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Abstract—The stochastic watershed is a morphological ap-
proach to segmentation that repeats the application of a seeded
watershed from series of uniform random markers. The obtained
watershed boundaries are combined to construct a probability
density function. We propose an alternative approach called
stochastic permutation ordering watershed. Our approach relies
on the construction of several permutation orderings of the pixels
of an image, starting from a random pixel and using a dedicated
Hamiltonian path construction on a graph. From the permutation
orderings, several seeded watersheds are applied and averaged. In
contrast to the stochastic watershed, our approach enables to take
into account any features associated to pixels, such as patches,
of prime important to segment textured images. Experimental
results show the benefit of the approach.

Index Terms—Segmentation, stochastic watershed, Hamilto-
nian path.

I. INTRODUCTION

For image segmentation, the watershed [1] is among the

most popular methods that have been proposed so far. This

approach belongs to the research field of Mathematical Mor-

phology (MM) [2], a nonlinear approach to image processing.

Starting from region seeds, the watershed performs a flood-

ing on a gradient image to obtain a segmentation. Efficient

algorithms [3] have been proposed to perform this flooding

process. In an unsupervised segmentation process, region seeds

are usually the minima of the gradient. However this is very

sensitive to both noise and over-segmentation [1]. Typical

approaches to cope with these problems do either remove local

minima in a pre processing step or merge the final regions in

a post processing step. Another solution is to consider, instead

of the gradient image, an image that reduces the minima

inside the objects and enhances the boundaries. With this

objective, Angulo and Jeulin have proposed [4] the stochastic

watershed. The principle is twofold. First, one repeats the

application of a seeded watershed from series of uniform

random markers using Monte Carlo simulations. Second, the

obtained boundaries of the watershed segmentation are com-

bined to construct a probability density function (pdf) for the

boundaries in the image. The pdf computed by the stochastic

watershed converges to the probability of seeds falling on both

sides of each boundary and can be computed using graph

algorithms [5]. Several works have been proposed to extend

the stochastic watershed. In [6] a variant based on regional

regularization of the image was proposed. In [7] a multi-

scale approach including bagging was proposed. In [8], the

probabilities of contours are computed from a gaussian model

of image regions.

In this paper we propose an alternative approach for the

computation of the probability density function for the bound-

aries in the image. In the original formulation of [4], each sim-

ulation is performed on a gradient image [9] that usually only

considers the color differences between pixels. Therefore, the

classical stochastic watershed cannot use more advanced pixel

features such as patches to construct the pdf for the boundaries

in the image. However, texture features such as patches have

shown to be very efficient in many computer vision tasks [10].

We introduce an approach to build a pdf for the boundaries

in the image that can consider any feature describing a pixel.

Our approach relies on the construction of several permutation

orderings of the pixels of an image, starting from a random

pixel and using a dedicated Hamiltonian path construction on

a graph. In section II we present how to construct such a

stochastic Hamiltonian path and construct a pdf. In Section

III, we present some results and comparisons. Last section

concludes.

II. STOCHASTIC PERMUTATION ORDERING WATERSHED

A. Notations

We consider that the domain Ω of the image is a graph

G = (V,E) where vertices V = {v1, . . . , vm} correspond to

pixels and edges eij = (vi, vj) connect vertices. With this

definition, images are represented as graphs signals [11] that

associate vectors to vertices and are defined by the mapping

f : G → F ⊂ R
n where F is a non-empty set of vectors

(we will consider only RGB color vectors, i.e., n = 3). To

each vertex vi ∈ G is associated a vector vi = f(vi). The set

T = {v1, · · · , vm} denotes the vectors associated to all the

vertices of the graph. Consequently, one has |V| = m. We will

use the notation T [i] = vi to denote the i-th element of the

set T .

The graph G used to represent an image can be a classical

grid-graph where pixels are connected with 8-adjacency, but

it can be interesting to go beyond this classical grid-graph

construction and to consider graphs of the higher connectivi-

ties. We will consider several possible graphs to represent an

image. The graph can use only spatial or spectral information,

or both.

• B-adjacency graph (denoted GB): this graph construction

connects each vertex vi to all the vertices contained in

a square box of size (2B + 1) × (2B + 1) around vi.
8-adjacency grid graphs do correspond to graphs G1.

• Global K-Nearest Neighbor graph (denoted GK
∗ ): this

graph construction connects each vertex vi to its K



nearest neighbors (in terms of spectral distance) within

the set of all vertices.

The first graphs GB consider only the spatial proximity in-

formation to connect vertices whereas graphs GK
∗ consider

only the spectral proximity information and are fully nonlocal

graphs [12].

B. Complete lattices

The classical construction of algebraic morphological oper-

ators relies on complete lattices [13] that impose the need of

an ordering relationship between the elements to be processed.

Within this theoretical background, morphological operations

can be described as mappings between complete lattices. A

complete lattice (T ,≤) is a non-empty set equipped with a

total ordering relation, such that every non-empty subset P of

T has a lower bound ∧P and an upper bound ∨P . If MM is

well defined for gray scale functions, there exists no general

admitted extension that permits to perform morphological

operations on vectors since there is no natural ordering of

vectors [14]. If many approaches have been proposed for color

images [15], very few deal with patches [16], [17]. In this

paper we will define an ordering relation between the vectors

of a set T with the use of h-orderings [18]. This corresponds

to defining a surjective transform h from T to L where L is a

complete lattice equipped with the conditional total ordering

[18]. We refer to ≤h as the h-ordering given by:

h : T → L and v → h(v), ∀(vi, vj) ∈ T × T

vi ≤h vj ⇔ h(vi) ≤ h(vj) . (1)

Then, T is no longer required to be a complete lattice, since

the ordering of T can be induced upon L by means of h [15].

When h is bijective, this corresponds to defining a space filling

curve [19] and we will use this property in the sequel.

C. Stochastic Hamiltonian path

To construct a complete lattice with an image-adaptive h-

ordering, we propose to construct a space-filling curve [19]

on a graph G associated to the image. This corresponds to the

construction of an Hamiltonian path on the image: a path that

goes through all the vertices of the graph and traverses each

vertex only once. We consider a general approach and build

an order for all the set T in the form of a global Hamiltonian

path.

Given the set T , the construction of an Hamiltonian path

amounts to define a sorted permutation P = PT of the vectors

of T with P a permutation matrix of size m × m. Let σ be

a permutation of the index set J = {1, · · · ,m}. If σ(i) =
j, then Pij = 1 and 0 otherwise. The induced permutation

is P = PT = {vσ−1(1), · · · , vσ−1(m)} where (σ−1 ◦ σ) is

the identity. Any permutation is not of interest, and spatial

and spectral constraints have to be taken into account. To this

end we consider the construction of a smooth permutation.

The smoothness of an ordered set is expressed by the Total

Variation of its elements:

‖T ‖TV =

m−1
∑

i=1

‖vi − vi+1‖ (2)

The optimal permutation operator P can be obtained by

minimizing the total variation of PT :

P
∗ = argmin

P
‖PT ‖TV (3)

This optimization problem provides a permutation such that

the corresponding Hamiltonian path is the shortest one and

is equivalent to solve the traveling salesman problem. This

problem being too computationally demanding for large sets, it

can be solved using a randomized version of nearest neighbors

heuristics as presented in [20]. We recall the principle of

this algorithm in Algorithm 1. This algorithm starts from an

arbitrary vertex and continues by finding the two nearest unex-

plored neighbor vertices and choosing one of them at random.

Both these random choices make the obtained permutation

stochastic.

Algorithm 1: Permutation construction as a global

Hamiltonian path on a graph.

Input: set of vectors T = {v1, · · · , vm} and graph G;

Generate a random probability vector p = [p1, · · · , pm];
Randomly choose an index j ∈ J = {1, · · · ,m};

Set σ−1(1) = j (or equivalently σ(j) = 1);

Set P = {v
σ−1(1)} and J = {σ−1(1)};

for i = 1 to m − 1 do

Let N(v
σ−1(i)) = {k|(v

σ−1(i), vk) ∈ E} \ I;

if |N(v
σ−1(i))| = 1 then

σ−1(i + 1) = N(v
σ−1(i))

else

if |N(v
σ−1(i))| ≥ 2 then

Find the first vj1 and second vj2 nearest neighbors of

v
σ−1(i) in N(v

σ−1(i))

else

if |N(v
σ−1(i))| = 0 then

Find the first vj1 and second vj2
nearest neighbors of

v
σ−1(i) in J \ I

else

qi = 1

1+exp





‖v
σ−1(i)

−vj1
‖−‖v

σ−1(i)
−vj2

‖

α





;

If (qi < p
σ−1(i)) then σ−1(i + 1) = j2 and

σ−1(i + 1) = j1 otherwise;

P = P ∪ {v
σ−1(i+1)};

I = I ∪ {σ−1(i + 1)};

Output: ordered set P and associated index set I

After the construction of the permutation, we define the h-

ordering from the constructed permutation as h(vi) = σ(i)
and this defines the complete lattice (T ,≤h). Given a graph

signal f : G → T , a new representation is obtained in the form

of the pair (I,P) with I(vi) = σ(i). When a graph signal is

encoded in this way, the spectral information is not directly

carried by the index I, but is stored in a separate piece of data

called a palette: the set P of sorted vectors. Figure 1 presents

the obtained permutation and index from an original image,

as well as the constructed Hamiltonian path, on a 8-adjacency

grid graph G1. The original graph signal f can be directly

recovered since f(vi) = P[I(vi)] = T [i] = vi. It can be

interesting to construct graphs that combine the use of both

spatial and spectral proximity to infer the set of edges. For

graphs GK
∗ , it is even recommended since their construction

cannot ensure that the graph is connected. In this special case,
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Fig. 1. From left to right: original image, an Hamiltonian path constructed
on graph G1, the associated index and palette images.

Algorithm 1 will not be able to continue the construction

of the path in the vertices of the neighborhood if they have

been all explored. This case was foreseen in Algorithm 1,

and in the case where |N(vσ−1(i))| = 0, meaning that no

vertex is available to continue the path, the search of the

nearest neighbor is performed on the set of all the remaining

vertices J \I. These cases can be easily seen as the ”jumping”

edges in the constructed path shown in Figure 1(b). In the

sequel we will consider graphs G20∪G21
∗ . Finally, the spectral

proximity used to determine the nearest neighbors within the

set of adjacent vertices can consider any distance measure. In

particular, instead of using a classical L2 distance between

the vectors vi associated to vertices, one can consider patches

pwi =
(

f(xi + t), ∀t ∈ [−w/2, w/2]2
)T

of size w × w.

D. Constructing the probability density function

As Algorithm 1 starts from a random vertex, a different

stochastic permutation ordering is obtained for each run of

the algorithm. If this is problematic for the construction of

morphological operators, we can make the most of it and pro-

pose an alternative formulation of the stochastic watershed [4].

In this latter approach M segmentations are obtained from N
random markers to build a probability density function using a

Parzen estimator to combine them altogether. This pdf is then

combined with the initial gradient to produce a probabilistic

gradient that can be used for watershed segmentation. The

stochastic nature of this approach comes from the use of

random markers. We propose a novel approach that we will

call stochastic permutation ordering watershed. In our case

the stochastic aspect will come from the generation of several

permutation orderings from different starting vertices. The

principle is the following. We built M stochastic permutation

orderings using Algorithm 1. This provides M representations

(Ii,Pi) with i ∈ [1,M ]. Figure 2 presents for an image,

several different obtained indexes and permutations. As it can

be seen, the orderings of the colors can be very different

in the palette (or equivalently the lattice) because of the

stochastic nature of the constructed Hamiltonian paths. As

a consequence the index palette is also very different from

one stochastic permutation ordering to another. Therefore the

minima extracted from index images Ii will not be located

at the same position in all index images and we can obtain

different segmentations from these minima, as in the original

stochastic watershed. However in our case the germs are not

randomly generated but are the minima of the index images

generated from stochastic permutation orderings. Figure 2

presents the obtained minima and watershed segmentations

Fig. 2. First row: initial image f , Di Zenzo gradient ∇f , probabilistic

gradient ∇f . Second row: stochastic orderings Ii. Third row: stochastic
palettes Pi. Fourth row: minima m(Ii) of the stochastic orderings Ii. Fifth
row: watershed lines WSi(f) from the minima m(Ii) on the gradient ∇f .

for each of the obtained indexes with the Di Zenzo gradient

[9]. For an image f , we denote as WSi(f) = WS(Ii,∇f)
the watershed obtained from the minima m(Ii) of the ith
stochastic ordering Ii on the gradient ∇f . Then, as in [4],

the pdf is computed with the Parzen method:

pdf(f) =
1

M

M
∑

i=0

G(WSi(f)) (4)

with G a Gaussian kernel of variance σ2 (σ = 2 in our case).

Finally this pdf is combined with the initial Di Zenzo Gradient

to produce a probabilistic gradient :

∇f =
pdf(f) +∇f

2
(5)

This enables to reinforce the gradients contours of high prob-

ability. First row of Figure 2 shows the obtained probabilistic

gradient. This was obtained using 11 combined different

stochastic permutations orderings even if only 3 are shown

in the Figure. As it can be seen, the probabilistic gradient

contains much more information than the classical Di Zenzo

gradient. So far, the distance used to generate the different

stochastic ordering in Algorithm 1 was based only on the color

vectors of the vertices vi = f(vi). As previously explained,

we can used instead a distance on other features such as the

patches pwi of size w × w or structure tensors ti of size

2× 2. This directly enables to have a feature-based stochastic



watershed which is not possible with the original formulation

of [4]. We investigate this in the next Section.

III. EXAMPLES

In this section we investigate the interest of the proposed

stochastic permutation ordering watershed with respect to

the original stochastic watershed [4]. We also investigate

the interest of using patches or structure tensors instead of

colors to compare vertices in Algorithm 1. We perform our

experiments on images of the Bayeux Tapestry1. On such

images, historian experts need to delineate interactively some

characters. Therefore, a precise segmentation is required but

by using simple object/background seed labeling by point

click to ease the end-users use. The characters are visually

easy to identify but the reduced number of colors, the fine

embroidery as well as the texture differences in the linen

fabric can make the segmentation hard. Figure 3 presents some

results on four distinct parts of the tapestry. To obtain the

segmentation, a watershed is performed on the probabilistic

gradient from the user seeds. We compare our approach with

the classical stochastic watershed. To have a fair comparison,

for the computation of pdf(f) we consider the same number of

random realizations than ours (11) and generate 200 random

seeds. In contrast to [4], we do not add any pre-processing

of the image. For each image to segment, Figure 3 presents

on two lines, from left to right: the original image f , the

user seeds, the probabilistic gradient ∇f and the segmentation

result for the classical stochastic watershed, our stochastic

permutation ordering watershed with colors vi, 7× 7 patches

p7i , 15 × 15 patches p15i , and structure tensors ti. As it can

be seen, the probabilistic gradient obtained from the classical

stochastic watershed (CSW) has few regions in homogeneous

areas but some visually important edges do not have a high

probability. This is not the case of the probabilistic gradient

obtained from our proposed stochastic permutation ordering

watershed (SPOW). In the segmentation results, the blue

squares do identify the strong segmentation errors. The results

obtained with colors vectors for SPOW are always better than

for CSW. One can see that for the observed errors this is due

to not having edges of high probabilities. The use of 7 × 7
patches can further enhance the segmentation. However the

use of very large 15 × 15 patches provides a result close to

the CSW proving that if patches can be of interest, the size of

the patterns of interest is very important. Finally with structure

tensors, the probabilistic gradient is very fine, but this tends to

over detect structures in textured areas. As a conclusion, for

this kind of images the use of our proposed SPOW with 7×7
patches provides the best results and this shows the interest of

our proposal.

IV. CONCLUSION

We have proposed an alternative formulation to the stochas-

tic watershed. Starting from a random pixel, an Hamiltonian

path is constructed to build a complete lattice. From the latter

1
Panorama of the Bayeux Tapestry, GREYC Image (UMR UNICAEN/ENSICAEN/CNRS), CERTIC (UNICAEN) from

the 2017 photographic campaign of La Fabrique de patrimoines en Normandie, 2017-2018.

a new representation of an image in the form of a palette

and an index image is obtained. Minima are extracted from

the latter and used to perform several watershed that are

combined into a probability density function. A probabilistic

gradient is computed from the obtained pdf and the Di Zenzo

gradient. The advantage of the proposed approach relies in

its ability to incorporate any features to represent pixels for

the computation of the pdf. The experimental results have

shown that this has some benefits with respect to the classical

stochastic watershed.
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Fig. 3. Segmentation results, with for each image, on two lines, from left to right: the original image f , the user seeds, the probabilistic gradient ∇f and the
segmentation result for the classical stochastic watershed, our stochastic permutation ordering watershed with colors vi, 7× 7 patches p7

i
, 15× 15 patches

p15
i

, and structure tensors ti.


