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A METRIC CHARACTERISATION OF FREENESS

L. CADILHAC AND B. COLLINS

Abstract. Let M be a finite von Neumann algebra and u1, . . . , uN be unitaries in M.
We show that u1, . . . , uN generate L(FN) if and only if

∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop

i
)∗ + u∗

i
⊗ u

op

i

∥

∥

∥

∥

∥

M⊗Mop

= 2
√
2N − 1.

1. Introduction

The von Neumann conjecture formulated by Day in 1957 says that a group is not
amenable if and only if it contains a non amenable free group. It was first disproved
by A. Ol’shanskii in 1980 [9] and since then, the family of counterexamples has been
expanded. A similar question can be asked at the level of von Neumann algebras: if a
finite factor is not amenable, does it necessarily contain a free group factor? Little is
known in that direction except for a breakthrough of Gaboriau and Lyons [4], who show
that for certain wreath product groups G (which may not contain F2), L(F2) ⊂ L(G).
Note that the authors of [4] are in fact mainly interested in a version of the von Neumann
conjecture for measure preserving actions for which they provide a positive answer.

A difficulty in trying to tackle this problem is that there are no known abstract prop-
erties of M which would characterize the fact that L(F2) embeds in M. This remark
is what first motivated us to write this note on a metric characterisation of freeness.
Although it is not clear that the results obtained (see Corollary 1.2) can be used in the
study of the von Neumann conjecture, we believe that they are of independent interest.

Indeed, they generalize at the operator level a well-known result of Kesten [6] who
showed that given g1, . . . , gN in a countable group G the freeness of the gi’s is characterized
by the norm of the Markov operator associated to a random walk on G supported by the
gi’s and their inverses. Let us denote by λ : G → L(G) the left-regular representation. In
a von Neumann algebraic point of view, Kesten’s result can be reformulated as follows:

(1.1) g1, . . . , gN are free in G ⇔
∥

∥

∥

∥

∥

N
∑

i=1

λ(gi) + λ(gi)
∗

∥

∥

∥

∥

∥

L(G)

= 2
√
2N − 1.

We extend this result by replacing the λ(gi)’s by any finite family of unitary operators
in a finite von Neumann algebra M. The notion of freeness and Haar unitaries (unitaries
with null moments) will be considered with respect to a fixed normal faithful tracial state
τ . We obtain the following:

Theorem 1.1. Let N ∈ N, N > 1. Let u1, . . . , uN be unitaries in M. Then, the following
assertions are equivalent:

(1) the operators u1, . . . , uN are free Haar unitaries,
(2) we have the equality:

∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop
i )∗ + u∗

i ⊗ uop
i

∥

∥

∥

∥

∥

M⊗Mop

= 2
√
2N − 1.
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Note that (1) ⇒ (2) is a consequence of (1.1). Let us also mention that the inequality

∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop
i )∗ + u∗

i ⊗ uop
i

∥

∥

∥

∥

∥

M⊗Mop

≥ 2
√
2N − 1,

is verified for any family of unitaries (see [10]). This leads to the following corollary:

Corollary 1.2. Let M be a finite von Neumann algebra. Then the following are equiva-
lent:

(1) L(F2) embeds in M,
(2) infu1,u2∈U(M) ‖u1 ⊗ ū1

∗ + u∗
1 ⊗ ū1 + u2 ⊗ ū2

∗ + u∗
2 ⊗ ū2‖M⊗M =

√
3, and this infi-

mum is achieved.

Let us make a few remarks in relation to this result. Firstly, amenability can also
be characterized via the consideration of the same quantity. Indeed, in the spirit, of [3,
Theorem 5.1], we know that a factor N is hyperfinite if and only if for every finite family
of unitaries u1, . . . , un in N ,

∥

∥

∥

∥

∥

n
∑

i=1

ui ⊗ (u∗
i )

op

∥

∥

∥

∥

∥

N⊗minN op

= n.

In this sense, it is at the extreme opposite of freeness. Secondly, it is worth pointing out
that the problem considered in this manuscript complements results of [7], and also of
[5, 2], who consider generators of a group instead of general unitaries. Thirdly, in view
of the above papers, it is natural to wonder what are the possible values of

∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop
i )∗ + u∗

i ⊗ uop
i

∥

∥

∥

∥

∥

M⊗Mop

when the unitaries range on all possible choices in any tracial von Neumann algebra. This
is clearly a subset of the interval [2

√
2N − 1, 2N ], and it can easily be seen that this is the

whole interval. Although many other approaches seem to be possible, let us just outline
one way to prove this assertion: take N free unitary Brownian motions {t 7→ ui(t), i ∈
{1, . . . , N}} as defined in [11]. Using explicit descriptions of the free unitary Brownian
motion (see [1]) one can show that it is norm continuous, converges to free Haar unitaries,

and that this convergence holds in norm for t 7→∑N
i=1 ui(t) ⊗ (uop

i (t))∗ + u∗
i (t)⊗ uop

i (t),
therefore its norm is a continuous function taking value 2N at t = 0 and tending to
2
√
2N − 1. It follows that the whole range [2

√
2N − 1, 2N ] is attained. Finally, it was

brought to our attention by Franz Lehner that the traciality condition in Theorem 1.1 is
necessary as illustrated by a counterexample appearing in his PhD thesis [8, p.51].

In section 2, we introduce our combinatorial approach to Theorem 1.1. Section 3
contains the core technicalities: we use free group combinatorics in order to obtain a
suitable lower bound on positive characters of FN which allows us to conclude in Section
4.

Acknowledgements: This work was initiated during the visit of LC to Kyoto University
early 2020, after preliminary discussions at MF Oberwolfach in 2018. BC was supported
by JSPS KAKENHI 17K18734 and 17H04823. The authors are grateful to Mikael de
la Salle, Cyril Houdayer, Eric Ricard, Adam Skalski and Narutaka Ozawa for inspiring
comments and discussions.
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2. A combinatorial approach

2.1. Reformulation of Theorem 1.1. Let N ∈ N. Let ϕ be a positive definite function
on the free group FN . We extend ϕ linearly to C[FN ] and keep the same notation, i.e.
for any finitely supported family (ag)g∈FN

∈ C,

ϕ

(

∑

g∈FN

ag · g
)

=
∑

g∈FN

ag · ϕ(g).

Let s1, . . . , sN ∈ FN be free generators of FN and set

a :=

N
∑

i=1

si + s−1
i ∈ C[FN ].

We aim to prove the following:

Theorem 2.1. Assume that:

• ϕ is constant on the conjugacy classes of FN (it is a character),
• ϕ(e) = 1,
• ∃g ∈ FN , g 6= e, ϕ(g) 6= 0,
• ∀g ∈ FN , ϕ(g) ≥ 0.

Then,

lim
n→∞

ϕ(a2n)
1
2n > 2

√
2N − 1.

Lemma 2.2. Theorem 2.1 implies Theorem 1.1.

Proof. Consider the representation π of FN determined by π(si) = ui ⊗ (uop
i )∗ in

U(M⊗Mop) for any i ∈ {1, . . . , N}. Define ϕ := (τ ⊗ τ op) ◦ π. Note that ϕ is a
positive character on FN and that

∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop
i )∗ + u∗

i ⊗ uop
i

∥

∥

∥

∥

∥

M⊗Mop

= lim
n→∞

∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop
i )∗ + u∗

i ⊗ uop
i

∥

∥

∥

∥

∥

2n

= lim
n→∞

ϕ(a2n)
1
2n .

Assume that the ui’s are not free Haar unitaries. This means that there exists g ∈ FN

such that g 6= e and ϕ(g) 6= 0. So ϕ satisfies the conditions for Theorem 2.1 and hence
∥

∥

∥

∥

∥

N
∑

i=1

ui ⊗ (uop
i )∗ + u∗

i ⊗ uop
i

∥

∥

∥

∥

∥

M⊗Mop

> 2
√
2N − 1.

�

Remark 2.3. To prove Theorem 2.1, it suffices to show that

∃n, ϕ(a2n) 1
2n > 2

√
2N − 1,

by Hölder’s inequality.

2.2. Some notations. We always assume FN to be equipped with a set of distinguished
generators S = {s1, . . . , sN}. Denote by WN the set of words on the alphabet S ∪ S−1.
For any w ∈ WN , denote by l(w) its length. We identify elements of FN with their writing
as a reduced word.

Define, for any k ∈ N and w = w1 . . . wk ∈ WN of length k, the circular permutation
of w by

σ1(w) = wkw1 . . . wk−1.
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For any t ∈ Z, let σt := σt
1. We say w ∈ WN is cyclically reduced if σt(w) is reduced for

any t (note that it is equivalent to w and σ1(w) being reduced). If w is a reduced word,
w can uniquely be written as

w = uvu−1,

where v is cyclically reduced and u is any reduced word. The element v will be referred
to as the root of w an denoted by r(w).

3. Lower bound for positive characters of FN

3.1. Overview of the section. Let ϕ be as in Theorem 2.1 and g0 6= e such that
ϕ(g0) = α > 0. Using Lemma 3.2 (in the following subsection), without loss of generality,
g0 can be chosen to be of even length 2l0, l0 ∈ N. This section is devoted to proving the
following proposition:

Proposition 3.1. There exists a constant C > 0 such that for any k ≥ l0,
∑

l(g)=2k

ϕ(g) ≥ Ck2(2N − 1)k.

Note that the constant C that we obtain above may be explicitly computed from N ,
l0 and α but its precise value is inconsequential. Our goal is to exhibit a large enough
family of words in FN on which we can bound ϕ from below. To do so, we combine two
different operations:

• The first operation consists in conjugating elements thanks to the tracial property.
However, by a simple calculation using the estimate given in Lemma 4.1, it can be
seen that considering only conjugates of g0 is not enough to obtain a sufficiently
good lower bound on ϕ(a2n).

• The second operation is to multiply elements for which we already have a lower
bound and apply Lemma 3.2. This is however a bit cumbersome because simpli-
fications may occur and estimating the length of the products obtained this way
(to be able to use Lemma 4.1) requires some caution.

The proof is divided into 4 different steps:

• Step 0 - we show that we can obtain new elements of positive trace by multipli-
cation (Lemma 3.2).

• Step 1 - we fix an integer i and apply Lemma 3.2 to the conjugates of g0 of length

2i to obtain a set C(2)
i of new elements of quantified positive trace which have

length approximately 4i and are roots. The control on the length is essential to

guarantee that our sets C(2)
i do not overlap too much when i varies. This will be

key during step 3.

• Step 2 - we apply circular permutations to the elements of C(2)
i to construct a

bigger set Di of roots with positive traces.
• Step 3 - we consider the sets Di(k) of elements of length 2k with roots in Di, show

that they are essentially disjoint and big enough (in terms of trace) to conclude.

To conclude the introduction to the section, fix an integer k0 ≥ 6 such that

(3.1) k0 ≥ l0 +
ln(4)− ln(α2)

ln(2N − 1)
.

The main reason for this k0 is linked to step 1 above. When multiplying a family of
elements of FN (as in Lemma 3.2) of length 2i, we would like to keep only the products
obtained of length 4i. Unfortunately, by doing so, we would not obtain enough elements
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for the argument to work and hence we have to allow for a certain number of simplifica-
tions to occur. This number of simplifications will be given by k0 which, crucially (see
the proof of Lemma 3.4), does not depend on i.

3.2. Step 0: locating more positivity by multiplication. The following lemma
allows to obtain new elements of positive trace through multiplication.

Lemma 3.2. Let k ∈ N and a > 0. Let h1, . . . , hk be such that ϕ(hi) = α for any
j ∈ {1, . . . , k}. Then,

∑

1≤i,j≤k

ϕ(h−1
i hj) ≥ k2α2.

Proof. Set h0 = e and consider the matrix

A = (ϕ(h−1
i hj))0≤i,j≤k.

Since ϕ is positive definite, A is positive. Let ε > 0. Consider the vector v = (1,−ε, . . . ,−ε) ∈
Ck. Denote by b the mean of (ϕ(h−1

i hj))0<i,j≤k. Note that

v⊥Av = 1− 2kαε+ k2bε2.

Set ε = 1
kα

. By positivity of A, we have:

0 ≤ 1− 2 +
b

α2
.

Hence, b ≥ α2. �

3.3. Step 1: products of conjugates of g0. Let i ∈ N, i > l0 + 6k0 and consider the
set Ci of all conjugates of g0 or g−1

0 of length 2i. Denote by R0 the set of conjugates of g0
or g−1

0 of length 2l0. Note that:

(3.2) |Ci| = |R0| (2N − 2)(2N − 1)i−l0 =: c0(2N − 1)i.

In the course of the proof, we have to apply circular permutations σj to the words we
obtain to generate new words. In order to guarantee at that future step that we indeed
obtain new words, we need to remove from the beginning some pathological elements of
Ci. For any j ∈ N, define:

(3.3) Ci(j) := {g ∈ Ci : ∀n,m ∈ {k0 + 1, . . . , i− l0} (|n−m| = 2j) ⇒ gn = gm} ,
where gn denotes the n-th letter of g. When j << i, these are the words of length 2i
which have been obtained by conjugating g0 by a word which is 2j-periodic except maybe
on a small part (at the beginning of the word). This means that

|Ci(j)| ≤ c0(2N − 1)2j+k0.

Define

(3.4) C′
i := Ci\

⋃

j≤
i−l0
k0

Ci(j).

Since k0 ≥ 6, jk0 ≤ i− l0 and i− l0 ≥ 6k0, we have 2j + k0 ≤ (i− l0)/2. Hence,
∑

k0≤
i−l0
k0

|Ci(j)| ≤ c0(i− l0)(2N − 1)(i−l0)/2 ≤ c0
2
(2N − 1)i−l0 .

Then, by (3.2),

(3.5) |C′
i| ≥

c0
2
(2N − 1)i−l0 .
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Now that we have selected suitable conjugates of g0, let us multiply them to obtain new
elements. Let

C(2)
i := {r(g) : g ∈ C′

i · C′
i, l(g) > 4i− 2k0} .

Remark 3.3. Let us keep in mind the form of the elements that we are dealing with.
Let h, h′ ∈ C′

i. This means that there exists r0 and r′0 in R0 and u, u′ in FN such that
h = ur0u

−1 and h′ = u′r′0(u
′)−1. Write u = wv and u′ = wv′ such that no cancellation

occur in the product v−1v′. Then r(hh′) belongs to C(2)
i if and only if l(w) < k0 and

r(hh′) = vr0v
−1v′r′0v

′−1.

Lemma 3.4. The following estimate holds:
∑

g∈C
(2)
i

ϕ(g) ≥ c0
8
α2(2N − 1)2i−2l0−k0.

Proof. For any g ∈ C′
i, there are at most c0(2N − 1)i−k0 elements g′ of C′

i for which
l(gg′) ≤ 4i− 2k0. Indeed, the first k0 letters of g′ must coincide with the first k0 letters
of g in order for at least k0 simplifications to occur. This means that:

∑

g,g′∈C′

i

ϕ(gg′) ≤ c0(2N − 1)i−k0 |C′
i|+

∑

g,g′∈C′

i

l(gg′)>4i−2k0

ϕ(gg′).

Then, by Lemma 3.2 (note that considering gg′ or g−1g′ does not modify the following
sum since C′

i = (C′
i)

−1):
∑

g,g′∈C′

i

l(gg′)>4i−2k0

ϕ(gg′) ≥ |C′
i|2 α2 − c0(2N − 1)i−k0 |C′

i|

≥ c20α
2

4
(2N − 1)2i−2l0 − c20

2
(2N − 1)2i−l0−k0

≥ c20α
2

8
(2N − 1)2i−2l0 ,

where we used the fact that by definition of k0,

(2N − 1)−k0 ≤ α2

4
(2N − 1)−l0.

Finally, note that at most (2N − 1)k0 factors h, h′ ∈ C′
i can give rise to the same element

r(hh′) ∈ C(2)
i . This means that

(2N − 1)k0
∑

g∈C
(2)
i

ϕ(g) ≥
∑

g,g′∈C′

i

l(gg′)>4i−2k0

ϕ(gg′),

which is the desired estimate. �

3.4. Step 2: circular permutations. Define:

Di :=

{

σj(g) : 0 ≤ j ≤ i− l0
k0

, g ∈ C(2)
i

}

.

Lemma 3.5. The following estimate holds:

∑

g∈Di

ϕ(g) ≥
⌊

i− l0
k0

⌋

c0
8
α2(2N − 1)2i−2l0−k0.
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Proof. Given the estimate obtained in Lemma 3.4, it suffices to prove that for any 0 ≤
j, j′ ≤ i/k0 and g, g′ ∈ C(2)

i ,

σj(g) = σj′(g
′) ⇒ (g = g′ and j = j′).

Let us assume that σj(g) = σj′(g
′). If j = j′ then immediately g = g′ and we get

the expected conclusion. So assume by contradiction that j 6= j′. We can also assume
without loss of generality that j = 0.

According to Remark 3.3, g and g′ can be written as follows:

g = ur0u
−1vs0v

−1 g′ = u′r′0(u
′)−1v′s′0(v

′)−1

where r0, s0, r
′
0, s

′
0 belong to R0 and u, u′, v, v′ are words of the same length j with

i− l0 − k0 < j ≤ i− l0. Write u = u1 . . . uj and u′ = u′
1 . . . u

′
j. Since g = σt(g

′), we
obtain by looking at the occurrences of u and u′ in g and g′,

u′
n = un+t ∀n ∈ [1, j − t].

And, looking at the occurrences of u−1 and (u′)−1,

un = u′
n+t ∀n ∈ [1, j − t].

This means that u is 2t-periodic. Since g is an element of C(2)
i , g comes from a product

hh′, h, h′ ∈ C′
i. Write h = wv0w

−1. We have w = w1 . . . wi−l0−ju. By construction of C′
i,

w cannot be 2t-periodic starting from its k0-th letter, which is a contradiction (see (3.4),

(3.3), and recall that by assumption t ≤ i− l0
k0

). �

3.5. Step 3: conjugation. For any k ≥ 2i, define:

Di(k) := {g ∈ FN : |g| = 2k, r(g) ∈ Di} .

Lemma 3.6. Let k ∈ N and i, i′ ≥ l0 + 6k0. Assume that 2i, 2i′ ≤ k and |i− i′| ≥ k0.
Then,

• Di(k) and Di′(k) are disjoint,
• There exists C ′ > 0 independent of k or i such that:

∑

g∈Di(k)

ϕ(g) ≥ C ′i(2N − 1)k.

Proof. For the first point, simply remark that elements in Di have length between 4i and
4i − 4k0 + 4. So if |i− i′| ≥ k0 then Di and Di′ are disjoint so Di(k) and Di′(k) are
disjoint.

Let g be a cyclically reduced element of length 4i in FN . Note for k > 2i, there are
(2N − 2)(2N − 1)k−2i−1 elements of FN of length 2k and root g. This means that any
element of Di is the root of at least (2N − 2)(2N − 1)k−i−1 elements in Di(k). Hence,

∑

g∈Di(k)

ϕ(g) ≥ (2N − 2)(2N − 1)k−2i−1
∑

g∈Di

ϕ(g).

By Lemma 3.5, we obtain the expected estimate. �
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Proof of Proposition 3.1. Let k ∈ N, k large enough for the sums below to be non-empty
(for example k ≥ 20k0 + 2l0). By Lemma 3.6, we have:

∑

|g|=2k

ϕ(g) ≥
∑

6k0+l0≤i≤k/2
k0|i

∑

g∈Di(k)

ϕ(g)

≥
∑

6k0+l0≤i≤k/2
k0|i

C ′i(2N − 1)k

≥ Ck2(2N − 1)2k,

where C is a small enough constant independent of k. �

4. Proof of the main theorem

For any w ∈ WN , denote by g(w) the corresponding element of FN .

Lemma 4.1. Let n ∈ N and k < n. Let g ∈ FN such that l(g) = 2k. Then:

|{w ∈ WN : l(w) = 2n, g(w) = g}| ≥
((

2n

n− k

)

−
(

2n

n− k − 1

))

(2N − 1)n−k =: Nn,k.

Proof. We interpret words as paths on the Cayley graph of FN . Note that the quantity
we consider only depends on l(g). A way to generate paths going from e to any element
of length 2k is to first choose at which times the path is going to go away from e and
at which times the path is going to come back towards e. Since the path is going to an
element of length 2k, it has to go n + k times away from e and n − k back to e. The
number of possible choices there, for a path of length 2n, is given by the Catalan triangle

Cn,k =

(

2n

n− k

)

−
(

2n

n− k − 1

)

.

Moreover, when we chose to go away from e, there are at least 2N − 1 possible directions
(2N if the path is at e and 2N − 1 otherwise), and 2N possible directions for the first
time, thus obtaining

Cn,k2N(2N − 1)n+k−1

paths. Finally, since for now all we have fixed is the length of the target of the path and
not a particular point, we have to divide this result by the number of elements of length
2k in FN i.e. 2N(2N − 1)2k−1, to get the desired estimate. �

We are now ready to prove our main theorem.

Proof of Theorem 2.1. Let n ∈ N. First remark that by Lemma 4.1 and Proposition 3.1,

ϕ(a2n) =
∑

w∈WN

ϕ(g(w))

≥
∑

k≤n

Cn,k(2N − 1)n−k
∑

|g|=2k

ϕ(g)

≥ C
∑

l0≤k≤n

Cn,kk
2(2N − 1)n.

Note that given the expression of Cn,k,

∑

l0≤k≤n

k2Cn,k ≥ sup
l0≤k≤n

k2

(

2n

n− k

)

.
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Now chose k = n1/3. For n large,
(

2n

n− k

)

∼ 22n√
πn

(

n

n + k

)n+k (
n

n− k

)n−k

∼ 22n√
πn

e−k+o(1)ek+o(1)

∼ 22n√
πn

.

Hence, for n large enough,

ϕ(a2n) ≥ C√
π
n1/622n(2N − 1)n > 22n(2N − 1)n.

Which concludes the proof by Remark 2.3. �

Proof of Corollary 1.2. Let τ be a faithful trace on M and consider L2(M, τ). It follows
from Theorem 1.1 that all reduced words in ui and their inverses form an orthonormal
family. Since the GNS representation of the von Neumann subalgebra generated by u1, u2

is faithful, it allows to conclude that is is isomorphic to L(F2). �
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