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Objectives

Glioma grading using maching learning on magnetic resonance data is a growing topic. According to the World Health Organization (WHO), the classification of glioma discriminates between low grade gliomas (LGG), grades I, II ; and high grade gliomas (HGG), grades III, IV, leading to major issues in oncology for therapeutic management of patients. A well-known dataset for machine-based grade prediction is the MICCAI Brain Tumor Segmentation (BraTS) dataset. However this dataset is not divided into WHO-defined LGG and HGG, since it combines grades I, II and III as "lower grades gliomas", while its HGG category only presents grade IV glioblastoma multiform. In this paper we want to train a binary grade classifier and investigate the consistency of the original BraTS labels with radiologic criteria using machine-aided predictions.

2) Material and methods

Using WHO-based radiomic features, we trained a SVM classifier on the BraTS dataset, and used the prediction score histogram to investigate the behavior of

our classifier on the lower grade population. We also asked 5 expert radiologists to annotate BraTS images between low (as opposed to lower) grade and high grade glioma classes, resulting in a new groundtruth.

3) Results

Our first training reached 84.1% accuracy. The prediction score histogram allows us to identify the radiologically high grade patients among the original lower grade population of the BraTS dataset. Training another SVM on our new radiologically WHO-aligned groundtruth shows robust performances despite important class imbalance, reaching 82.4% accuracy.

4) Conclusion

Our results highlight the coherence of radiologic criteria for low grade versus high grade classification under WHO terms. We also show how the histogram of prediction scores and crossed prediction scores can be used as tools for data exploration and performance evaluation. Therefore, we propose to use our radiological groundtruth for future developpement on binary glioma grading.

Introduction

Gliomas are an aggressive type of brain tumor. In their most advanced form, they are linked to a high death rate within a short survival range. The World Health Organisation (WHO) uses histopathology and genomic criteria to identify the malignancy of the tumor through 4 grades, ranging from grade I to 5 grade IV [START_REF] Louis | The 2016 world health organization classification of tumors of the central nervous system: a summary[END_REF]. Grades I and II are labelled as Low Grade Gliomas (LGG WHO ) while grades III and IV are labelled as High Grade Gliomas (HGG WHO ). Due to their slow or asymptomatic developement, LGG WHO are often less diagnosed than HGG WHO [START_REF] Potts | Natural history and surgical management of incidentally discovered low-grade gliomas[END_REF]. The gold standard to assess the grade is biopsy, an invasive technique. Biopsy classifies tumors based on microscopic similarities of the cells 10 and their levels of differentiation. Biopsy is subject to sampling error and interobserver variation [START_REF] Van Den Bent | Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician's perspective[END_REF]. The histological information is combined with genotype analysis to screen mutations such as IDH type and the 1p/19q codeletion status [START_REF] Reifenberger | Advances in the molecular genetics of gliomas-implications for classification and therapy[END_REF].

Non-invasive methods based on magnetic resonance imaging (MRI) are being developped to create a robust alternative. Machine learning has been used on MR data to discriminate between LGG WHO and HGG WHO , for example with simple classifiers like SVM [START_REF] Citak-Er | Machinelearning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3t[END_REF] or Random Forests [START_REF] Cho | Classification of the glioma grading using radiomics analysis[END_REF]. Deep learning with convolutional neural networks (CNN) has also been tested on anatomical data for grade classification [START_REF] Yang | Glioma grading on conventional mr images: a deep learning study with transfer learning[END_REF]. While classifying all four glioma grades have been tested [START_REF] Anaraki | Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms[END_REF], most publications focus on a binary grade discrimination between LGG WHO and HGG WHO [START_REF] Dequidt | Recent advances in glioma grade classification using machine and deep learning on mr data[END_REF]. This specific discrimination has important clinical impact for the patient, as the evolution from LGG WHO to HGG WHO is linked to a short survival range [START_REF] Ostrom | Adult glioma incidence and survival by race or ethnicity in the united states from 2000 to 2014[END_REF].

These approches rely on the radiomic analysis of glioma used for tumor segmentation : the tumor shape and heterogeneity, the length of the first and second major axis, or the presence of necrosis and enhancement in T1 contrast-enhanced (T1ce) sequences can be used in the MR diagnosis [START_REF] Upadhyay | Conventional mri evaluation of gliomas[END_REF].

One of the most popular datasets used for automatic binary grade classification is the BraTS dataset [START_REF] Menze | The multimodal brain tumor image segmentation benchmark (brats)[END_REF][START_REF] Bakas | Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features[END_REF][START_REF] Bakas | Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge[END_REF]. This dataset, originally published for a tumor segmentation challenge, has been used extensively for binary glioma grade classification. But it is not providing a WHO-aligned division, as it groups together grades I, II and III under the term "lower grades gliomas" (LGG BraTS ), and has only glioblastoma multiform, or grades IV, in its high grades gliomas category (HGG BraTS ). Therefore, we want to investigate the consistency of the LGG BraTS population, using machine learning and WHO-aligned radiomic features.

In this paper, we present the current state of the art for radiomics analysis and glioma grading using artificial intelligence. We train a SVM classifier with radiomic features on binary grade discrimination. Then we use prediction scores to analyze and identify radiologically high grade patients among the "lower grade" population of the BraTS dataset. We also developped a visual module to allow radiologist experts to discriminate between LGG WHO and HGG WHO and collect their votes. We used those votes to align the BraTS dataset on the WHO classification and create a radiological groundtruth. This section also shows the performances of our classifier on this new groundtruth data. A discussion about the results is given in conclusion.

State of the art

Radiomic analysis of anatomical MR images

Perfusion imaging and MR spectroscopy give important information for glioma grading and are needed for a more complete body of evidence regarding the diagnosis [START_REF] Duffau | Diffuse low-grade gliomas in adults[END_REF]. Nevertheless, anatomical MR imaging gives access to some features used for glioma grading. It has been known for a long time that mass effect, cyst formation and necrosis are statistically significant predictors of high malignancy [START_REF] Dean | Gliomas: classification with mr imaging[END_REF]. Inversion Recovery sequences allow the signal of a specific tissue to be cancelled such as in the FLuid Attenuated Inversion Recovery (FLAIR) sequence, where the Cerebro Spinal Fluid signal is cancelled. This makes the FLAIR sequence the main sequence used for lesion and oedema detection. Contrast-Enhanced sequences such as T1ce show neoangiogenesis, which is a marker for high grade, even though up to one third of high grade gliomas do not show enhancement signal. [START_REF] Upadhyay | Conventional mri evaluation of gliomas[END_REF]. After the WHO 2016 reference publication, some studies have linked the MR phenotype on anatomical imaging with the genotype. Examples include the sharpness of tumor borders or T2-FLAIR mismatch sign as features for 1p/19q codeletion or IDH mutation [START_REF] Smits | Imaging correlates of adult glioma genotypes[END_REF] [START_REF] Patel | T2-flair mismatch, an imaging biomarker for idh and 1p/19q status in lower-grade gliomas: a tcga/tcia project[END_REF]. Therefore, anatomical MRI can approach the WHO classification of gliomas.

Glioma grading using machine learning

Machine and deep learning can be used for glioma grading on MR data. A common pipeline for machine learning includes feature extraction and ranking through a feature selection algorithm, such as SVM-Recursive Feature Elimination [START_REF] Citak-Er | Machinelearning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3t[END_REF] and gives 95.5% accuracy in the best case [START_REF] Vamvakas | Imaging biomarker analysis of advanced multiparametric mri for glioma grading[END_REF]. Sun et al. compare 16 feature selection algorithms and 15 different classifiers. They get their best result with the SVM feature selection [START_REF] Sun | Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading[END_REF]. As an intelligible classifier, SVM is also used often and give good results, up to 94.8% on anatomical imaging [START_REF] Sajja | Brain tumor segmentation using fuzzy c-means and tumor grade classification using svm[END_REF].

When relying on anatomical sequences only, texture analysis can be used in a machine learning scheme for a binary grade discrimination [START_REF] Skogen | Diagnostic performance of texture analysis on mri in grading cerebral gliomas[END_REF]. Convolutional neural networks like VGG-16 give results up to 95% accuracy [START_REF] Banerjee | Deep radiomics for brain tumor detection and classification from multi-sequence mri[END_REF] and random forests reach 88.77% [START_REF] Cho | Classification of the glioma grading using radiomics analysis[END_REF]. As such, convolutional neural networks reach interesting performances for glioma grading, but are still computationaly heavy and lack intelligibility. This is why we chose to use a machine learning classifier like SVM, as it produces more intelligible results with less computing power requirements.

Glioma grading learning dataset

We used the 2018 version of the BraTS dataset, composed of 285 glioma cases. These patients are divided into 210 glioblastoma multiform (HGG BraTS , grade IV) which is the most advanced grade for gliomas, and 75 "lower grade glioma" (LGG BraTS , grades I, II and III). These labels have been established by histological screening. For each patient, 4 registered and skull-stripped anatomical sequences are available : T1, T1ce, T2 and T2 FLAIR.

As "lower grade gliomas" and "low grade glioma" both share the same acronym, some authors have trained glioma grading classifiers on the BraTS division, while stating their work was a WHO-based classification [START_REF] Ge | 3d multi-scale convolutional networks for glioma grading using mr images[END_REF] [START_REF] Chen | Computer-aided grading of gliomas combining automatic segmentation and radiomics[END_REF]. Therefore, there's also a need to clarify this distinction. Table 1 shows how the grades are grouped under the WHO and BraTS groundtruth data. We can see that the LGG BraTS population is a mixed population, with LGG WHO and HGG WHO patients and we don't have access to the precise grade of each patient. In order to explore the consistency of each label, we are going to analyze how a SVM classifier sorts each patient when given WHO-based radiomics criteria. LGG BraTS HGG BraTS

Computer-aided low vs high grade binary classification

In this section we investigate the consistency of the original BraTS labels with radiologic criteria. Using WHO-aligned radiomic features, we want to explore how the LGG BraTS population is processed by a SVM classifier. In order to do so, we train a SVM classifier and evaluate its performance by analyzing its prediction score on the LGG BraTS population. The prediction score histogram

shows HGG WHO patients within the false positives. This result highlights the coherence of radiologic criteria used for binary classification under WHO terms.

Data

Our first training was performed on the BraTS division. This division holds a partial truth of the final grade division we want to achieve. Every patients in the HGG BraTS being glioblastoma multiform, which are the ultimate evolution of gliomas, this group is highly representative of high gradeness under WHO terms, while the LGG BraTS population is a mixed population. Therefore, we propose to train a classifier and analyze its prediction score performances on the LGG BraTS population and see how it dealt with the unmatching HGG WHO patients within it.

Features

Using the segmentation groundtruth data given with the BraTS dataset, we computed 51 features from the PyRadiomics package [START_REF] Van Griethuysen | Computational radiomics system to decode the radiographic phenotype[END_REF] for each patient : For texture analysis we used the correlation of the gray level co-occurrence matrix (GLCM), coarseness, inverse difference moment (IDM), complexity and strength. This set of features (shape, intensity, texture) relates to the criteria used by radiologists during glioma grade assessment and have been selected as intelligible features. For example, IDM and GLCM correlation are homogeneity markers while complexity and strength give primitive-based information.

Choosing these features allows us to model the radiologic analysis under WHOterms, as necrosis and gadolinium enhancement patterns make HGG WHO more heterogenous lesions than LGG WHO lesions.

Results and consistencies on radiomics criteria

We trained an SVM classifier and analyzed its performances through its prediction score results. We tested a C-Support Vector Classifier with different hyperparameters : the used kernel (linear or Radial Basis Function) and the value of the regularization parameter C (between 0.1 and 2). The hyperparameters were selected and optimized with a 5-fold cross-validation and a grid search. We applied usual techniques to avoid class imbalance and overfitting, namely the use of balanced class weights in training and the 5-fold cross validation. The best result was obtained with linear kernel and a C value of 1.0. We reached 84.1% accuracy, 87.0% sensitivity and 75.9% specificity on the BraTS dataset. With this first classifier, we can explore these results on the LGG BraTS population to analyze how it dealt with its unmatching HGG WHO patients.

For our test, we define true positives and true negatives as shown in Table 2. We define the test as positive when the patient is labelled as HGG BraTS by our classifier. We want to discriminate the LGG WHO and HGG WHO population among the BraTS dataset. As some HGG WHO are overlapping into the

LGG BraTS group, we must focus on this population. With our classifier, this population is divided between true negatives and false positives. False pos- 3.

In order to analyze our classifier behavior, we propose to use the prediction score probabilities, as defined by Platt et al. [START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF]. This score gives a value between 0 and 1 and can be read as the confidence of our classifier when assigning a patient to a class. In order to study the prediction scores of the whole LGG BraTS population, we plotted the histogram of prediction for every LGG BraTS patient (Fig. 1a). This histogram gives us information about the quality of discrimination given by our classifier. Indeed, the closer to 0 or 1 a patient, the more certain our classifier is when assigning a patient to a group. A patient closer to 

Radiomics on false positives and negatives

To study the consistency of prediction, we can associate the prediction score of a patient and its MR image appearance. If a patient shows many radiological criteria of being a HGG WHO and has been classified as HGG BraTS by our classifier with a high probability, then our classifier worked correctly. The same reasoning can be applied to a LGG WHO patient with a high LGG BraTS response.

Analyzing the prediction score of each patient gives us information about how close our classifier was to get the correct answer. We can link the prediction score to the visual aspect of the images. Most of our false positives show numerous criteria that would normally make them belong to the HGG WHO group.

Four examples of gadolinium-enhancing false positives are shown in (Fig. 1b).

These patients show gadolinium-enhancement and/or necrosis, which are radiological signs of HGG WHO . This illustrates that our classifier, trained to analyze the image with the same features used by radiologists to discriminate between

LGG WHO and HGG WHO tumors, is able to discriminate subgroups inside the LGG BraTS population corresponding to LGG WHO and HGG WHO groups. In this case, an external observer can identify radiologically HGG WHO patients among the false positives of our classifier. We can also suppose that the HGG BraTS group used for training is strongly representative of "high gradeness", as it is composed of glioblastoma multiform. This caused our classifier to groups together the highest grade patients. Yet, our classification frontier cuts through the LGG BraTS by separating radiologically-looking LGG WHO and HGG WHO . This may be explained by the features we used, which are based on the radiological analysis for WHO grade classification.

A new groundtruth for BraTS

Label gathering with expert radiologists

We want to see if our radiological criteria match the expert analysis. This is why we created a labelling task for expert radiologists. Using a Python module in Slicer3D [START_REF] Fedorov | 3d slicer as an image computing platform for the quantitative imaging network[END_REF][29], we were able to present each patient in randomized order.

We chose to present 100 patients so that the task would last about an hour. This allowed us to present all 75 LGG BraTS patients, with 25 HGG BraTS patients as complement. An odd number of 5 experts analyzed the images and chose to assign each patient in the LGG WHO or HGG WHO category. Each of them then filled a list of criteria to later compare homogeneity of the responses. Using this list shows that our radiologists used necrosis and contrast enhancement as their main criteria, then relied on various details such as intralesional bleeding, FLAIR inhomogeneity or mass effect for a finer classification. As we asked an odd number radiologists to participate in this task, we used majority voting as the decision rule to create new groundtruth data coherent with the radiological analysis.

Details about the voting distribution are shown in Table 4. We can see that the radiologists reached a 5/5 consensus in 23 cases out of 25 when labelling a HGG BraTS patient. Only 2 cases were with a "4 votes against 1" situation. These high numbers can be explained because the HGG BraTS patients are glioblastoma multiform cases, which are radiologically very different from LGG WHO patients. This consistency of the HGG BraTS group also explains why no label was changed by the voting process. Only 49 out of 75 cases of

LGG BraTS patients reached complete consensus from the experts, while 15 cases gained 4 votes out of 5; and 11 cases were more ambiguous, receiving only 3 votes out of 5. Our experts described these ambiguous cases as patients on the edge of anaplasic transformation and were more inclined to label them with the high grade status in order to start intensive care without delay.

Majority voting changed the grade label from LGG BraTS to HGG WHO of 44 patients out of 75. For 29 patients, these labels were changed after a 5/5 consensus; 8 after a 4/5 vote; and 7 after a 3/5 vote. We can note than more than half of LGG BraTS patients changed label, which can raise questions about the quality of classification produced by previous works published with this dataset, as real LGG WHO patients appear to be scarse. LGG WHO patients can be asymptomatic and therefore under-diagnosed, which explains the difficulty of creating a large LGG WHO dataset. 

Radiological groundtruth

LGG WHO HGG WHO

SVM

LGGsvm 11 8

HGGsvm 20 246

5. Comparing two classifiers using prediction scores

Comparing distributions with prediction score histograms

For the classifier trained on our new groundtruth, we have plotted the prediction score histogram for every LGG WHO patient, Fig. 2. We can see on this new histogram that we only have 3 patients in the false positives close to 0.

Instead, the modal bin is close to 0.3. This shift of the false positive mode to the right of the histogram reflects an improvement in the behavior of the classifier : when wrong, our classifier assign a label with a higher uncertainty.

Contrary to Fig. 1a, the patients in the modal bin don't show radiological signs of being HGG WHO patients. Therefore, despite its small number of LGG WHO patients, we can say that our groundtruth data allow our classifier to give more radiologically consistent results. We can study the effect of the new groundtruth on the classification of high grades. For comparison, we draw Fig. 3 two histograms of the prediction scores, one with the BraTS groundtruth, the other with our radiological groundtruth. We can see on both histograms that the modal bin is very close to 1.0, which shows a high level of confidence. The classifier trained on the radiological groundtruth seems more confident when classifying HGG WHO patients, as almost all HGG WHO patients are found in the first far-right bin. Therefore, despite showing a slightly lower accuracy in Table 5, we can see through the prediction score histogram that training on our new groundtruth gives our classifier a higher confidence. This behaviour is not visible when monitoring only the metrics from the confusion matrix. This shows us that the prediction score histogram can be used to gain a qualitative analysis of the classification. Thus, in addition to being a data analysis tool as shown in Fig. 1a, the histogram of prediction scores can also be used as a tool for comparing qualitatively the performances of two classifiers.

Comparing on the same population using crossed prediction scores

We want to see if this improvement in confidence is visible on the same population. We can enhance this comparison tool by plotting the crossed prediction scores, Fig. 

Discussion and conclusion

In this paper, we showed how prediction scores on the BraTS dataset can be used to identify groups within the classifier performances. Studying the distribution of each patient along the prediction axis can give more information than usual evaluation based on accuracy, sensitivity and specificity. In our example, we saw a modal bin in the false positives close to 0, expressing the high confidence of our classifier to give the wrong label to these patients. This example suggests that the use of prediction score offers a new insight in understanding the behavior of classifiers. Thus, the histogram of prediction may be used in a way to "open the black box", as it is a tool of results visualization.

Detailled radiological analysis shows that our false positive patients present radiological high grade criteria such as necrosis and contrast enhancement. We to generate more LGG WHO data may reduce the class imbalance and improve the LGG WHO accuracy. Again, we used the prediction score histograms and a crossed prediction scores plot to show that, with an individual tracking level, despite these lower performances, our classifier trained on our new groundtruth was more confident in classifying HGG WHO patients. Thus, we showed how a crossed prediction scores plot can be used as a comparison tool for classifiers analysis.

Yet, caution is to be taken for glioma grading when relying on anatomical sequences. Accessing the biological reality of the patient must involve a more complete screening with biopsy and multiparametric MRI scan. Perfusion imaging and MR Spectroscopy give the radiologist more information for grade classification. For example, anatomical imaging has trouble identifying a nonenhancing high grade patient, so our classification can only rely on a limited body of evidence. That's why our groups based on anatomical imaging can only get close to a WHO-defined system, without the certainty and specificity of the real diagnosis.

Perspectives include creating a large multimodal dataset, with MR spectroscopy, diffusion and perfusion imaging to improve the classification. At the same time, switching to ultra high field imaging, from 3 to 7 Tesla would enhance the image quality. A WHO-based groundtruth should also allow discrimination between each 4 grades and not a binary classification. Those improvements could lead to better tools for non-invasive screening and ultimately, automatic virtual biospy.

Availability of groundtruth labels

The groundtruth data resulting of majority voting will be made available online. For the moment, it is available on demand to the main author.

7 shape features, 6

 76 histogram-based intensity features and 5 texture features. The shape features are the length of major and minor axis, the maximum 3D diameter, elongation, flatness, sphericity and surface area. These 7 features are the same for all 4 sequences available and are only computed once per patient. The remaining features are computed on each 4 sequences. The histogram-based intensity features include mean, skewness, kurtosis, contrast, energy and entropy.
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 51a Figure 1a: Prediction score histogram of the LGG BraTS patients. False positives below the 0.5 probability threshold are shown in red, while true negatives above 0.5 are shown in blue. The most confident false positive patients (left) show radiological consistencies with HGG WHO tumors. (see Fig.1b)

Figure 2 :

 2 Figure 2: Prediction score histogram for the LGG WHO patients. Compared to the training on the BraTS groundtruth data, the bin of radiologically HGG WHO patients close to 0 has disappeared. Every patient in the modal bin near 0.3 is visually consistent with the radiological LGG WHO class.

4 .

 4 This plot shows on each axis the prediction scores for one classifier, either trained on the BraTS groundtruth or on our proposed new groundtruth. A dotted line shows equal prediction for both classifiers. This plot can be divided in 4 quadrants, showing the different prediction outcomes for each classifier. The upper-left quadrant shows patients correctly classified by the classifier trained on our new groundtruth and wrongly classified by the classifier trained on the BraTS groundtruth. The upper-right quadrant shows when both classifiers are correct. The bottom left-quadrant shows when both classifiers are wrong. And the bottom right quadrant shows when the classifier trained on the BraTS groundtruth is correct but not the classifier trained on our new groundtruth. On this plot, we can show the HGG WHO population, composed of corrected LGG BraTS and HGG BraTS patients. By plotting individual patients with this

Figure 3 :

 3 Figure 3: Prediction score histogram of HGG BraTS and HGG WHO population for a classifier trained (up) on the BraTS groundtruth and (down) on the new groundtruth. We can see that, with our new groundtruth, more patients are grouped in the far-right bin, showing improvement in the confidence of classification.

Figure 4 :

 4 Figure 4: Crossed prediction scores of the SVM classifier trained on the BraTS groundthtruth (X-axis) and on the radiological groundtruth (Y-axis). Each point is a HGG WHO patient. The dotted line shows equal prediction scores. The dashed lines divide the space in 4 quadrants showing : (up-left) correct prediction for the classifier trained on the new groundtruth and incorrect prediction when trained on the BraTS groundtruth, (up-right) both classifiers give correct predictions, (down-left) both classifiers give incorrect prediction, (down-right) the classifier trained on BraTS gives a good answer while the classifier trained on the new groundtruth is wrong. Most of the changed LGG BraTS patients are in the upper-left corner.

asked 5

 5 expert radiologists to label each patient allowing us to generate a new radiologically WHO-based groundtruth data for the BraTS dataset. A new training on the radiologically coherent groundtruth shows improvement in the false positive distribution and slightly lower general performances, despite a important class imbalance. Due to the important class imbalance, our classifier trained on this groundtruth is more accurate for HGG WHO patients and less accurate for LGG WHO patients. Using data augmentation techniques

Table 1 :

 1 Glioma grades among the WHO classification and the BraTS groundtruth data

	Grade I Grade II Grade III Grade IV
	LGG WHO	HGG WHO

Table 2 :

 2 Confusion matrix terminology

		BraTS groundtruth data
		LGG BraTS	HGG BraTS
	SVM	LGGsvm True negatives False negatives HGGsvm False positives True positives

Table 3 :

 3 Confusion matrix for the SVM classifier trained on the BraTS dataset

			BraTS groundtruth data
			LGG BraTS	HGG BraTS
	SVM	LGGsvm HGGsvm	54 21	11 199

itive patients are particularly interesting, as they are LGG BraTS classified as HGG BraTS by our classifier. The confusion matrix of our first training is shown in Table

Table 4 :

 4 Radiologist groundtruth voting analysisThis groundtruth data gives us new groups of radiologically-looking LGG WHO and HGG WHO , but with an important class imbalance. After majority voting, our new groundtruth only has 31 LGG WHO patients and 254 HGG WHO patients.

		LGG BraTS	HGG BraTS		Whole test
	Majority voting 5/5 4/5 3/5 5/5 4/5 3/5 5/5 4/5 3/5
	# of cases	49	15	11	23	2	0	72	17	11
	Label changed		44/75			0/25			44/100	
	4.2. Evaluating our classifier on our proposed groundtruth data		

As a proof of concept, we wanted to see if we could still learn efficiently on this new groundtruth or if the class imbalance would impact the performances. Using the same features and parameters, we trained a new SVM classifier on this radiological groundtruth. Despite this important class imbalance, we reached similar accuracy, slightly lower sensitivity and specificity, which shows that our learning method seems robust to class imbalance. Detailled results are shown in

Table 5 .

 5 The confusion matrix with our radiological groundtruth is shown in Table6. Compared to Table3, this classifier is less accurate for LGG WHO patients and more accurate for HGG WHO patients.

Table 5 :

 5 Performance comparison between groundtruth datasets

		BraTS groundtruth	Radiologists groundtruth
	Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
	84,1%	87,0%	75,9%	82,4%	83,9%	70,6%

Table 6 :

 6 Confusion matrix for the SVM classifier trained on our radiological groundtruth