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A Bidding Mechanism for
Resource Allocation in Network Slicing

S. Ramakrishnan, Mandar Datar, Eitan Altman

Abstract—In this paper, we present a resource allocation
mechanism for network slices. We consider a dynamic resource
allocation model with multiple independent resource providers.
We call our allocation mechanism, the soft-max allocation mech-
anism, where the slices bid for resources and the resource
providers allocate resources such that their revenue is close to
the maximum revenue possible. We show that this mechanism
translates into a game among the slices with a unique Nash
equilibrium. We also show that the network utility obtained at
this Nash equilibrium is close to the optimal social utility. We then
present a stochastic dual sub-gradient algorithm that provably
converges to the unique Nash equilibrium.

I. INTRODUCTION

Traditional mobile communication network was aimed at
serving human type communications. In 4G mobile commu-
nication, the focus was on bandwidth sharing to improve the
spectral efficiency of the radio access network and allocate a
fair share of bandwidth to the users. With 5G communications,
there is a remarkable shift in focus, more towards machine type
communications with Internet of Things (IoT) applications
[1] like industrial automation, smart grids, intelligent trans-
portation systems etc. This necessitates 5G communications
to support a diverse class of performance and service metrics.
In addition to radio resources, some of these applications also
require other resources like processing capacity, storage etc.
Network slicing is a key to achieve such a goal. A network
slice refers to a fragment of the physical infrastructure that
can support a particular class of service.

The concept of network slicing involves the following three
entities: i) a set of infrastructure providers or resource centres
ii) a set of slice tenants and iii) a set of users. A slice tenant
gathers multiple resources from different resource centres. The
tenants further distribute the gathered resources among the
users. The resources need to be shared in an efficient way
to ensure optimal use of the available resources. This involves
allocating resources from a) resource centres to slices and b)
slices to users.

These two problems have contrasting requirements. In the
former, the needs of each beneficiary, i.e., each slice is differ-
ent. Consider for example two slices with slice s1 requiring
only radio resources and slice s2 needs an equal share of
both the radio and processing. Hence, resource allocation for
slices is a multi-resource allocation problem. In contrast, a
set of users requesting resource from a slice have similar
requirements. We can treat the resource allocation to users as
a single resource allocation problem. Also, the set of users can
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be quite large and hence the complexity of allocating resources
to the users should be low.

For the ease of implementation, we divide the set of
resources into two components, a static component and a dy-
namic component. The static component ensures a guaranteed
performance for the slices. The dynamic component is needed
to improve resource utilization. In this paper, we focus on the
dynamic component allocation for slices. Our objective is to
maximize network utilization and also ensure a fair allocation
of resources.

A. Related Literature

The concept of network virtualization [2] enables future
communication network to provide a variety of services with-
out modifying the physical infrastructure. In the context of
network virtualization, the problem of network embedding is
studied in [3] to map the virtual network to the infrastructure
network to optimize various metrics like throughput, delay
etc., to improve the quality of service (QoS), minimize the
network cost, and also provide a resilient network embedding.
A fractional relaxation of the network function embedding
was considered in [4] and a backpressure based algorithm was
proposed to minimize the network cost. In [5], the problem
of admission control for slice requests was formulated as a
geometric knapsack problem and low-complexity algorithms
were developed.

In [6] Leconte et al. modelled the infrastructure comprising
of radio and computing resources as a directed graph and
proposed an ADMM based utility maximization algorithm to
ensure fair resource sharing. Spectrum sharing in the context
of network slicing was studied in [7]. Fossati et al. [8]
propose a fairness metric for multi-resource allocation called
Ordered Weighted Averaging and discuss its properties. A
Fisher market mechanism [9] and a modified version of Fisher
market [10] was proposed and conditions on the existence of
Nash equilibrium was established.

B. Contributions

1) In comparison to prior work, we consider a more real-
istic network model, where the physical infrastructure
belong to discrete set in contrast to the assumption that
the infrastructure can be divided infinitesimally small.

2) We propose an allocation mechanism called the soft-max
allocation mechanism. Under this mechanism, slices
bid for the resources and the resource owners allocate
resources such that the allocation results in a revenue
close to the maximum possible for the set of bids.



2

3) We show that the allocation mechanism results in a
game among the slices and the game has a unique
Nash equilibrium. Also, we show that the social utility
obtained at this Nash equilibrium is close to the optimal
social utility.

4) We present a stochastic dual-subgradient algorithm that
provably converges to the unique Nash equilibrium.

The rest of the paper is organised as follows: In Section II,
we discuss the network model and formulate the social optimal
problem. In Section III, we present our allocation mechanism
and discuss the game induced by the mechanism. In Section
IV, we present a stochastic dual-subgradient algorithm that
converges to the Nash equilibrium of the game. Finally, in
Section V, we discuss our concluding remarks.

II. RESOURCE ALLOCATION FOR SLICES

We consider a network with a set of R = {1, . . . , R}
resource centers. Resource centers are entities that own physi-
cal infrastructure like bandwidth, memory, processing capacity
etc. They can lease the resources owned by them to the slice
tenants. We assume that each resource center is an independent
entity; hence, allocates its resources independently. In theory,
resources like bandwidth and processing capacity can be
divided infinitesimally small; however, this is seldom true
in reality. Consistent with this understanding, we denote the
resources that belong to resource center r by a finite set
Cr = {1, 2, . . . , Cr}. We consider a set S = {1, . . . , S} of
slice tenants, where each slice corresponds to a service with
specific resource requirements. To simplify the analysis, we
assume a time slotted system with timescales corresponding
to few hours or days.

At each time slot, each of these resources are assigned
to one of the slices, thereby a resource cr ∈ Cr cannot be
assigned to more than one slice at a time. We denote the
assignment of the resources by resource center r to slices
by a Cr × S matrix Ar. Here, Ar(i, j) = 1 if resource i
is assigned to slice j, else Ar(i, j) = 0. Note that each row
adds to one i.e., for all i,

∑
jA

r(i, j) = 1. Let Ar denote the
set of matrices satisfying the above conditions. We denote the
columns of Ar by ars, r ∈ R, s ∈ S . Column ars indicates
the resources assigned to slice s from resource centre r.

Let Ar(t) denote the assignment matrix of resource r at
time t. At time t, let xrs(t) denote the benefit attained by
slice s from resource type r. The benefit xrs(t) is a function
depending on the resources of type r allocated to slice s at
time t and the network state ω(t) ∈ Ω i.e.,

xrs(t) = frs (ars(t), ω(t)),

where ars(t) is the resources of type r allocated to slice s
and the network state ω(t) captures the wireless channel in
the case of radio resource and slice demand variations. We
assume that the benefit is bounded by B, i.e., xrs(t) < B for
all r ∈ R, s ∈ S and at all times. Also, we assume that the
state is an ergodic random process taking values in a finite set
(Ω is finite) with distribution µ i.e.,

µ(ω) = lim
T→∞

1

T

T∑
t=1

1ω(t)=ω.

The time average benefit attained by slice s from resource
centre r is then given by,

xrs = lim inf
T→∞

1

T

T∑
t=1

xrs(t)

We denote the vector of time average benefit attained by slice s
from all the resource centers by xs = (xrs, r ∈ R). We
assume that each slice has a utility Us(·), which is a function
of the time average benefit xs attained by slice s. We assume
that Us(·) is increasing and strictly concave.

The set of average benefits that can be attained by the slices
by time sharing the set of resources is known as the rate region
of the network. We denote the rate region by X . Formally, the
rate region is defined as:

X =


(xs)

∣∣∣∣∣∣∣∣∣∣∣

s ∈ S, xs = (xrs, r ∈ R),

xrs =
∑
ω∈Ω

µ(ω)
∑

Ar∈Ar

p(Ar, ω)frs (ars, ω),

p(Ar, ω) ≥ 0,
∑
Ar∈A

p(Ar, ω) = 1, ∀ω ∈ Ω


.

A. Social Optimal allocation

We say that an allocation is socially optimal, if the average
benefit maximize the sum of the utilities of the slices, i.e.,

Maximize:
∑
s∈S

Us(xs)

such that: xs ∈ X
(1)

This choice of maximizing the sum of utilities over the average
benefit as the social optimal choice is reminiscent of the utility
maximization to attain fair solution [11]. We assume that the
slices do not interact with each other i.e., they do not know
each others utilities. Our objective is to employ a bidding
mechanism such that the social optimal is achieved. In the next
section, we shall present our bidding mechanism, the Soft-Max
Allocation (SMA) mechanism.

III. SOFT-MAX ALLOCATION MECHANISM

Now we shall present Soft-Max Allocation (SMA) mecha-
nism, a bidding mechanism to allocate resources among slices.

In SMA, each slice has to submit independent bids to the
resource centers. The bid submitted to the resource center is
also regarded as the cost per unit average benefit received by
the slice. The resources are then allocated to the slices by
the resource center based on the bids. Let bs,r denote the bid
submitted by slice s to resource center r ∈ R and let xrs be
the average benefit received by slice s from resource center r.
Then, resource center r receives a payment of bs,rxrs from
slice s, i.e., each slice pays the resource center the bid amount
weighted by the average benefit received for that resource.
Note that the average benefit xrs will depend on the allocation
mechanism that we will propose below.

In the SMA mechanism, for a given set of bids bs,r resource
center r allocates its resources to maximize the following:
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Maximize:
p

∑
ω∈Ω

µ(ω)

(
β
∑
Ar

p(Ar, ω)
∑
s

bs,rf
r
s (ars, ω)

−
∑
Ar

p(Ar, ω) log(p(Ar, ω))

− p(O,ω) log(p(O,ω))

)
,

such that: p(Ar, ω) ≥ 0,
∑
Ar∈A

p(Ar, ω) = 1− p(O,ω).

(2)

Here, p(O) denotes the fraction of time the resources are
retained by the resource center and are allocated to none of
the slices. This is done to ensure a certain minimum price for
the resources.

In the following lemma, we shall establish that, for any bid b
the allocation mechanism in (2) leads to a unique allocation.

Lemma 1. Let b = {bs,r, s ∈ S} be the set of bids at resource
center r. Then SMA allocation in (2) is uniquely given by:

p(Ar, ω; b) =
eβ

∑
s bs,rf

r
s (ar

s,ω)

1 + Z(ω)
,

where Z is the following normalizing constant

Z(ω) =
∑

Ar∈Ar

eβ
∑

s bs,rf
r
s (ar

s,ω).

Also, the corresponding benefit for slice s is given by:

xrs(b) =
∑
ω∈Ω

µ(ω)
eβ

∑
s bs,rf

r
s (ar

s,ω)

1 + Z(ω)
frs (ars, ω) (3)

A. Choice of Utilities

Recall that, a slice represents a service that utilizes different
resources. Hence, the utility of a slice cannot linearly increase
by increasing the allocation of a single resource. This fact is
captured by Leonteif utility functions given by:

min

{
x1
s

w1
s

,
x1
s

w1
s

, . . . ,
xRs
wRs

}
,

here wrs is the weight given by slice s for resource r. However,
the use of such a utility could lead to the resources not getting
cleared. To avoid this scenario, we use a weighted combination
of the Leonteif utility and alpha fair utility.

Us(x) = min

{
x1
s

w1
s

,
x1
s

w1
s

, . . . ,
xRs
wRs

}
+
∑
r∈R

1

1− α

(
xrs
wrs

)1−α

The first term ensures that the utility of a slice increases as all
the resources are increased in their required proportion. The
second term ensures an increase in the overall utility with the
increase of a single resource also, but with a diminishing return
property. This choice of utility ensures that the resources are
used fully and also captures that utility increases linearly with
the minimum weighted benefit.

B. Bidding Strategy for Slices

The total reward received by slice s is the utility it receives
from the resource allocation mechanism minus the amount it
has to pay the resource center. The reward received by slice s
is given by

ys(bs, b−s) = Us(xs(b))−
∑
r∈R

bs,rx
r
s(b), (4)

where xs is the average benefit received by slice s given by
the SMA mechanism (3). We assume that slices are rational
in choosing their bids. Each slice will rationally choose a bid
that maximizes its total reward, i.e.,

Maximize: Us(xs(b))−
∑
r∈R

bs,rx
r
s(b)

such that: xrs(b) =
∑
ω∈Ω

µ(ω)
eβ

∑
s bs,rf

r
s (ar

s,ω)

1 + Z(ω)
frs (ars, ω)

bs,r ≥ 0
(5)

C. Slicing Game

We now have the slicing game G, where the players are the
set of slices S, their actions are the bids bs and their reward ys
is the given by (4); governed by SMA mechanism (2). We then
have the following definition of Nash equilibrium for game G.

Definition 1. Nash Equilibrium: A set of bids (bs, s ∈ S) is
a Nash equilibrium of the game G, if for each s ∈ S and any
bid b′s, we have ys(bs, b−s) ≥ ys(b′s, b−s), i.e., any unilateral
deviation of a slice’s action does not increase its reward.

We are interested in the set of Nash equilibria that maxi-
mizes the social utility in (1). In the following theorem, we
show the existence of a socially optimal Nash equilibrium and
its uniqueness.

Theorem 1. Let b = (bs, s ∈ S) > 0 be the bids chosen by
the slices. Then, there exists a unique Nash equilibrium bNE
for the slicing game G. Also, at this unique Nash equilibrium
the network utility is close to the socially optimal utility, i.e.,∑

s

Us(xs(bNE)) ≥
∑
s

Us(x
∗)−

∑
r log(|Ar|)

β
(6)

Since Ar is finite for a large β, the sum utility of the slices is
close to the optimal utility.

Proof. Consider the optimization problem,

Maximize:
∑
s∈S

Us (x̂s)

− 1

β

∑
ω∈Ω

µ(ω)
∑
r∈R

∑
A∈Ar

p(A,ω) log p(A,ω)

− 1

β

∑
ω∈Ω

µ(ω)
∑
r∈R

p(Or, ω)log(p(Or, ω))

such that: x̂rs ≤
∑
ω∈Ω

µ(ω)
∑
A∈Ar

p(A,ω)frs (as, ω),

p(A,ω) ≥ 0,
∑
A∈Ar

p(A,ω) = 1− p(Or, ω)

(7)
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Consider the partial Lagrangian with parameters bs,r

L(x̂, p, b) =
∑
s∈S

(
Us (x̂s)−

∑
r∈R

bs,rx̂
r
s

)
+
∑
s

∑
r∈R

bs,r
∑
ω∈Ω

µ(ω)
∑
A∈Ar

p(A,ω)frs (as, ω)

− 1

β

∑
ω∈Ω

µ(ω)
∑
r∈R

∑
A∈Ar

p(A,ω) log p(A,ω)

The dual of the above problem is given by,

d(b) = sup
x̂,p

L(x̂, p, b)

s.t. p(A,ω) ≥ 0,
∑
A∈Ar

p(A,ω) = 1

We observe that the maximization over p in the above is
the SMA mechanism. Substituting the SMA allocation from
Lemma 1,

d(b) = sup
x̂

∑
s

Us(x̂s)−
∑
r∈R

bs,rx̂
r
s

+
∑
ω∈Ω

∑
r∈R

log

(
1 +

∑
A∈A

eβ
∑

s bs,rf
r
s (ar

s)

)
It can be shown that the last log-sum-exp term is strictly
convex. Also, the first two terms are also convex in b, since it
is a point wise supremum of affine functions. Hence, the dual
is strictly convex and has a unique minimum.

To show that there is unique Nash equilibrium, we show
that the game G is an ordinal potential game. Consider the
potential function Ψ(b) = −d(b). We need to show that,

sign
(

∂

∂bs,r
Ψ(b)

)
= sign

(
∂

∂bs,r
y(b)

)
(8)

Let us denote the benefit received by slice s as

xrs =
∑
ω∈Ω

µ(ω)
eβ

∑
s bs,rf

r
s (ar

s,ω)

1 + Z(ω)
frs (ars, ω)

Then the subgradient of the potential function Ψ is given by,

∇bsΨ(b) = xs − (∇xsUs)
−1(bs)

Also, the gradient of the reward is given by,

∇bsy(bs, b−s) = (∇bsx(b))
T

(∇xUs(x)− bs)

It can be noted that all coordinates of∇bsx(b) is non-negative.
Hence, (8) follows.

Also, since the potential function Ψ has a unique maximum
and noting that entropy is bounded by log(|Ar|), the unique
non-trivial Nash equilibrium satisfies (6).

IV. DISTRIBUTED ALGORITHM FOR SOCIALLY OPTIMAL
EQUILIBRIUM

We now present a dual sub-gradient algorithm for learning
the socially optimal Nash equilibrium. We assume that the
state ω(t) ∈ Ω of the network at time t is known to the
resource center prior to allocation of resources. Each slice will

choose an initial bid b0. For the chosen bid, slice s calculates
the average benefit x̂s, that maximizes its total reward i.e.,

x̂s(t) = arg max
β∈[0,B]R

Us(β)−
∑
r∈R

bs,r(t)βr.

With the assumption of fixed bids {bs,r(t), s ∈ S}, at time t,
resource center r chooses the allocation Ar(t + 1) with a
probability distribution given by

p(Ar, ω(t+ 1); b(t)) =
eβ

∑
s bs,r(t)fr

s (ar
s,ω(t+1))

1 + Z(ω(t+ 1))

Let x̃rs(t) be the benefit attained by slice s from resource
center r at time t. Finally, the bids are updated by the following
dual subgradient algorithm

bs,r(t+ 1) =

[
bs,r(t)−

1

t

(
x̂rs(t)− x̃rs(t)

)]+

(9)

Here, [x]+ = x if x > 0 and [x]+ = 0 otherwise.

Intuitively, the algorithm is explained as follows: If the
attained benefit is more than the maximum benefit for that
bid, it is useful to reduce the bid, thereby increasing the total
reward. If, on the other hand, the attained benefit is less than
the maximum benefit for that bid, then the slice increases its
bid so that it gets a better reward.

Algorithm 1 : Learning Efficient Nash Equilibrium
Initialize:

For all s ∈ S and initialize bid bs,r = b0

Resource Allocation Mechanism at time t:
Choose Ar(t+ 1) with probability

p(Ar, ω(t+ 1); b(t)) =
eβ

∑
s bs,r(t)fr

s (ar
s,ω(t+1))

1 + Z(ω(t+ 1))

Update x̃s and x̂s at time t

x̃rs(t) = frs (ar(t+ 1), ω(t+ 1))

x̂s(t) = arg max
β∈[0,B]R

Us(β)−
∑
r∈R

bs,r(t)β
r

Bid update for slice s at time t:

bs,r(t+ 1) =

[
bs,r(t) +

1

t

(
x̂rs(t)− x̃rs(t)

)]+

Next we have the theorem that shows that Algorithm 1
converges to the near-efficient Nash equilibrium.

Theorem 2. Let the bids in Algorithm 1 be such that
bs,r(t) < bmax, for all s, r and t. Then, Algorithm 1 converges
to the optimal bids b∗.
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Proof. Let ∆(t) = b(t)− b∗ and ∆s,r(t) = bs,r(t)− b∗s,r.

‖∆(t+ 1)‖2 =
∑
s∈S

∑
r∈R

∆2
s,r(t+ 1)

(a)

≤
∑
s∈S

∑
r∈R

(
bs,r(t)−

1

t
(x̂rs(t)− x̃rs(t))− b∗s,r

)2

(b)

≤
∑
s∈S

∑
r∈R

(
∆2
s,r(t)− 2

1

t
∆s,r(t) (x̂rs(t)− x̃rs(t))

+
B2

t2

)
. (10)

Here (a) follows due to the non-expansiveness of projection
operator [·]+ and (b) follows since x̃rs(t), x̂

r
s(t) < B.

Let us define,

xrs(t) =
∑
ω∈Ω

µ(ω)
eβ

∑
s bs,r(t)fr

s (ar
s,ω)

1 + Z(ω)
frs (ars, ω).

Also, the subgradient of the dual function is,

∇bs(t)d(b(t)) = x̂s(t)− xs(t).
Then by gradient inequality for convex functions, we have(

x̂s(t)− xs(t)
)T

(b(t)− b∗) ≥ d(b(t))− d(b∗)

Substituting the above in (10), we get

‖∆(t+ 1)‖2 ≤‖∆(t)‖2 − 2

t

(
d(b(t))− d(b∗)

)
+
B2RS

t2
− 2

t
∆(t)T

(
xrs(t)− x̃rs(t)

)
(11)

Summing the above from t = 0 to T ,

‖∆(T + 1)‖2 ≤ ‖∆(0)‖2 −
T∑
t=0

(2

t

(
d(b(t))− d(b∗)

)
+
B2RS

t2

− 2

t
∆(t)T

(
xrs(t)− x̃rs(t)

))
Rearranging, and taking expectation, we have,

T∑
t=0

2

t
E
(
d(b(t))− d(b∗)

)
≤ E

(
‖∆(0)‖2

)
+

T∑
t=0

B2RS

t2

This implies, lim infT→∞
∑T
t=0

2
tE
(
d(b(t)) − d(b∗)

)
≤ ∞.

By Kronecker’s Lemma [12], we have

lim inf
t→∞

E
(
d(b(t))

)
− d(b∗) = 0

By Fatou’s lemma and since d(b(t)) ≥ d(b∗), we have w.p. 1

lim inf
t→∞

(
d(b(t))

)
− d(b∗) = 0

Since, d(·) is strictly convex and b∗ is unique, we have w.p. 1

lim inf
t→∞

‖b(t)− b∗‖ = 0 (12)

From (11), we have

‖∆(t+ 1)‖2 ≤ ‖∆(t)‖2 +
B2RS

t2
− 2

t
∆(t)T

(
x(t)− x̃(t)

)
Let ct = (2/t)∆(t)T

(
x − x̃(t)

)
. Since b(t) is bounded

and
∑T
t=0 ct is an FT martingale, by martingale convergence

theorem, we have w.p. 1, limT→∞
∑T
t=0 ct < ∞. From the

above and Lemma 2.3 in [13] ‖∆(t)‖ converges w.p. 1.
Together with (12) we have the result.

V. CONCLUSION

In this paper we present a mechanism for resource allocation
for network slices. A slice is considered as a service that
requires different resources; each resource being owned by
an independent entity. We argue that to make efficient use
of the available resources, at least a subset of the resources
needs to be allocated dynamically. Also, at the time scale in
which these resources are allocated, we do not restrict the
complexity of the resource allocation mechanism. Under this
setup, we propose an allocation mechanism called the soft-max
allocation mechanism. We argue that the soft-max allocation
mechanism translates to a game among the slices. Further,
we show that there exists a unique Nash equilibrium for the
game and that the Nash equilibrium is also socially optimal.
Finally, we present a distributed stochastic gradient algorithm
that converge to this unique Nash equilibrium. In future, to
obtain a complete view, we intend to add a static component
for the resource allocation among slices and discuss how these
resources need to be allocated to the end users.
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