and for
GR2+/− (p < 0.05).
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NC = 4 NC < 4

O2+ 8 1
O2− 9 20

Table 4 – Relation between having an Object
conception and the result of Task 4

NC = 4 NC < 4

GR+ 10 5
GR− 7 16

Table 5 – Relation between the use of geometri-
cal reasoning and the result of Task 4

5.B.c. Difference of understanding of linear (in)dependence between before and after
of four-week lessons

The images in Task 4 Q1(1) and Q1(2) are the same as the ones in Task 2 (3) and (8), respectively.
McNemar’s test indicated a significant difference between the results of Task 2 (3) and Task 4 Q1(1)
(p < 0.05, Table 6), where the participants were divided into two groups depending on whether their
answers for Task 2(3) were correct (T2(3)+) or not (T2(3)−), and they were divided into two groups
depending on whether their answers for Task 4 Q1(1) were correct (T4Q1(1)+) or not (T4Q1(1)−).
However, Fisher’s exact test indicated that the result of Task 2 and the number of correct answers in
determining linear (in)dependence in Task 4 Q1 were positively associated (p < 0.01, Table 7), where
NCQ1 means the number of correct answers in determining linear (in)dependence in Task 4 Q1.

T4Q1(1)+ T4Q1(1)−
T2(3)+ 23 2
T2(3)− 11 2

Table 6 – Relation between the results of Task 2
(3) and Task 4 Q1(1)

NCQ1 = 2 NCQ1 < 2

GV+ 16 7
GV− 3 12

Table 7 – Relation between the results of Task 2
and Task 4 Q1

6. Discussion

In this section, we discuss our research questions, based on the results from the previous section. First,
we recall our research questions stated in Section 1.:

(1) Is geometrical understanding of linear (in)dependence in the embodied world related to under-
standing of linear (in)dependence and basis in the symbolic world?

(2) Can geometrical understanding of linear (in)dependence in the embodied world, including the
case of four vectors, be improved by an instruction emphasizing a geometric image of linear
(in)dependence?

As for the first research question, we observed some relations between understanding in the em-
bodied world and understanding in the symbolic world. The analysis of Table 2 indicated that having
a geometric image of increment of dimension was positively associated with understanding the basis
in the symbolic world. The analysis of Table 5 indicated that the use of geometrical reasoning in the
symbolic world was positively associated with understanding linear (in)dependence in both embodied
and symbolic worlds. The analysis of Table 3 and Table 4 indicated that having an Object conception
for linear (in)dependence in the embodied world, especially for the case of four spatial vectors such that
any three of them do not lie on the same plane (as in the picture of Task 2(8) and Task 4 Q1(2)), was
positively associated with understanding the basis in the symbolic world (Table 3), and also positively
associated with understanding linear independence in both embodied and symbolic worlds (Table 4).
Therefore, all these results indicate positive correlations between understanding in the embodied world
and understanding in the symbolic world. Note that these results only show correlations, which does
not imply causal relationship. Hence, we should be careful in describing the effect of using geomet-
ric images for teaching linear algebra. The analysis of Table 2 might seem to support that students
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having a geometric image have some advantage in learning a linear algebra concept, because it shows
a significant positive correlation between the result of pretest and the understanding of the notion of
basis taught after the pretest. However, we should remind the reader that it was not the first time for
the participants of this study to learn the notion of basis because they were students who failed to pass
the course in their first year. Hence, it remains uncertain whether the understanding in the embodied
world accelerates the understanding in the symbolic world or whether both types of understanding
simultaneously develop by affecting each other. Thus, for the first research question, this study shows
that geometrical understanding of linear (in)dependence in the embodied world is positively related to
the understanding of linear (in)dependence and basis in the symbolic world, but we need more studies
to investigate how the understanding in the embodied world affects to the learning of linear algebra
concepts.

As for the second research question, we observed a limited effectiveness of the instruction that
emphasized geometric images. The analysis of Table 6 indicated that the understanding of linear
dependence of four spatial vectors in Task 2 (3) had been improved during the four-week lessons.
However, the result of Task 4 and the analysis of Table 7 indicated that the understanding of linear
dependence of four spatial vectors in Task 2 (8) had not been improved. The latter was surprising and
also disappointing. Improving students’ understanding of Task 2 (8) was more important because, as
shown in Table 3 and Table 4, conceptual understanding of linear dependence in the case of Task 2
(8) was related to the understanding of basis and linear independence in the symbolic world. These
results can be interpreted considering the following two possibilities: one is that the geometrical
instruction implemented in this study was insufficient and can be improved; the other is that there is
a limitation of students’ perception even in the embodied world and it is cognitively hard to overcome
such limitation. In the latter case, we should consider such limitation in teaching linear algebra, and
it may lead us to reconsider how to design a linear algebra course using Tall’s model of three worlds,
especially to reconsider the balance and integration between geometric and algebraic presentation.
However, the two possibilities need to be carefully examined in the future study.

Next, we determine whether the results on this study can provide any recommendations regarding
the use of geometric images in teaching linear algebra. From the above discussion, we can say that it
is difficult for students to view a space spanned by three linearly independent spatial vectors as the
whole space. On the contrary, it is rather easy for students to view a spanned space that is a line or a
plane as an object in the whole space. Hence, when we want to use geometric images of spanned space
in a linear algebra class, we cannot assume that students would have a solid geometric understanding
of a space spanned by three linearly independent spatial vectors as the whole space. This suggests
that we should restrict using a spanned space that becomes a line or a plane when we use a geometric
image of spanned space to help students learn concepts of linear algebra. We should remember that
when we use a geometric image of a space spanned by three linearly independent spatial vectors, such
space itself becomes a learning object for students.

Finally, we should mention the limitations of the study. First, the sample size was small. Second,
the participants were not ordinary because they failed to pass the subject in the earlier years. Hence,
further studies with a larger number of first-year students are needed.
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