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Abstract—The stochastic watershed is a morphological ap-
proach to segmentation that repeats the application of a seeded
watershed from series of uniform random markers. The obtained
watershed boundaries are combined to construct a probability
density function. We propose an alternative approach called
stochastic permutation ordering watershed. Our approach relies
on the construction of several permutation orderings of the pixels
of an image, starting from a random pixel and using a dedicated
Hamiltonian path construction on a graph. From the permutation
orderings, several seeded watersheds are applied and averaged. In
contrast to the stochastic watershed, our approach enables to take
into account any features associated to pixels, such as patches,
of prime important to segment textured images. Experimental
results show the benefit of the approach.

Index Terms—Segmentation, stochastic watershed, Hamilto-
nian path.

I. INTRODUCTION

For image segmentation, the watershed [1] is among the
most popular methods that have been proposed so far. This
approach belongs to the research field of Mathematical Mor-
phology (MM) [2], a nonlinear approach to image processing.
Starting from region seeds, the watershed performs a flood-
ing on a gradient image to obtain a segmentation. Efficient
algorithms [3] have been proposed to perform this flooding
process. In an unsupervised segmentation process, region seeds
are usually the minima of the gradient. However this is very
sensitive to both noise and over-segmentation [1]. Typical
approaches to cope with these problems do either remove local
minima in a pre processing step or merge the final regions in
a post processing step. Another solution is to consider, instead
of the gradient image, an image that reduces the minima
inside the objects and enhances the boundaries. With this
objective, Angulo and Jeulin have proposed [4] the stochastic
watershed. The principle is twofold. First, one repeats the
application of a seeded watershed from series of uniform
random markers using Monte Carlo simulations. Second, the
obtained boundaries of the watershed segmentation are com-
bined to construct a probability density function (pdf) for the
boundaries in the image. The pdf computed by the stochastic
watershed converges to the probability of seeds falling on both
sides of each boundary and can be computed using graph
algorithms [5]. Several works have been proposed to extend
the stochastic watershed. In [6] a variant based on regional
regularization of the image was proposed. In [7] a multi-
scale approach including bagging was proposed. In [8], the
probabilities of contours are computed from a gaussian model
of image regions.

In this paper we propose an alternative approach for the
computation of the probability density function for the bound-
aries in the image. In the original formulation of [4], each sim-
ulation is performed on a gradient image [9] that usually only
considers the color differences between pixels. Therefore, the
classical stochastic watershed cannot use more advanced pixel
features such as patches to construct the pdf for the boundaries
in the image. However, texture features such as patches have
shown to be very efficient in many computer vision tasks [10].
We introduce an approach to build a pdf for the boundaries
in the image that can consider any feature describing a pixel.
Our approach relies on the construction of several permutation
orderings of the pixels of an image, starting from a random
pixel and using a dedicated Hamiltonian path construction on
a graph. In section II we present how to construct such a
stochastic Hamiltonian path and construct a pdf. In Section
III, we present some results and comparisons. Last section
concludes.

II. STOCHASTIC PERMUTATION ORDERING WATERSHED
A. Notations

We consider that the domain {2 of the image is a graph
G = (V,&) where vertices V = {vy,...,vy} correspond to
pixels and edges e;; = (v;,v;) connect vertices. With this
definition, images are represented as graphs signals [11] that
associate vectors to vertices and are defined by the mapping
f:+ 6 — F C R"™ where F is a non-empty set of vectors
(we will consider only RGB color vectors, i.e., n = 3). To
each vertex v; € G is associated a vector v; = f(v;). The set
T = {v1, -+ ,vy} denotes the vectors associated to all the
vertices of the graph. Consequently, one has |V| = m. We will
use the notation 7 [i] = v; to denote the i-th element of the
set T
The graph G used to represent an image can be a classical
grid-graph where pixels are connected with 8-adjacency, but
it can be interesting to go beyond this classical grid-graph
construction and to consider graphs of the higher connectivi-
ties. We will consider several possible graphs to represent an
image. The graph can use only spatial or spectral information,
or both.
o B-adjacency graph (denoted Gp): this graph construction
connects each vertex v; to all the vertices contained in
a square box of size (2B + 1) x (2B + 1) around v;.
8-adjacency grid graphs do correspond to graphs 9.
o Global K-Nearest Neighbor graph (denoted GX): this
graph construction connects each vertex v; to its K



nearest neighbors (in terms of spectral distance) within
the set of all vertices.
The first graphs Gp consider only the spatial proximity in-
formation to connect vertices whereas graphs GX consider
only the spectral proximity information and are fully nonlocal
graphs [12].

B. Complete lattices

The classical construction of algebraic morphological oper-
ators relies on complete lattices [13] that impose the need of
an ordering relationship between the elements to be processed.
Within this theoretical background, morphological operations
can be described as mappings between complete lattices. A
complete lattice (7, <) is a non-empty set equipped with a
total ordering relation, such that every non-empty subset P of
T has a lower bound AP and an upper bound VP. If MM is
well defined for gray scale functions, there exists no general
admitted extension that permits to perform morphological
operations on vectors since there is no natural ordering of
vectors [14]. If many approaches have been proposed for color
images [15], very few deal with patches [16], [17]. In this
paper we will define an ordering relation between the vectors
of a set 7 with the use of h-orderings [18]. This corresponds
to defining a surjective transform h from 7 to £ where L is a
complete lattice equipped with the conditional total ordering
[18]. We refer to <j as the h-ordering given by:

h:T — Land v — h(v),Y(v;,v;) € T xT
Vi <pv; < h(v;) < h(v;) . €))

Then, 7 is no longer required to be a complete lattice, since
the ordering of 7 can be induced upon £ by means of i [15].
When £ is bijective, this corresponds to defining a space filling
curve [19] and we will use this property in the sequel.

C. Stochastic Hamiltonian path

To construct a complete lattice with an image-adaptive h-
ordering, we propose to construct a space-filling curve [19]
on a graph G associated to the image. This corresponds to the
construction of an Hamiltonian path on the image: a path that
goes through all the vertices of the graph and traverses each
vertex only once. We consider a general approach and build
an order for all the set 7 in the form of a global Hamiltonian
path.

Given the set 7, the construction of an Hamiltonian path
amounts to define a sorted permutation P = P7T of the vectors
of 7 with P a permutation matrix of size m x m. Let o be
a permutation of the index set J = {1,--- ,m}. If (i) =
j, then P;; = 1 and O otherwise. The induced permutation
is P = PT = {vy-1(1), " ;Vo-1(m)} Where (c7too)is
the identity. Any permutation is not of interest, and spatial
and spectral constraints have to be taken into account. To this
end we consider the construction of a smooth permutation.
The smoothness of an ordered set is expressed by the Total
Variation of its elements:

m—1
1Ty = llvi = visall 2)

i=1

The optimal permutation operator P can be obtained by
minimizing the total variation of P7:

P* = argmpin IPT|rv 3)

This optimization problem provides a permutation such that
the corresponding Hamiltonian path is the shortest one and
is equivalent to solve the traveling salesman problem. This
problem being too computationally demanding for large sets, it
can be solved using a randomized version of nearest neighbors
heuristics as presented in [20]. We recall the principle of
this algorithm in Algorithm 1. This algorithm starts from an
arbitrary vertex and continues by finding the two nearest unex-
plored neighbor vertices and choosing one of them at random.
Both these random choices make the obtained permutation
stochastic.

Algorithm 1: Permutation construction as a global
Hamiltonian path on a graph.

Input: set of vectors 7 = {vq,--- ,V,,} and graph G;
Generate a random probability vector p = [p1, - , Pm];
Randomly choose an index j € J = {1,--- ,m};
Set o1 (1) = j (or equivalently o(j) = 1);
Set P ={v, 14y} and J = {oc7 (1)}
fori =1t m —1do
Let N(v,—1(;)) = {kl(v,—10;y,vk) € E}\T;
if |N(U0_1(i))| =1 then
| o+ D) = N(oy-1)
else
if [N(v,—1(;))| > 2 then
Find the first v;; and second v;, nearest neighbors of
vg,l(i) in N('UU—I(,i))

else
if |N(Ud_1(i))| = 0 then
Find the first v;, and second v, nearest neighbors of
Vo134 inJ\ZT

else

qi =

1
v —1 5y —viq =1V —1 5y —via |l
Itexp o=l Vi1 _ c—1@) Va2 )
If (qi < p,—1(;) then o~ (i + 1) = jo and
o~ (i + 1) = j1 otherwise;
P:PU{va,l(Hl)};
| Z=Zu{oc "Gi+1}

Output: ordered set P and associated index set Z

After the construction of the permutation, we define the h-
ordering from the constructed permutation as h(v;) = o(i)
and this defines the complete lattice (7, <j). Given a graph
signal f : § — 7T, a new representation is obtained in the form
of the pair (Z,P) with Z(v;) = o(¢). When a graph signal is
encoded in this way, the spectral information is not directly
carried by the index Z, but is stored in a separate piece of data
called a palette: the set P of sorted vectors. Figure 1 presents
the obtained permutation and index from an original image,
as well as the constructed Hamiltonian path, on a 8-adjacency
grid graph G;. The original graph signal f can be directly
recovered since f(v;) = P[Z(v;)] = T[i] = v,. It can be
interesting to construct graphs that combine the use of both
spatial and spectral proximity to infer the set of edges. For
graphs GX | it is even recommended since their construction
cannot ensure that the graph is connected. In this special case,



Fig. 1. From left to right: original image, an Hamiltonian path constructed
on graph G1, the associated index and palette images.

Algorithm 1 will not be able to continue the construction
of the path in the vertices of the neighborhood if they have
been all explored. This case was foreseen in Algorithm 1,
and in the case where |N(v,-1(;))| = 0, meaning that no
vertex is available to continue the path, the search of the
nearest neighbor is performed on the set of all the remaining
vertices J \Z. These cases can be easily seen as the “jumping”
edges in the constructed path shown in Figure 1(b). In the
sequel we will consider graphs Goo U G2!. Finally, the spectral
proximity used to determine the nearest neighbors within the
set of adjacent vertices can consider any distance measure. In
particular, instead of using a classical Lo distance between
the vectors v; associated to vertices, one can consider patches
pY = (f(z;+1),Vt € [—w/2,w/2]2)T of size w x w.

D. Constructing the probability density function

As Algorithm 1 starts from a random vertex, a different
stochastic permutation ordering is obtained for each run of
the algorithm. If this is problematic for the construction of
morphological operators, we can make the most of it and pro-
pose an alternative formulation of the stochastic watershed [4].
In this latter approach M segmentations are obtained from N
random markers to build a probability density function using a
Parzen estimator to combine them altogether. This pdf is then
combined with the initial gradient to produce a probabilistic
gradient that can be used for watershed segmentation. The
stochastic nature of this approach comes from the use of
random markers. We propose a novel approach that we will
call stochastic permutation ordering watershed. In our case
the stochastic aspect will come from the generation of several
permutation orderings from different starting vertices. The
principle is the following. We built M stochastic permutation
orderings using Algorithm 1. This provides M representations
(Z;,P;) with ¢ € [1, M]. Figure 2 presents for an image,
several different obtained indexes and permutations. As it can
be seen, the orderings of the colors can be very different
in the palette (or equivalently the lattice) because of the
stochastic nature of the constructed Hamiltonian paths. As
a consequence the index palette is also very different from
one stochastic permutation ordering to another. Therefore the
minima extracted from index images Z; will not be located
at the same position in all index images and we can obtain
different segmentations from these minima, as in the original
stochastic watershed. However in our case the germs are not
randomly generated but are the minima of the index images
generated from stochastic permutation orderings. Figure 2
presents the obtained minima and watershed segmentations

Fig. 2. First row: initial image f, Di Zenzo gradient V f, probabilistic
gradient V f. Second row: stochastic orderings Z;. Third row: stochastic
palettes P;. Fourth row: minima m(Z;) of the stochastic orderings Z;. Fifth
row: watershed lines W.S;(f) from the minima m(Z;) on the gradient V f.

for each of the obtained indexes with the Di Zenzo gradient
[9]. For an image f, we denote as WS;(f) = WS(I;, Vf)
the watershed obtained from the minima m(Z;) of the ith
stochastic ordering Z; on the gradient V f. Then, as in [4],
the pdf is computed with the Parzen method:

M
pdf(f) = 2= > GOVSi()) @
=0

with G a Gaussian kernel of variance o (¢ = 2 in our case).
Finally this pdf is combined with the initial Di Zenzo Gradient
to produce a probabilistic gradient :

pdf(f)2+ % )

This enables to reinforce the gradients contours of high prob-
ability. First row of Figure 2 shows the obtained probabilistic
gradient. This was obtained using 11 combined different
stochastic permutations orderings even if only 3 are shown
in the Figure. As it can be seen, the probabilistic gradient
contains much more information than the classical Di Zenzo
gradient. So far, the distance used to generate the different
stochastic ordering in Algorithm 1 was based only on the color
vectors of the vertices v; = f(v;). As previously explained,
we can used instead a distance on other features such as the
patches p;’ of size w X w or structure tensors t; of size
2 x 2. This directly enables to have a feature-based stochastic

V=



watershed which is not possible with the original formulation
of [4]. We investigate this in the next Section.

III. EXAMPLES

In this section we investigate the interest of the proposed
stochastic permutation ordering watershed with respect to
the original stochastic watershed [4]. We also investigate
the interest of using patches or structure tensors instead of
colors to compare vertices in Algorithm 1. We perform our
experiments on images of the Bayeux Tapestry!. On such
images, historian experts need to delineate interactively some
characters. Therefore, a precise segmentation is required but
by using simple object/background seed labeling by point
click to ease the end-users use. The characters are visually
easy to identify but the reduced number of colors, the fine
embroidery as well as the texture differences in the linen
fabric can make the segmentation hard. Figure 3 presents some
results on four distinct parts of the tapestry. To obtain the
segmentation, a watershed is performed on the probabilistic
gradient from the user seeds. We compare our approach with
the classical stochastic watershed. To have a fair comparison,
for the computation of pdf(f) we consider the same number of
random realizations than ours (11) and generate 200 random
seeds. In contrast to [4], we do not add any pre-processing
of the image. For each image to segment, Figure 3 presents
on two lines, from left to right: the original image f, the
user seeds, the probabilistic gradient V f and the segmentation
result for the classical stochastic watershed, our stochastic
permutation ordering watershed with colors v;, 7 x 7 patches
p!, 15 x 15 patches p}®, and structure tensors t;. As it can
be seen, the probabilistic gradient obtained from the classical
stochastic watershed (CSW) has few regions in homogeneous
areas but some visually important edges do not have a high
probability. This is not the case of the probabilistic gradient
obtained from our proposed stochastic permutation ordering
watershed (SPOW). In the segmentation results, the blue
squares do identify the strong segmentation errors. The results
obtained with colors vectors for SPOW are always better than
for CSW. One can see that for the observed errors this is due
to not having edges of high probabilities. The use of 7 x 7
patches can further enhance the segmentation. However the
use of very large 15 x 15 patches provides a result close to
the CSW proving that if patches can be of interest, the size of
the patterns of interest is very important. Finally with structure
tensors, the probabilistic gradient is very fine, but this tends to
over detect structures in textured areas. As a conclusion, for
this kind of images the use of our proposed SPOW with 7 x 7
patches provides the best results and this shows the interest of
our proposal.

IV. CONCLUSION

We have proposed an alternative formulation to the stochas-
tic watershed. Starting from a random pixel, an Hamiltonian
path is constructed to build a complete lattice. From the latter

! banorama of the Bayeux Tapestry, GREYC Image (UMR UNICAEN/ENSICAEN/CNRS), CERTIC (UNICAEN) from
the 2017 photographic campaign of La Fabrique de patrimoines en Normandie, 2017-2018.

a new representation of an image in the form of a palette
and an index image is obtained. Minima are extracted from
the latter and used to perform several watershed that are
combined into a probability density function. A probabilistic
gradient is computed from the obtained pdf and the Di Zenzo
gradient. The advantage of the proposed approach relies in
its ability to incorporate any features to represent pixels for
the computation of the pdf. The experimental results have
shown that this has some benefits with respect to the classical
stochastic watershed.
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Fig. 3. Segmentation results, with for each image, on two lines, from left to right: the original image f, the user seeds, the probabilistic gradient V f and the
segmentation result for the classical stochastic watershed, our stochastic permutation ordering watershed with colors v;, 7 X 7 patches pZ, 15 x 15 patches
p}®, and structure tensors t;.



