
HAL Id: hal-03330336
https://hal.science/hal-03330336

Submitted on 2 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Identifying hyperelastic constitutive parameters with
sensitivity-based virtual fields

Adel Tayeb, Jean-Benoit Le Cam, Michel Grediac, Evelyne Toussaint, Eric
Robin, Xavier Balandraud, Frederic Canevet

To cite this version:
Adel Tayeb, Jean-Benoit Le Cam, Michel Grediac, Evelyne Toussaint, Eric Robin, et al.. Identify-
ing hyperelastic constitutive parameters with sensitivity-based virtual fields. Strain, 2021, 57 (6),
pp.e12397. �10.1111/str.12397�. �hal-03330336�

https://hal.science/hal-03330336
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Identifying hyperelastic constitutive parameters with

sensitivity-based virtual fields

Adel Tayeb1 | Jean-Benoît Le Cam*1 | Michel Grédiac2 | Evelyne Toussaint2 | Eric Robin1 | Xavier

Balandraud2 | Frédéric Canevet3

1Univ Rennes, CNRS, IPR (Institut de

Physique de Rennes) - UMR 6251Rennes,

France
2Université Clermont Auvergne, CNRS,

SIGMA Clermont, Institut Pascal, 63000

Clermont-Ferrand, France
3Cooper Standard France, 194 route de

Lorient, 35043 , Rennes, France

Correspondence

*Jean-Benoît Le Cam, Univ Rennes, CNRS,

IPR (Institut de Physique de Rennes) - UMR

6251, Rennes, France. Email:

jean-benoit.lecam@univ-rennes1.fr

Summary

This work deals with the identification of hyperelastic constitutive parameters using the virtual fields method. The choice of 
the virtual displacement fields is a cru-cial aspect of the method, typically for reducing the sensitivity to the measurement 
noise. A first and simple option is to generate the virtual displacement fields ran-domly. Nevertheless, in case of hyperelastic 
models for which the stress is not a linear function of the constitutive parameters, improving the choice of the virtual 
displace-ment fields is not trivial and an alternative strategy has to be found. In the present study, the sensitivity-based virtual 
fields approach is applied and compared to the randomly-generated virtual displacement fields approach. Two material 
models were considered: the Mooney model, which describes quite well the behavior of hyperelas-tic materials for small and 
moderate strains, and the Ogden model, which accounts for the stress hardening phenomenon observed at higher strains. The 
full kinematic fields are measured by using the digital image correlation technique during an equibiaxial tensile test 
performed on a cruciform specimen. Identification results are discussed through their capability to predict the external force 
measured during the test. The sensitivity-based virtual fields approach is found to improve significantly the predic-tion 
compared to the randomly-generated virtual displacement fields approach.
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1 INTRODUCTION

The characterization of the mechanical behavior of rubber materials is classically carried out within the framework of hypere-

lasticity [14]. In this representation, the behavior describes only rate-independent effects without hysteresis, with the assumption

of isotropy and incompressibility. In this case, the constitutive parameters depend upon the loading conditions applied in the

identification procedure [13]. This is the reason why they are generally identified from three homogeneous tests, namely the uni-

axial tension (UT), the pure shear (PS) and the equibiaxial tension (EQT) 1. An alternative approach consists in performing only

one heterogeneous test in which the three loading states (UT, PS and EQT) are present along with various intermediate states.

Moreover, the values of the identified parameters are unique for each heterogeneous test, see [12] and [25]. Several approaches

have been developed for the identification of constitutive parameters from experimental heterogeneous tests such as the finite

1It should be noted that the EQT can be compared to the uniaxial compression (UC) [28]
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element model updating technique, the equilibrium gap method or the virtual fields method, see [1] and [2] for further details.

The latter method was applied before in the case of hyperelastic models and gave promising results, see [25]. This is the reason

why it will be used in this work for the identification of hyperelastic constitutive parameters.

The Virtual Fields Method (VFM) was first introduced in [9] for the identification of constitutive parameters of linear elastic ma-

terials. It was applied over the years to several types of material behaviors. Within the framework of the small strain assumption,

the method was used to characterize orthotropic materials in [8], [5] and [10], and elasto-plastic materials in [7] and [3], among

others. Dynamic properties were studied in [6] for instance. In the recent past, the VFM was extended to the finite strain frame-

work. From a historical point of view, the first application of the VFM for hyperelastic materials was presented in [25]. Mooney

[19] and Yeoh [31] models were considered using a biaxial tensile test of a 4-branch cruciform specimen in a moderate strain

range. Other hyperelastic models such as the Ogden model [22] was employed in [23] using a planar tension tests on a flat rub-

ber specimen subjected to the same moderate strain range as in the previous reference. Furthermore, in addition to hyperelastic

parameters, the VFM was used for the determination of viscoelastic properties of rubber, see [33] and [32], where dynamic tests

were exploited for the identification.

This extensive use of the VFM for different mechanical behaviors and applications rose the challenge of the best choice of the

virtual displacement fields, which is a crucial aspect of the method. Several techniques were used for addressing this problem

when dealing with hyperelastic materials. In general, the virtual displacement fields are either chosen to cancel the actual load-

ing term in the equation of the virtual work equation, see [33] and [32], or randomly, with a criterion on the conditioning of the

linear system arising from the VFM [25]. In a recent work, a new procedure in the choice of independent virtual displacement

fields has been introduced in the case of anisotropic plasticity with small deformations [17]. The method is based on the sensi-

tivity of the stress field to changes of the constitutive parameters. The virtual displacement fields are then computed proportional

to the stress sensitivity fields. This method was extended to finite strains in [18].

In the present work, the VFM is applied to the identification of hyperelastic constitutive parameters from an equibiaxial experi-

ment performed with a 4-branch cruciform shaped specimen. Two strategies in the generation of the virtual displacement fields

are applied and compared. First, the random virtual displacement fields strategy that was applied to the Mooney and the Yeoh

models in [25], is extended to the Ogden model. Contrary to the former ones, the Ogden model leads to a non-linear stress rela-

tionship with respect to the constitutive parameters. This property makes it challenging to choose the best virtual displacement

fields generated randomly. To overcome this issue, the sensitivity-based virtual displacement fields strategy has been developed

within the framework of hyperelasticity by using the Mooney and Ogden models. This is the main contribution of the paper.

The paper is organized as follows. In the first section, the theoretical background of the VFM is recalled and the identification

problem is formulated for the two hyperelastic models under consideration. The second section is devoted to the experimental

setup, including the mechanical test and the digital image correlation technique. In the third section, the results of the identifica-

tion procedure are discussed in terms of virtual displacement fields to be used in the identification procedure and the ability of

the obtained parameters to accurately predict the external force applied during the test. In the final section, the sensitivity-based

virtual fields method is applied to four different hyperelastic materials. Concluding remarks close the paper.

2 THEORETICAL BACKGROUND

In this section, a literature survey is proposed about the use of the VFM for the identification of hyperelastic constitutive param-

eters. First, the basics of the method are recalled. Then the randomly-generated and sensitivity-based virtual displacement fields

strategies are presented. Finally, the minimization problem arising from the application of the method is detailed. The Mooney

[19] and Ogden [22] models are used for this purpose.

2.1 Virtual fields method

Considering a hyperelastic solid subjected to a quasi-static loading and assuming that the volume forces can be neglected, the

principle of virtual work, can be written as follows

−∫
V

� (x, t) ∶ "∗ (x, t) dV + ∫
)V

T ⋅ u∗ (x, t) dS = 0, (1)

where V is the volume of the solid, � is the Cauchy stress tensor, u∗ and "∗ are the virtual displacement and strain, respectively.

T is the external force per unit deformed area. In general, the stress, virtual strain and displacement fields are all heterogeneous
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fields at any time t. The stress field � can be deduced from the measured displacement or strain fields by using the corresponding

constitutive equations and a given set of material parameters. The virtual displacement u∗ is a continuous function, which is

kinematically admissible in the volume V . A sufficient condition regarding the admissibility of the virtual displacement field

is to consider a continuous function, which satisfies the boundary conditions, (see [24]). The virtual strain field is deduced by

using the strain-displacement relationship, namely "∗ = 1∕2
(
∇u∗ + ∇u∗T

)
. It should be noted that these two functions are also

called test functions or weighting functions. They are completely independent from the real strain and displacement fields. In Eq.

(1), the first integral is the contribution of the internal virtual work due to deformations. The second integral accounts for the

contribution of the external loading applied to the solid. Given that most full-field measurement techniques provide information

on the specimen’s surface, a two dimensional problem should be considered. Typically, a plane stress problem is considered in

the case of thin specimen. Under this assumption, Eq. (1) becomes

−e∫
S

� (x, y, t) ∶ "∗ (x, y, t) dS + e∫
)S

T ⋅ u∗ (x, y, t) dL = 0, (2)

where e is the thickness of the solid, S is the surface of the solid in the normal direction to the thin dimension and )S is its

boundary.

Full-field measurements, especially when performed with digital image correlation are based on the decomposition of the surface

of the specimen into a set of subsets. The displacement at the centre of these zones is then deduced by minimizing the optical

residual (see [4] and [30]). The displacement, strain and stress fields are discrete functions, which are evaluated only at these

discrete points. The internal virtual work part of Eq. (1) becomes

e

(
nP ts∑
i=1

(
�i

⋅ "∗i
)
S i

)
, (3)

where nP ts is the number of data points in the region of interest ROI. �i, "∗i and S i are the stress, virtual strain and area

surrounding each data point, respectively. The external virtual work contribution is computed using the second integral of Eq.

(1). Given that only the resulting force and not its distribution is measured along the edge of the specimen )S, two methods can

be used for calculating this part of the virtual work. The first one consists in considering a constant virtual displacement along

the edge. The contribution is then obtained by multiplying the resulting force by the constant virtual displacement. The second

method consists in assuming a uniform force distribution along the edge and using a non-constant virtual displacement. The

product between these two quantities is then integrated over )S.

The stress in Eq. (3) is a function of the set of constitutive parameters to be identified. This set is denoted here by � , and the

strain by ". The VFM is based on the application of the principle of virtual work and on the minimization of the difference

between internal and external virtual works. For materials with linear dependency of the stress upon the constitutive parameters,

the principle of virtual work is applied at least as many times as the number of constitutive parameters contained in � . In this

case, such as for linear elastic materials, this minimization leads to a linear system which gives the constitutive parameters

after inversion. However, for other models such as those used with elasto-plastic materials, for which the stress is nonlinear

with respect to the constitutive parameters, a nonlinear least-square minimization procedure must be employed. One or several

specimen strain levels are used in the minimization. Two forms of the cost-function are proposed accordingly:

f (� , ") =

nV F∑
j=1

(
nP ts∑
i=1

(
�i (� , ") ⋅ "∗i(j)

)
S i −W

∗j
ext

)2

, (4)

for one specimen strain level and

f (� , ") =

nV F∑
j=1

⎡
⎢⎢⎣

nT ime∑
t=1

(
nP ts∑
i=1

(
�i (� , ", t) ⋅ "∗i(j)(t)

)
S i −W

∗(j)
ext

(t)

)2⎤
⎥⎥⎦
, (5)

for several specimen strain levels. In Eqs. (4) and (5), nV F and nT ime represent the number of independent virtual fields and

time steps, respectively.

To apply this method to hyperelastic materials, Eqs. (1) to (5) should be expressed in the finite strain framework. As in [25] and

[24] among others, the principle of virtual work is expressed as a function of the first Piola-Kirchhoff stress tensor �, which
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represents the current force per unit of undeformed area. In this case, the principle of virtual work can be expressed as follows

−E ∫
S0

� (X, t) ∶
)U ∗

)X
(X, t) dS0 + E ∫

)S0

(� ⋅N) ⋅ U ∗ (X, t) dL0 = 0, (6)

where subscript ∙0, X, E and N designate quantities given in the reference configuration 2, the coordinates, the thickness and

the vector normal to the edge in the same configuration, respectively. Eqs. (4) and (5) become

f (�) =

nV F∑
j=1

(
nP ts∑
i=1

(
�

i (�) ⋅
)U ∗i(j)

)X
(X)

)
S i −W

∗(j)
ext

)2

, (7)

when considering one specimen strain level and

f (�) =

nV F∑
j=1

⎡
⎢⎢⎣

nT ime∑
t=1

(
nP ts∑
i=1

(
�

i (� , t) ⋅
)U ∗i(j)

)X
(X, t)

)
S i −W

∗(j)
ext

(t)

)2⎤
⎥⎥⎦
, (8)

when considering several specimen strain levels. The identification of the constitutive parameters is carried out by using the

fminsearch function of Matlab for nonlinear models, and by inverting the linear system for linear models. It should be noted that

this function can lead to a local minimum. This issue was tracked by reconstructing the force-displacement curve with set of

identified parameters. Indeed, curves plotted with parameters extracted from local minima are not in good agreement with the

experimental one. In this case, these parameters are discarded and a new identification is performed with different initial values.

The procedure can be repeated until a good agreement between the curves is obtained. Note that in all the cases reported here,

launching the procedure once was sufficient. Further details on the procedure are presented in the remainder of this section.

2.2 Hyperelasticity

The mechanical behavior of elastomers is generally described within the framework of hyperelasticity. The stress is obtained

by deriving the strain energy density W with respect to the corresponding strain measure. This strain energy density relates the

stress to the strain through the principal stretches or the principal invariants of the Cauchy-Green strain tensors. In the following,

the material is assumed to be incompressible. Under this assumption, the first Piola-Kirchhoff stress tensor is given by

� = −pF −t +
)W

)F
, (9)

where p is a Lagrange multiplier due to incompressibility (see [29]), F is the deformation gradient tensor and ∙t designates the

transpose of a second-order tensor. For the Mooney model [19], the strain energy density reads as follows

W = c1
(
I1 − 3

)
+ c2

(
I2 − 3

)
, (10)

where I1 and I2 are the first and second invariants of the right Cauchy-Green strain tensor, respectively. c1 and c2 are the

constitutive parameters to be identified. Combining Eqs. (9) and (10) and replacing � by its expression in Eq. (6) lead to the

following expression of the principle of virtual work for this material

c1∫
S0

� ∶
)U ∗

)X
dS0 + c2∫

S0

� ∶
)U ∗

)X
dS0 = ∫

)S0

(� ⋅N) ⋅ U ∗dL0, (11)

where � and � are two functions of the principle stretches defined in Appendix A. Using Eq. (11) with two independent virtual

displacement fields leads to the following system

Ac = B

with

A =

[ ∫
S0
� ∶

)U ∗(1)

)X
dS0 ∫

S0
� ∶

)U ∗(1)

)X
dS0

∫
S0
� ∶

)U ∗(2)

)X
dS0 ∫

S0
� ∶

)U ∗(2)

)X
dS0

]

c =

{
c1
c2

}
and B =

{ ∫
)S0

(� ⋅N) ⋅ U ∗(1)dL0

∫
)S0

(� ⋅N) ⋅ U ∗(2)dL0

}
. (12)

2chosen here to be the undeformed configuration
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This linear system gives the two constitutive parameters c1 and c2 after inversion. The second model considered in this work is

the Ogden model [22] for which the strain energy density is expressed by the following quantity

W =

N∑
i=1

2�i

�2
i

(
�
�i
1
+ �

�i
2
+ �

�i
3
− 3

)
, (13)

where �1, �2 and �3 are the principal stretches and �i, �i; i = 1..N are the constitutive parameters to be identified. The stretch

� is defined as the ratio between the current and the initial length in a given direction. Note that expressing the strain energy

density with respect to the principal stretches implies that all tensors are expressed in the principal basis of the strain tensor.

Hence, the first step is to determine the principal basis for each data point, and then to express the displacement and strain fields

in these bases. From Eqs. (9) and (13) the eigenvalues of the Piola-Kirchhoff stress tensor are given by

Πi =
)W

)�i
− �−1

i
p. (14)

The indeterminate coefficient p is identified assuming a plane stress state (Π3 = 0). Replacing Πi in the principle of virtual work

leads to the following equation

−∫
S0

(
Π1 ⋅ U

∗
u,u

+ Π2 ⋅ U
∗
v,v

)
dS0+∫

)S0

(� ⋅N) ⋅ U ∗ (X, t) dL0 = 0, (15)

where (u, v) is the principal basis for the strains. In this basis, the cost function defined in Eq. (8) becomes

f (�) =

nV F∑
j=1

⎡⎢⎢⎣

nT ime∑
t=1

(
nP ts∑
i=1

(
Π1 (�) ⋅ U

∗i(j)
u,u

+ Π2 (�) ⋅ U
∗i(j)
v,v

)
S i −W

∗(j)
ext

)2⎤⎥⎥⎦
. (16)

In this work, two orders were considered for the Ogden model, namely are the first and the second orders. The identification of

the constitutive parameters was performed by minimizing the cost function f . At least 2 or 4 independent virtual displacement

fields were used in the identification procedure for the first and second order Ogden models, respectively. It should be noted,

however, that only the second-order Ogden model satisfactorily describes the stress-hardening phenomenon observed in the

stress-strain curves.

2.3 Choice of the virtual displacement fields

There is an infinite number of virtual fields U ∗ that satisfy the principle of virtual work in Eq. (6). The choice of a set of

independent virtual fields remains a critical issue. A first attempt was to consider arbitrary expressions for the virtual fields

defined over the whole specimen. Examples are available for isotropic and anisotropic elastic materials, see [11], [24] and [10].

Piecewise displacement virtual fields were also used in [27]. In the case of hyperelasticity, virtual displacement fields can be

chosen randomly. This option is detailed in section 2.3.1. In the present work, the sensitivity-based virtual displacement fields

strategy introduced in [17] is extended to hyperelasticity. It is presented in section 2.3.2. It should be noted that the hyperelastic

model has a significant effect on these strategies and their robustness. This point is addressed in what follows.

2.3.1 Randomly-generated virtual displacement fields

To the best of the authors’ knowledge, the VFM was firstly applied for hyperelastic materials in [25]. Motivated by a noise-

sensitivity reduction, a set of randomly-generated virtual displacement fields was used. The procedure used in [25] relies on

the division of the (ROI) into several quadrangular sub-domains, and on the generation of random values for the virtual dis-

placements at the nodes of these sub-domains. Then, the displacement is interpolated in the whole domain using four-noded

quadrangular finite element formulations [34]. These displacement fields take the following expressions as functions of the nodal

virtual displacements

U ∗
x
=

4∑
k=1

Nk (�, �)U
∗(k)
x

U ∗
y
=

4∑
k=1

Nk (�, �)U
∗(k)
y

, (17)

where Nk are the shape functions, � and � are the coordinates in the reference element. These displacements are given in

the reference element coordinate system (�, �). They should therefore be given in the global coordinate system (x, y). This is
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achieved by defining the transformation between these two coordinate systems. Note that in the case of a regular element grid,

this transformation may be omitted and the global coordinate system (x, y) can be used in Eq. 17. In [25], the randomly-generated

virtual displacement fields were used for the Mooney [19] and the Yeoh [31] hyperelastic models, for which the application

of the VFM leads to a linear system. In this case, to ensure the independence of the virtual fields, a good conditioning of the

linear system (12) must be obtained. However, for models for which the VFM does not lead to a linear system such as the Ogden

model, no criterion was found to generate independent virtual fields with this approach.

2.3.2 Sensitivity-based virtual displacement fields

In a recent work [17], a new procedure for generating independent virtual displacement fields was employed for the identification

of the constitutive parameters of an anisotropic plastic model in the small strain domain. The method is based on the sensitivity

of the stress to changes of the constitutive parameters, typically between 10 and 20 %. The virtual displacement fields are

then generated proportionally to the stress sensitivity fields by using an approach inspired from the finite element formulation.

These stress sensitivity fields being computed from time-dependent strain fields, the former are time dependent as well as their

corresponding virtual displacement fields.The method was then extended to the finite strain domain in [18] for anisotropic

plasticity. In the finite strain domain, the stress sensitivity field is defined by

��(i) (� , t) = �
(
� + ��i, t

)
−� (� , t) , (18)

where 0.1�i ≤ ��i ≤ 0.2�i is the range of variation of the itℎ parameter from a mean value �̄i obtained from a literature survey.

Note that the stress sensitivity of Eq. (18) gives the influence of each constitutive parameter to the global response of the material

at each point since the stress field is heterogeneous for this experiment. The virtual displacement fields were related to the stress

sensitivity fields by the relation inspired from the finite element formulation, which gives

��(i) (� , t) = BglobU
∗(i)(t), (19)

whereBglob is the global strain-displacement matrix obtained from a virtual mesh generated a priori. This matrix is obtained from

the assembly of the elementary strain-displacement matrix obtained directly from the differentiation of the shape functions in Eq.

(17) with respect to the coordinates in the (x, y) plane. U ∗(i) in Eq. (19) designates the virtual displacement field corresponding

to the itℎ constitutive parameter. It is worth remembering that this displacement field is a test function, which is not related to

the actual displacement field. In practice, matrix Bglob should be modified to account for the boundary conditions of the ROI.

Typically, for edges where the external loading is unknown, a null displacement should be imposed to account for this constraint.

A new matrix B̄glob is therefore obtained from the original matrix Bglob. The virtual displacement field is then expressed as

follows

U ∗(i)(t) = pinv
(
B̄glob

)
��(i) (� , t) , (20)

where pinv designates the pseudo inverse operator. Once the virtual displacement field is obtained, its gradient involved in the

virtual work principle is deduced by using the following classic relationship inspired from the finite element method

)U ∗(i)(t)

)X
= BglobU

∗(i)(t). (21)

The contribution of each constitutive parameter to the response of the material is specific and may be very different in magnitude.

A scaling in the cost function should therefore be added, see [17] and [18]. Eqs. (7) and (8) become

f (�) =

nV F∑
j=1

(
1(

�(j)
)2

nP ts∑
i=1

(
�

i (�) ⋅
)U ∗i(j)

)X
(X, t)

)
S i −W

∗(j)
ext

)2

, (22)

when one specimen strain level is considered and

f (�) =

nV F∑
j=1

⎡
⎢⎢⎣

1(
�(j)

)2
nT ime∑
t=1

(
nP ts∑
i=1

(
�

i (�, t) ⋅
)U ∗i(j)

)X
(X, t)

)
S i −W

∗(j)
ext

(t)

)2⎤
⎥⎥⎦
, (23)

when several specimen strain levels are considered. In Eqs.(22) and (23), �(j) denotes the mean internal virtual work IVW

obtained from the virtual fields corresponding to the jtℎ parameter, which is expressed as follows

IV W (j)(t) =

nP ts∑
i=1

(
�

i (�, t) ⋅
)U ∗i(j)

)X
(X, t)

)
S i. (24)
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In Eq. (24), the first Piola-Kirchhoff stress tensor � is evaluated by using the set of reference values for the constitutive pa-

rameters. In the identification procedure, the number of images considered (i.e. nT ime) strongly depends on the dependence

of the stress upon the constitutive parameters. In general, a large distribution of the global stretch �glob is needed in order to

successfully perform the identification. Therefore, a heterogeneous experiment is needed.

3 EXPERIMENTS

The aim of this section is to present the experimental setup and to briefly recall the main characteristics of the DIC measurement

system used in this study.

3.1 Material and specimen geometry

The material used in this study is a carbon black filled natural rubber. The specimen is shown in Figure 1. It is a 105mm long and

2 mm thick cruciform specimen with 6 mm cylindrical ends to avoid slippage in the testing machine grips. A similar specimen

geometry was firstly used in [25] for the characterization of natural rubber. This specimen shape gives various states of strain

when an equibiaxial load is applied. The classic states presented previously, namely the UT, the PS and the EQT, are induced as

well as various intermediate states of strain. Therefore, the single heterogeneous test used in this study provides an interesting

alternative to these multiple homogeneous tests classically used for the identification of hyperelastic constitutive parameters.

This procedure gives a complete response of the specimen for the various strain states obtained with a wide distribution of the

biaxiality coefficient.

Figure 1 Specimen geometry (dimensions in mm)

7



3.2 Loading conditions

The experimental setup is presented in Figure 2. It is composed by a home-made biaxial testing machine and a digital camera.

The machine is formed by four independent RCP4-RA6C-I-56P-4-300-P3-M (IAI) electrical actuators controlled by PCON-

CA-56P-I-PLP-2-0 controller and four PCON-CA (IAI) position controllers. All these components are controlled by an in-house

LabVIEW program. The biaxial testing machine is equipped with two cell loads with a capacity of 1094N , which store the force

variation in the two perpendicular directions. In this work, an equibiaxial load was applied to the cruciform specimen. The four

independent actuators were linked to have the same movement. This movement is such that the specimen center was motionless

during the test. Hence, a reference point was obtained at the center of the specimen with respect to the correlation procedure.

A displacement of 70 mm was applied to each branch at a loading rate of 150 mm∕min for five cycles. This choice was made

in order to identify the stabilized behavior of the specimen since the material accommodates during the first cycles [20]. The

maximum applied displacement corresponds to a global stretch �glob
3 of 2.33.

Figure 2 Experimental setup

3.3 Full-field kinematic measurement

During the mechanical test, images of the specimen surface were stored at a frequency of 5Hz using an IDS camera equipped

with a 55 mm telecentric objective. The charge-coupled device (CCD) sensor of the camera has 1920 × 1200 joined pixels. The

displacement field at the surface of the specimen was determined by using digital image correlation technique. It consists in

correlating the grey levels between two different images of a given zone at two different levels of strain [26]. Before the test, the

specimen was sprayed by a white paint in order to improve the image contrast. Hence, a black and white random grey field was

obtained. During the test, the specimen was subjected to a uniform cold lighting thanks to a home-made LED lighting system.

This ensures the uniform distribution of the lighting even at the highest strains reached. The correlation process was performed

by the SeptD software [30], which is dedicated to both finite and small strain domains. Following the recommendation of the

DIC guide [15], both DIC hardware and analysis parameters are given in tables 1 and 2 respectively. Note that the size of the

subset in mm could vary from one test to another depending on the positioning of the camera and its parameters. Thanks to

the symmetry of the test, a rectangular region on one branch of the specimen is sufficient to apply the identification procedure

described in Section 2. This choice ensures a trade-off between:

3the ratio between the current and the initial lengths of the specimen in a given direction
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• a large distribution of the loading cases within the ROI,

• a large strain level for each loading case,

• the convergence of the DIC calculation for the chosen ROI during the whole experiment, including the case of large strains.

The rectangular ROI is represented in Figure 3. It corresponds to a zone from the specimen center to the cylinder at the end

of its branch. The gauge block shown in Fig. 3 is used for converting pixels to millimeters. The result of the correlation is

Figure 3 Region of interest with a 4 pixels step size

the displacement field over the ROI at each data point. Strain and displacement gradient tensors fields are then derived from

these displacement fields. The displacement fields obtained from the correlation process were stored by the SeptD software as

two matrices whose components correspond to each data point of the ROI. Due to the large displacement applied during the

experiment, the correlation was not achieved in some subsets (less than 4% of the total number of subsets). The displacement

in these subsets was approximated through a polynomial interpolation from all the subsets nearby. The displacement fields are

then smoothed using a mean filter in order to reduce the experimental noise, especially where significant gradient occurred.

This filter was applied before and after differentiation of the displacement fields in the computation of the displacement gradient

tensor. Further details are given in Section 4.

Camera IDS UI-3160CP Rev. 2

Image Resolution 1920 x 1200 pixels2

Lens 55 mm C-mount partially telecentric.Constant

magnification over a range of working distances

±12.5mm of object movement before 1% error

image scale occurs

Aperture f/5.6

Field-of-View 139.4 x 87.1 mm

Image Scale 14 pixels/mm

Stand-off Distance 1100 mm

Image Acquisition Rate 5 Hz

Patterning Technique White spray on black specimen

Pattern Feature Size (Approximation) 6 pixels

Table 1 DIC Hardware parameters
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DIC Software 7D©

Image Filtering None

Subset Size 20 pixels/1.45 mm

Step Size 4 pixels/0.29 mm

Subset Shape Function Affine

Matching Criterion Normalized Cross Correlation

Interpolant Bi-cubic

Strain Window 5 data points

Virtual Strain Gauge Size 36 pixels/ 2.62mm

Strain Formulation Logarithmic

Post-Filtering of Strains None

Displacement Noise-Floor 0.036 pixels/ 2.6 �m

Strain Noise-Floor 6.1 mm/m

Table 2 DIC Analysis parameters

4 RESULTS

In this section, the results of the identification carried out with two procedures, namely the sensitivity-based and the randomly-

generated virtual displacement fields strategies, are highlighted. A comparison between the force obtained experimentally and

from finite element simulations using the identified constitutive parameters is used to assess the efficiency of each procedure.

4.1 Experimental displacement fields

The displacement field obtained for a global stretch �glob of 2.33 with the SeptD software is given in Figure 4. Note that the

dark blue zones in the two maps correspond to the subsets where correlation could not be successfully performed. Results of the

displacement fields smoothed by the procedure described above are reported in Figure 5. The displacement gradient fields were

obtained from the displacement fields by classic differentiation with respect to the spatial coordinates. First, the displacement

fields were interpolated over the whole subset using the displacement of the four nodes defining the corners by the following

expression
Ux (x, y) = a ⋅ x + b ⋅ y + c ⋅ x ⋅ y + d

Uy (x, y) = e ⋅ x + f ⋅ y + g ⋅ x ⋅ y + ℎ
. (25)

The displacement gradient tensor was then deduced from Eq. (25). Thus

)U

)X
=

[
a + c ⋅ y b + c ⋅ x

e + g ⋅ y f + g ⋅ x

]
. (26)

Note that the eight constants a⋯ℎ in Eqs. (25) and (26) are different from one subset to another. They are obtained by inverting

the linear system of eight equations arising from Eq. (25). The displacement gradient fields are presented in Figure 6. These

data were smoothed using the same filter as that used for the displacement fields. The distribution of the loading cases and the

maximum principal stretches are reported in Figures 7(a) and 7(b), respectively. Fig. 7(a) highlights that the ROI chosen in this

work contains a wide range of biaxiality coefficient defined by log
(
�min

/
�max

)
. Indeed, it covers all loading cases lying between

EQT and UT. Furthermore, a wide distribution of loading cases is observed in the ROI chosen (i.e. the points in the (I1, I2) plane

cover a significant range). Figure 8 illustrates this distribution, in which both invariants I1 and I2 were plotted for the classic UT,

PS and EQT loading cases, as well as for the present experimental results. Note that this distribution is given for the maximum

applied displacement. For lowest applied displacements, the points in Fig. 8 are located from the origin of the (I1, I2) plane

(I1 = I2 = 3) to the distribution corresponding to the maximum applied displacement. This means that the maximum principal

stretch distribution is large enough whatever the loading case considered. The maximum value of the principal stretch reaches 3

in the UT zone for the maximum value of the displacement equal to 70 mm. This value is large enough for activating the stress

hardening phenomenon. Among the models considered in this study, this phenomenon is only described by the second-order

Ogden model. The other two models can be therefore suitable for describing the behavior of the material up to a strain level
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corresponding to the occurrence of the stress hardening. The data obtained experimentally were used in the identification of the

constitutive parameters for randomly-generated and sensitivity-based virtual displacement fields.
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(b) Displacement field along Y -direction Uy in mm

Figure 4 Experimental displacement fields in the ROI for a global displacement of 70 mm

4.2 Identification from randomly-generated virtual fields

The identification procedure described in section 2.3.1 was applied herein for the determination of the hyperelastic constitutive

parameters. As described above, the virtual displacement was randomly generated at the nodes of the correlation grid (data

points). Then, the virtual displacement field at any point was obtained by interpolating the nodal displacements. For the Mooney

model, the virtual displacement fields were chosen in such a way that the conditioning of the matrix A in Eq. (12) was above 0.3.

The two virtual displacement fields used in the identification of the Mooney parameters are presented. For the Ogden model,

no criterion was found for the choice of the virtual displacement fields in Figure 9. Hence, a set of 100 virtual displacement

fields was randomly generated and used in the identification procedure, (i.e. the 100 randomly-generated virtual displacement

fields were used in the cost-function of Eq. 16). Note that for both models, the identification procedure was performed several

times in order to obtain an objective criterion which could assess the efficiency of the method. Furthermore, the initial values

for the fminsearch function (denoted x0) were set to the reference (xref ), minimum (xmin) and maximum (xmax) values reported
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Figure 5 Smoothed experimental displacement fields in the ROI for a global displacement of 70 mm

in Table 4. The parameters identified using this approach are reported in Table 3. The parameters for the three models appear

to be in good agreement with the values found in the literature for natural rubber, (see [16]). However, no significant change

on the ability of the identified parameters to predict the mechanical response has been found for this model. This is due to the

non-linearity of the stress upon the constitutive parameters for this model which led to the lack of an objective criterion in the

choice of the virtual fields. The final values of the objective function for the Ogden models were 0.42 and 0.20 for the first and

second orders, respectively.

4.3 Identification from sensitivity-based virtual fields

The identification procedure presented in section 2.3.2 was then used to obtain the hyperelastic constitutive parameters from the

same test data. First, a virtual mesh had to be generated (it can be different from the correlation grid). Then, the virtual fields

were generated proportionally to the stress sensitivity fields. The reference values for the parameters used in this work are given

in Table 4. These values are found in the literature for similar materials, see [16]. As an example, the two virtual fields used with

the Mooney model are shown in Figure 10, where U ∗(1)
xc1

, .., U ∗(2)
yc2

designate the components of the two sensitivity-based virtual

12



10 20 30 40 50

X (mm)

30

35

40

45

50

Y
 (

m
m

)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Ux,x

10 20 30 40 50

X (mm)

30

35

40

45

50

Y
 (

m
m

)

-0.5

0

0.5

(b) Ux,y

10 20 30 40 50

X (mm)

30

35

40

45

50

Y
 (

m
m

)

-0.5

0

0.5

(c) Uy,x

10 20 30 40 50

X (mm)

30

35

40

45

50

Y
 (

m
m

)

-0.2

0

0.2

0.4

0.6

(d) Uy,y

Figure 6 Displacement gradient fields obtained from Eq. (26)

displacement fields 4. The values of the identified parameters are given in Table 5. Contrary to results obtained with randomly-

generated virtual fields, the identified parameters for all the models considered are in good agreement with the reference values

of a natural rubber. The identification took in average about 75 seconds for each model. Note that the parameters reported in

Table 5 are obtained for several simulations with different sensitivity parameters, i.e. with different virtual fields. Furthermore,

the mean parameter values used in the generation of the sensitivity-based virtual displacement fields do not affect the final result

of the identification. In fact, the mean values for each parameter could change within the reference range without affecting the

final result of the identification. For the Ogden model, the mean least squared error (the value of the objective function of Eq.

23 at the end of the identification procedure) is about 1.5 10−5 and 2.5 10−6 for the first and the second orders, respectively. This

values are negligible compared to the ones obtained with randomly-generated virtual fields reported in the previous section.

4.4 Comparison of the results

To evaluate the accuracy of the identified parameters, the biaxial experiment used in this work was simulated using Abaqus

software for a plane stress problem using the parameters reported in Tables 3 and 5. The finite element model is presented in

Figure 11. The element type used was the CPS4 element, which is a four-noded bilinear plane stress quadrilateral. The four

edges of the cruciform specimen were subjected to a tension displacement of 70 mm each. The displacement was blocked in

4These displacement fields are reported in Appendix A for the other two models.
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Figure 7 Loading cases and maximum principal stretches for a global displacement of 70 mm

the transverse direction along the edges of the specimen. For each set of parameters, the resulting force in every branch was

compared to the experimental force obtained during the experiment. It is worth noting that the force was measured in the two

perpendicular directions. Since the loading was symmetric, only one load cell was used in each direction. The results of the

comparison are shown in Figure 12, in which SBVF and RVF refer to sensitivity-based virtual fields and randomly-generated

virtual fields, respectively. For the RVF method, the Mooney model appears to fairly predict the response for a global stretch up

to 2, which is just before the inflection point of the force-displacement curve. This is the usual validity range for the Mooney

model. On the other hand, both Ogden models either underestimated or overestimated the force in the branch for the whole test

and the different initial values for the fminsearch function. This is due to the procedure for the choice of the virtual displacement

fields, which were randomly generated in this case. With this approach, no criterion was found in their selection for the Ogden

model. For the SBVF method, the Mooney model also correctly predicted the experimental force for a global stretch up to 2.

Better results were obtained with the first-order Ogden model for a wider strain range, corresponding to a global stretch up to

2.15. The results given by these two models were very satisfactory since they do not take into account the stress hardening

phenomenon. The second-order Ogden model predicts very well the experimental force for the whole test. Especially, the stress-

hardening phenomenon, which is observed by the inflection point in the experimental force curve for a global stretch around

2.15. Such a result could not be obtained with the RVF method. This shows the good ability of the SBVF method to generate

optimized virtual displacement fields for hyperelastic behavior.

For the Ogden model, only four loading levels were considered in the identification procedure. They corresponded to an applied
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Figure 8 Loading states distributions over the ROI for a global stretch �glob = 2.33, each point in the graph corresponds to a
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Model Parameter x0 = xref x0 = xmin x0 = xmax
Mooney c1 0.229MPa - -

c2 9.4 10−3 MPa - -

Ogden 1 �1 0.38MPa 0.29MPa 0.36MPa

�1 2.39 2.85 2.31

Ogden 2 �1 0.073MPa 0.378MPa 0.145MPa

�1 2 1.34 2.76

�2 0.375MPa 0.24MPa 0.227MPa

�2 1.99 1.34 2.77

Table 3 Identified hyperelastic constitutive parameters using randomly-generated virtual displacement fields

Model Parameter Reference Max Min

Mooney c1 0.4MPa 1MPa 0.1MPa

c2 0.04MPa 0.1MPa 0.01MPa

Ogden 1 �1 0.768MPa 0.84MPa 0.68MPa

�1 1.26 1.63 0.8

Ogden 2 �1 0.114MPa 0.81MPa 1.4 10−4 MPa

�1 7.297 11.94 1.58

�2 0.772MPa 1.6MPa −9.6 10−3 MPa

�2 −0.295 1.31 −7.81

Table 4 Reference values for the constitutive parameters

displacement of 17.5, 35, 52.5 and 70 mm. Moreover, the identification was carried out with the fourth loading, for which the

Mullins effect was eliminated.
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Figure 9 Randomly-generated virtual fields for the identification of the Mooney model

5 GENERALIZATION CAPABILITY OF THE IDENTIFICATION PROCEDURE

The section aims at evaluating the generalization capability of the proposed methodology by characterizing other hyperelastic

materials. In order to illustrate the potential of the methodology, four hyperelastic materials that differ significantly in stiffness

and stress hardening have been considered. They are denoted by M1, M2, M3 and M4. As in the previous section, the accuracy

of the identified parameters is highlighted the fact that these parameters enable us to correctly predict the force measured during

the test. Figure 13 shows these results. It can be concluded that, regardless of the load level obtained with the material and

the amount of the stress hardening, the SBVF is a well suitable method to generate virtual displacement fields for hyperelastic

models

6 CONCLUSION

In this work, the VFM was applied in order to identify the constitutive parameters of two hyperelastic models. Two methods were

employed for the generation of the virtual displacement fields. The first method consisted in randomly generating the virtual

displacement at all nodes of the correlation grid. Then, the virtual displacement was interpolated around every point using a finite

element formulation. The second method is based on the sensitivity of the stress fields to changes of the constitutive parameters.

The virtual displacement fields were then computed from the stress sensitivity fields following a finite element formulation. A
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Figure 10 Sensitivity-based virtual fields for the identification of the Mooney model

sufficient number of virtual fields was generated to be used in the identification procedure.

Two hyperelastic models were investigated in this work: the Mooney model and two orders of the Ogden model. For the Mooney

model, good results were found using both the RVF and the SBVF methods in the corresponding valid deformation range.

Indeed, for both methods, the force in the branch of the cruciform specimen obtained from numerical simulations using identified

parameters was very close to the experimental force for a global stretch up to 2. For the Ogden model, the RVF method did not

give good results for both the first and the second orders. The parameters did not accurately predict the experimental response of

the specimen. On the other hand, the parameters obtained from the SBVF method were in good agreement with the experimental

results in terms of the force in the cruciform branches. Furthermore, the stress hardening phenomenon was well described with

the parameters identified for the second-order Ogden model. As in the experiments, the inflection point in the force-displacement

curve was found around a global stretch of 2.15. Hence, for a global stretch greater than 2.15, the force-displacement curve

slope increases significantly. This feature is very important in the design of rubber component undergoing large deformations in

industrial applications. Consequently, for the models considered in this work, the SBVF method constitutes a rational procedure

for the selection of the virtual fields when applying the VFM in the identification of hyperelastic constitutive parameters.

This method could be applied for the identification of other parameters characterizing other physical phenomena observed for

rubber materials such as viscoelasticity, Mullins effect or Payne effect. To this end, an adaptation of the method has to be done

with respect to the loading conditions as well as the numerical implementation of the method. This will be the subject of future

work.
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Model Parameter Value

Mooney c1 0.22MPa

c2 1.9 10−2 MPa

Ogden 1 �1 0.46MPa

�1 2.11

Ogden 2 �1 5.8 10−2 MPa

�1 3.99

�2 0.5MPa

�2 0.36

Table 5 Parameters identified using sensitivity-based virtual fields

Figure 11 Finite element model for the simulation of the biaxial experiment
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(c) Force obtained with the RVF method for the second order Ogden model
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Figure 12 Force obtained from finite element simulations compared to the force force measured during the experiments
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A APPENDIX
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Figure 13 Force obtained from finite element simulations compared to the force measured by considering materials M1, M2,

M3 and M4

where D = F11F22 − F21F12 and P is the transition matrix to the principal stress basis. � is defined as follows:
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Figure A1 Sensitivity-based virtual displacement fields for the first order Ogden model
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Figure A2 Sensitivity-based virtual displacement fields for the second order Ogden model
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