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This work deals with the identification of hyperelastic constitutive parameters using the virtual fields method. The choice of the virtual displacement fields is a cru-cial aspect of the method, typically for reducing the sensitivity to the measurement noise. A first and simple option is to generate the virtual displacement fields ran-domly. Nevertheless, in case of hyperelastic models for which the stress is not a linear function of the constitutive parameters, improving the choice of the virtual displace-ment fields is not trivial and an alternative strategy has to be found. In the present study, the sensitivity-based virtual fields approach is applied and compared to the randomly-generated virtual displacement fields approach. Two material models were considered: the Mooney model, which describes quite well the behavior of hyperelas-tic materials for small and moderate strains, and the Ogden model, which accounts for the stress hardening phenomenon observed at higher strains. The full kinematic fields are measured by using the digital image correlation technique during an equibiaxial tensile test performed on a cruciform specimen. Identification results are discussed through their capability to predict the external force measured during the test. The sensitivity-based virtual fields approach is found to improve significantly the predic-tion compared to the randomly-generated virtual displacement fields approach.

INTRODUCTION

The characterization of the mechanical behavior of rubber materials is classically carried out within the framework of hyperelasticity [START_REF] Holzapfel | Nonlinear solid mechanics: a continuum approach for engineering science[END_REF]. In this representation, the behavior describes only rate-independent effects without hysteresis, with the assumption of isotropy and incompressibility. In this case, the constitutive parameters depend upon the loading conditions applied in the identification procedure [START_REF] Guo | Application of a new constitutive model for the description of rubber-like materials under monotonic loading[END_REF]. This is the reason why they are generally identified from three homogeneous tests, namely the uniaxial tension (UT), the pure shear (PS) and the equibiaxial tension (EQT) 1 . An alternative approach consists in performing only one heterogeneous test in which the three loading states (UT, PS and EQT) are present along with various intermediate states.

Moreover, the values of the identified parameters are unique for each heterogeneous test, see [START_REF] Guélon | A new characterisation method for rubber[END_REF] and [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF]. Several approaches have been developed for the identification of constitutive parameters from experimental heterogeneous tests such as the finite element model updating technique, the equilibrium gap method or the virtual fields method, see [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF] and [START_REF] Pierron | General framework for the identification of constitutive parameters from full-field measurements in linear elasticity[END_REF] for further details. The latter method was applied before in the case of hyperelastic models and gave promising results, see [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF]. This is the reason why it will be used in this work for the identification of hyperelastic constitutive parameters. The Virtual Fields Method (VFM) was first introduced in [START_REF] Grédiac | Principe des travaux virtuels et identification[END_REF] for the identification of constitutive parameters of linear elastic materials. It was applied over the years to several types of material behaviors. Within the framework of the small strain assumption, the method was used to characterize orthotropic materials in [START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 2--application to in-plane properties[END_REF], [START_REF] Chalal | Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method[END_REF] and [START_REF] Grédiac | A t-shaped specimen for the direct characterization of orthotropic materials[END_REF], and elasto-plastic materials in [START_REF] Grédiac | Applying the virtual fields method to the identification of elasto-plastic constitutive parameters[END_REF] and [START_REF] Avril | Stress reconstruction and constitutive parameter identification in plane-stress elasto-plastic problems using surface measurements of deformation fields[END_REF], among others. Dynamic properties were studied in [START_REF] Giraudeau | Simultaneous identification of stiffness and damping properties of isotropic materials from forced vibrating plates[END_REF] for instance. In the recent past, the VFM was extended to the finite strain framework. From a historical point of view, the first application of the VFM for hyperelastic materials was presented in [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF]. Mooney [START_REF] Mooney | A theory of large elastic deformation[END_REF] and Yeoh [START_REF] Yeoh | Some forms of the strain energy function for rubber[END_REF] models were considered using a biaxial tensile test of a 4-branch cruciform specimen in a moderate strain range. Other hyperelastic models such as the Ogden model [START_REF] Ogden | Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[END_REF] was employed in [START_REF] Palmieri | Virtual fields method on planar tension tests for hyperelastic materials characterisation[END_REF] using a planar tension tests on a flat rubber specimen subjected to the same moderate strain range as in the previous reference. Furthermore, in addition to hyperelastic parameters, the VFM was used for the determination of viscoelastic properties of rubber, see [START_REF] Yoon | High strain-rate tensile characterization of epdm rubber using nonequilibrium loading and the virtual fields method[END_REF] and [START_REF] Yoon | Application of the virtual fields method to a relaxation behaviour of rubbers[END_REF], where dynamic tests were exploited for the identification. This extensive use of the VFM for different mechanical behaviors and applications rose the challenge of the best choice of the virtual displacement fields, which is a crucial aspect of the method. Several techniques were used for addressing this problem when dealing with hyperelastic materials. In general, the virtual displacement fields are either chosen to cancel the actual loading term in the equation of the virtual work equation, see [START_REF] Yoon | High strain-rate tensile characterization of epdm rubber using nonequilibrium loading and the virtual fields method[END_REF] and [START_REF] Yoon | Application of the virtual fields method to a relaxation behaviour of rubbers[END_REF], or randomly, with a criterion on the conditioning of the linear system arising from the VFM [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF]. In a recent work, a new procedure in the choice of independent virtual displacement fields has been introduced in the case of anisotropic plasticity with small deformations [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF]. The method is based on the sensitivity of the stress field to changes of the constitutive parameters. The virtual displacement fields are then computed proportional to the stress sensitivity fields. This method was extended to finite strains in [START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF]. In the present work, the VFM is applied to the identification of hyperelastic constitutive parameters from an equibiaxial experiment performed with a 4-branch cruciform shaped specimen. Two strategies in the generation of the virtual displacement fields are applied and compared. First, the random virtual displacement fields strategy that was applied to the Mooney and the Yeoh models in [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF], is extended to the Ogden model. Contrary to the former ones, the Ogden model leads to a non-linear stress relationship with respect to the constitutive parameters. This property makes it challenging to choose the best virtual displacement fields generated randomly. To overcome this issue, the sensitivity-based virtual displacement fields strategy has been developed within the framework of hyperelasticity by using the Mooney and Ogden models. This is the main contribution of the paper. The paper is organized as follows. In the first section, the theoretical background of the VFM is recalled and the identification problem is formulated for the two hyperelastic models under consideration. The second section is devoted to the experimental setup, including the mechanical test and the digital image correlation technique. In the third section, the results of the identification procedure are discussed in terms of virtual displacement fields to be used in the identification procedure and the ability of the obtained parameters to accurately predict the external force applied during the test. In the final section, the sensitivity-based virtual fields method is applied to four different hyperelastic materials. Concluding remarks close the paper.

THEORETICAL BACKGROUND

In this section, a literature survey is proposed about the use of the VFM for the identification of hyperelastic constitutive parameters. First, the basics of the method are recalled. Then the randomly-generated and sensitivity-based virtual displacement fields strategies are presented. Finally, the minimization problem arising from the application of the method is detailed. The Mooney [START_REF] Mooney | A theory of large elastic deformation[END_REF] and Ogden [START_REF] Ogden | Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[END_REF] models are used for this purpose.

Virtual fields method

Considering a hyperelastic solid subjected to a quasi-static loading and assuming that the volume forces can be neglected, the principle of virtual work, can be written as follows

-∫ ( , ) ∶ * ( , ) + ∫ ⋅ * ( , ) = 0, (1) 
where is the volume of the solid, is the Cauchy stress tensor, * and * are the virtual displacement and strain, respectively. is the external force per unit deformed area. In general, the stress, virtual strain and displacement fields are all heterogeneous fields at any time . The stress field can be deduced from the measured displacement or strain fields by using the corresponding constitutive equations and a given set of material parameters. The virtual displacement * is a continuous function, which is kinematically admissible in the volume . A sufficient condition regarding the admissibility of the virtual displacement field is to consider a continuous function, which satisfies the boundary conditions, (see [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF]). The virtual strain field is deduced by using the strain-displacement relationship, namely * = 1∕2 ∇ * + ∇ * . It should be noted that these two functions are also called test functions or weighting functions. They are completely independent from the real strain and displacement fields. In Eq.

(1), the first integral is the contribution of the internal virtual work due to deformations. The second integral accounts for the contribution of the external loading applied to the solid. Given that most full-field measurement techniques provide information on the specimen's surface, a two dimensional problem should be considered. Typically, a plane stress problem is considered in the case of thin specimen. Under this assumption, Eq. ( 1) becomes

-∫ ( , , ) ∶ * ( , , ) + ∫ ⋅ * ( , , ) = 0, (2) 
where is the thickness of the solid, is the surface of the solid in the normal direction to the thin dimension and is its boundary. Full-field measurements, especially when performed with digital image correlation are based on the decomposition of the surface of the specimen into a set of subsets. The displacement at the centre of these zones is then deduced by minimizing the optical residual (see [START_REF] Bornert | Assessment of digital image correlation measurement errors: methodology and results[END_REF] and [START_REF] Vacher | Bidimensional strain measurement using digital images[END_REF]). The displacement, strain and stress fields are discrete functions, which are evaluated only at these discrete points. The internal virtual work part of Eq. ( 1) becomes

∑ =1 ⋅ * , ( 3 
)
where is the number of data points in the region of interest ROI. , * and are the stress, virtual strain and area surrounding each data point, respectively. The external virtual work contribution is computed using the second integral of Eq. [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF]. Given that only the resulting force and not its distribution is measured along the edge of the specimen , two methods can be used for calculating this part of the virtual work. The first one consists in considering a constant virtual displacement along the edge. The contribution is then obtained by multiplying the resulting force by the constant virtual displacement. The second method consists in assuming a uniform force distribution along the edge and using a non-constant virtual displacement. The product between these two quantities is then integrated over . The stress in Eq. ( 3) is a function of the set of constitutive parameters to be identified. This set is denoted here by , and the strain by . The VFM is based on the application of the principle of virtual work and on the minimization of the difference between internal and external virtual works. For materials with linear dependency of the stress upon the constitutive parameters, the principle of virtual work is applied at least as many times as the number of constitutive parameters contained in . In this case, such as for linear elastic materials, this minimization leads to a linear system which gives the constitutive parameters after inversion. However, for other models such as those used with elasto-plastic materials, for which the stress is nonlinear with respect to the constitutive parameters, a nonlinear least-square minimization procedure must be employed. One or several specimen strain levels are used in the minimization. Two forms of the cost-function are proposed accordingly:

( , ) = ∑ =1 ∑ =1 ( , ) ⋅ * ( ) - * 2 , ( 4 
)
for one specimen strain level and

( , ) = ∑ =1 ⎡ ⎢ ⎢ ⎣ ∑ =1 ∑ =1 ( , , ) ⋅ * ( ) ( ) - * ( ) ( ) 2 ⎤ ⎥ ⎥ ⎦ , ( 5 
)
for several specimen strain levels. In Eqs. ( 4) and ( 5), and represent the number of independent virtual fields and time steps, respectively. To apply this method to hyperelastic materials, Eqs. (1) to (5) should be expressed in the finite strain framework. As in [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF] and [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] among others, the principle of virtual work is expressed as a function of the first Piola-Kirchhoff stress tensor , which represents the current force per unit of undeformed area. In this case, the principle of virtual work can be expressed as follows

-∫ 0 ( , ) ∶ * ( , ) 0 + ∫ 0 ( ⋅ ) ⋅ * ( , ) 0 = 0, (6) 
where subscript • 0 , , and designate quantities given in the reference configuration2 , the coordinates, the thickness and the vector normal to the edge in the same configuration, respectively. Eqs. ( 4) and ( 5) become

( ) = ∑ =1 ∑ =1 ( ) ⋅ * ( ) ( ) - * ( ) 2 , ( 7 
)
when considering one specimen strain level and

( ) = ∑ =1 ⎡ ⎢ ⎢ ⎣ ∑ =1 ∑ =1 ( , ) ⋅ * ( ) ( , ) - * ( ) ( ) 2 ⎤ ⎥ ⎥ ⎦ , ( 8 
)
when considering several specimen strain levels. The identification of the constitutive parameters is carried out by using the fminsearch function of Matlab for nonlinear models, and by inverting the linear system for linear models. It should be noted that this function can lead to a local minimum. This issue was tracked by reconstructing the force-displacement curve with set of identified parameters. Indeed, curves plotted with parameters extracted from local minima are not in good agreement with the experimental one. In this case, these parameters are discarded and a new identification is performed with different initial values. The procedure can be repeated until a good agreement between the curves is obtained. Note that in all the cases reported here, launching the procedure once was sufficient. Further details on the procedure are presented in the remainder of this section.

Hyperelasticity

The mechanical behavior of elastomers is generally described within the framework of hyperelasticity. The stress is obtained by deriving the strain energy density with respect to the corresponding strain measure. This strain energy density relates the stress to the strain through the principal stretches or the principal invariants of the Cauchy-Green strain tensors. In the following, the material is assumed to be incompressible. Under this assumption, the first Piola-Kirchhoff stress tensor is given by

= --+ , ( 9 
)
where is a Lagrange multiplier due to incompressibility (see [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]), is the deformation gradient tensor and • designates the transpose of a second-order tensor. For the Mooney model [START_REF] Mooney | A theory of large elastic deformation[END_REF], the strain energy density reads as follows

= 1 1 -3 + 2 2 -3 , ( 10 
)
where 1 and 2 are the first and second invariants of the right Cauchy-Green strain tensor, respectively. 1 and 2 are the constitutive parameters to be identified. Combining Eqs. ( 9) and ( 10) and replacing by its expression in Eq. ( 6) lead to the following expression of the principle of virtual work for this material

1 ∫ 0 ∶ * 0 + 2 ∫ 0 ∶ * 0 = ∫ 0 ( ⋅ ) ⋅ * 0 , ( 11 
)
where and are two functions of the principle stretches defined in Appendix A. Using Eq. ( 11) with two independent virtual displacement fields leads to the following system

= with = ∫ 0 ∶ * (1) 0 ∫ 0 ∶ * (1) 0 ∫ 0 ∶ * (2) 0 ∫ 0 ∶ * (2) 0 = 1 2 and = ∫ 0 ( ⋅ ) ⋅ * (1) 0 ∫ 0 ( ⋅ ) ⋅ * (2) 0 . ( 12 
)
This linear system gives the two constitutive parameters 1 and 2 after inversion. The second model considered in this work is the Ogden model [START_REF] Ogden | Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[END_REF] for which the strain energy density is expressed by the following quantity

= ∑ =1 2 2 1 + 2 + 3 -3 , ( 13 
)
where 1 , 2 and 3 are the principal stretches and , ; = 1.. are the constitutive parameters to be identified. The stretch is defined as the ratio between the current and the initial length in a given direction. Note that expressing the strain energy density with respect to the principal stretches implies that all tensors are expressed in the principal basis of the strain tensor. Hence, the first step is to determine the principal basis for each data point, and then to express the displacement and strain fields in these bases. From Eqs. ( 9) and ( 13) the eigenvalues of the Piola-Kirchhoff stress tensor are given by

Π = --1 . ( 14 
)
The indeterminate coefficient is identified assuming a plane stress state (Π 3 = 0). Replacing Π in the principle of virtual work leads to the following equation

-∫ 0 Π 1 ⋅ * , + Π 2 ⋅ * , 0 + ∫ 0 ( ⋅ ) ⋅ * ( , ) 0 = 0, (15) 
where ( , ) is the principal basis for the strains. In this basis, the cost function defined in Eq. ( 8) becomes

( ) = ∑ =1 ⎡ ⎢ ⎢ ⎣ ∑ =1 ∑ =1 Π 1 ( ) ⋅ * ( ) , + Π 2 ( ) ⋅ * ( ) , - * ( ) 2 ⎤ ⎥ ⎥ ⎦ . ( 16 
)
In this work, two orders were considered for the Ogden model, namely are the first and the second orders. The identification of the constitutive parameters was performed by minimizing the cost function . At least 2 or 4 independent virtual displacement fields were used in the identification procedure for the first and second order Ogden models, respectively. It should be noted, however, that only the second-order Ogden model satisfactorily describes the stress-hardening phenomenon observed in the stress-strain curves.

Choice of the virtual displacement fields

There is an infinite number of virtual fields * that satisfy the principle of virtual work in Eq. ( 6). The choice of a set of independent virtual fields remains a critical issue. A first attempt was to consider arbitrary expressions for the virtual fields defined over the whole specimen. Examples are available for isotropic and anisotropic elastic materials, see [START_REF] Grédiac | Special virtual fields for the direct determination of material parameters with the virtual fields method. 1--principle and definition[END_REF], [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] and [START_REF] Grédiac | A t-shaped specimen for the direct characterization of orthotropic materials[END_REF].

Piecewise displacement virtual fields were also used in [START_REF] Toussaint | The virtual fields method with piecewise virtual fields[END_REF]. In the case of hyperelasticity, virtual displacement fields can be chosen randomly. This option is detailed in section 2.3.1. In the present work, the sensitivity-based virtual displacement fields strategy introduced in [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] is extended to hyperelasticity. It is presented in section 2.3.2. It should be noted that the hyperelastic model has a significant effect on these strategies and their robustness. This point is addressed in what follows.

Randomly-generated virtual displacement fields

To the best of the authors' knowledge, the VFM was firstly applied for hyperelastic materials in [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF]. Motivated by a noisesensitivity reduction, a set of randomly-generated virtual displacement fields was used. The procedure used in [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF] relies on the division of the (ROI) into several quadrangular sub-domains, and on the generation of random values for the virtual displacements at the nodes of these sub-domains. Then, the displacement is interpolated in the whole domain using four-noded quadrangular finite element formulations [START_REF] Zienkiewicz | The finite element method[END_REF]. These displacement fields take the following expressions as functions of the nodal

virtual displacements * = 4 ∑ =1 ( , ) * ( ) * = 4 ∑ =1 ( , ) * ( ) , ( 17 
)
where are the shape functions, and are the coordinates in the reference element. These displacements are given in the reference element coordinate system ( , ). They should therefore be given in the global coordinate system ( , ). This is achieved by defining the transformation between these two coordinate systems. Note that in the case of a regular element grid, this transformation may be omitted and the global coordinate system ( , ) can be used in Eq. 17. In [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF], the randomly-generated virtual displacement fields were used for the Mooney [START_REF] Mooney | A theory of large elastic deformation[END_REF] and the Yeoh [START_REF] Yeoh | Some forms of the strain energy function for rubber[END_REF] hyperelastic models, for which the application of the VFM leads to a linear system. In this case, to ensure the independence of the virtual fields, a good conditioning of the linear system (12) must be obtained. However, for models for which the VFM does not lead to a linear system such as the Ogden model, no criterion was found to generate independent virtual fields with this approach.

Sensitivity-based virtual displacement fields

In a recent work [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF], a new procedure for generating independent virtual displacement fields was employed for the identification of the constitutive parameters of an anisotropic plastic model in the small strain domain. The method is based on the sensitivity of the stress to changes of the constitutive parameters, typically between 10 and 20 %. The virtual displacement fields are then generated proportionally to the stress sensitivity fields by using an approach inspired from the finite element formulation. These stress sensitivity fields being computed from time-dependent strain fields, the former are time dependent as well as their corresponding virtual displacement fields.The method was then extended to the finite strain domain in [START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF] for anisotropic plasticity. In the finite strain domain, the stress sensitivity field is defined by

( ) ( , ) = + , -( , ) , ( 18 
)
where 0.1 ≤ ≤ 0.2 is the range of variation of the ℎ parameter from a mean value ̄ obtained from a literature survey. Note that the stress sensitivity of Eq. ( 18) gives the influence of each constitutive parameter to the global response of the material at each point since the stress field is heterogeneous for this experiment. The virtual displacement fields were related to the stress sensitivity fields by the relation inspired from the finite element formulation, which gives

( ) ( , ) = * ( ) ( ), (19) 
where is the global strain-displacement matrix obtained from a virtual mesh generated a priori. This matrix is obtained from the assembly of the elementary strain-displacement matrix obtained directly from the differentiation of the shape functions in Eq. ( 17) with respect to the coordinates in the ( , ) plane. * ( ) in Eq. ( 19) designates the virtual displacement field corresponding to the ℎ constitutive parameter. It is worth remembering that this displacement field is a test function, which is not related to the actual displacement field. In practice, matrix should be modified to account for the boundary conditions of the ROI. Typically, for edges where the external loading is unknown, a null displacement should be imposed to account for this constraint. A new matrix ̄ is therefore obtained from the original matrix . The virtual displacement field is then expressed as follows

* ( ) ( ) = ̄ ( ) ( , ) , (20) 
where designates the pseudo inverse operator. Once the virtual displacement field is obtained, its gradient involved in the virtual work principle is deduced by using the following classic relationship inspired from the finite element method * ( ) ( ) = * ( ) ( ).

The contribution of each constitutive parameter to the response of the material is specific and may be very different in magnitude.

A scaling in the cost function should therefore be added, see [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] and [START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF]. Eqs. ( 7) and ( 8) become

( ) = ∑ =1 1 ( ) 2 ∑ =1 ( ) ⋅ * ( ) ( , ) - * ( ) 2 , ( 22 
)
when one specimen strain level is considered and

( ) = ∑ =1 ⎡ ⎢ ⎢ ⎣ 1 ( ) 2 ∑ =1 ∑ =1 ( , ) ⋅ * ( ) ( , ) - * ( ) ( ) 2 ⎤ ⎥ ⎥ ⎦ , ( 23 
)
when several specimen strain levels are considered. In Eqs.( 22) and ( 23), ( ) denotes the mean internal virtual work IVW obtained from the virtual fields corresponding to the ℎ parameter, which is expressed as follows

( ) ( ) = ∑ =1 ( , ) ⋅ * ( ) ( , ) . ( 24 
)
In Eq. ( 24), the first Piola-Kirchhoff stress tensor is evaluated by using the set of reference values for the constitutive parameters. In the identification procedure, the number of images considered (i.e.

) strongly depends on the dependence of the stress upon the constitutive parameters. In general, a large distribution of the global stretch is needed in order to successfully perform the identification. Therefore, a heterogeneous experiment is needed.

EXPERIMENTS

The aim of this section is to present the experimental setup and to briefly recall the main characteristics of the DIC measurement system used in this study.

Material and specimen geometry

The material used in this study is a carbon black filled natural rubber. The specimen is shown in Figure 1. It is a 105 long and 2 thick cruciform specimen with 6 cylindrical ends to avoid slippage in the testing machine grips. A similar specimen geometry was firstly used in [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF] for the characterization of natural rubber. This specimen shape gives various states of strain when an equibiaxial load is applied. The classic states presented previously, namely the UT, the PS and the EQT, are induced as well as various intermediate states of strain. Therefore, the single heterogeneous test used in this study provides an interesting alternative to these multiple homogeneous tests classically used for the identification of hyperelastic constitutive parameters. This procedure gives a complete response of the specimen for the various strain states obtained with a wide distribution of the biaxiality coefficient. 

Loading conditions

The experimental setup is presented in Figure 2. It is composed by a home-made biaxial testing machine and a digital camera. The machine is formed by four independent RCP4-RA6C-I-56P-4-300-P3-M (IAI) electrical actuators controlled by PCON-CA-56P-I-PLP-2-0 controller and four PCON-CA (IAI) position controllers. All these components are controlled by an in-house LabVIEW program. The biaxial testing machine is equipped with two cell loads with a capacity of 1094 , which store the force variation in the two perpendicular directions. In this work, an equibiaxial load was applied to the cruciform specimen. The four independent actuators were linked to have the same movement. This movement is such that the specimen center was motionless during the test. Hence, a reference point was obtained at the center of the specimen with respect to the correlation procedure.

A displacement of 70 was applied to each branch at a loading rate of 150 ∕ for five cycles. This choice was made in order to identify the stabilized behavior of the specimen since the material accommodates during the first cycles [START_REF] Mullins | Softening of rubber by deformation[END_REF]. The maximum applied displacement corresponds to a global stretch3 of 2.33.

Figure 2 Experimental setup

Full-field kinematic measurement

During the mechanical test, images of the specimen surface were stored at a frequency of 5 using an IDS camera equipped with a 55 telecentric objective. The charge-coupled device (CCD) sensor of the camera has 1920 × 1200 joined pixels. The displacement field at the surface of the specimen was determined by using digital image correlation technique. It consists in correlating the grey levels between two different images of a given zone at two different levels of strain [START_REF] Sutton | Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications[END_REF]. Before the test, the specimen was sprayed by a white paint in order to improve the image contrast. Hence, a black and white random grey field was obtained. During the test, the specimen was subjected to a uniform cold lighting thanks to a home-made LED lighting system. This ensures the uniform distribution of the lighting even at the highest strains reached. The correlation process was performed by the SeptD software [START_REF] Vacher | Bidimensional strain measurement using digital images[END_REF], which is dedicated to both finite and small strain domains. Following the recommendation of the DIC guide [START_REF] Jones | A good practices guide for digital image correlation[END_REF], both DIC hardware and analysis parameters are given in tables 1 and 2 respectively. Note that the size of the subset in could vary from one test to another depending on the positioning of the camera and its parameters. Thanks to the symmetry of the test, a rectangular region on one branch of the specimen is sufficient to apply the identification procedure described in Section 2. This choice ensures a trade-off between:

• a large distribution of the loading cases within the ROI,

• a large strain level for each loading case,

• the convergence of the DIC calculation for the chosen ROI during the whole experiment, including the case of large strains.

The rectangular ROI is represented in Figure 3. It corresponds to a zone from the specimen center to the cylinder at the end of its branch. The gauge block shown in Fig. 3 is used for converting pixels to millimeters. The result of the correlation is Figure 3 Region of interest with a 4 pixels step size the displacement field over the ROI at each data point. Strain and displacement gradient tensors fields are then derived from these displacement fields. The displacement fields obtained from the correlation process were stored by the SeptD software as two matrices whose components correspond to each data point of the ROI. Due to the large displacement applied during the experiment, the correlation was not achieved in some subsets (less than 4% of the total number of subsets). The displacement in these subsets was approximated through a polynomial interpolation from all the subsets nearby. The displacement fields are then smoothed using a mean filter in order to reduce the experimental noise, especially where significant gradient occurred. This filter was applied before and after differentiation of the displacement fields in the computation of the displacement gradient tensor. Further details are given in Section 4. 

Camera

RESULTS

In this section, the results of the identification carried out with two procedures, namely the sensitivity-based and the randomlygenerated virtual displacement fields strategies, are highlighted. A comparison between the force obtained experimentally and from finite element simulations using the identified constitutive parameters is used to assess the efficiency of each procedure.

Experimental displacement fields

The displacement field obtained for a global stretch of 2.33 with the SeptD software is given in Figure 4. Note that the dark blue zones in the two maps correspond to the subsets where correlation could not be successfully performed. Results of the displacement fields smoothed by the procedure described above are reported in Figure 5. The displacement gradient fields were obtained from the displacement fields by classic differentiation with respect to the spatial coordinates. First, the displacement fields were interpolated over the whole subset using the displacement of the four nodes defining the corners by the following expression ( ,

) = ⋅ + ⋅ + ⋅ ⋅ + ( , ) = ⋅ + ⋅ + ⋅ ⋅ + ℎ . ( 25 
)
The displacement gradient tensor was then deduced from Eq. ( 25). Thus

= + ⋅ + ⋅ + ⋅ + ⋅ . ( 26 
)
Note that the eight constants ⋯ ℎ in Eqs. ( 25) and ( 26) are different from one subset to another. They are obtained by inverting the linear system of eight equations arising from Eq. ( 25). The displacement gradient fields are presented in Figure 6. These data were smoothed using the same filter as that used for the displacement fields. The distribution of the loading cases and the maximum principal stretches are reported in Figures 7(a) and 7(b), respectively. Fig. 7(a) highlights that the ROI chosen in this work contains a wide range of biaxiality coefficient defined by log min max . Indeed, it covers all loading cases lying between EQT and UT. Furthermore, a wide distribution of loading cases is observed in the ROI chosen (i.e. the points in the ( 1 , 2 ) plane cover a significant range). Figure 8 illustrates this distribution, in which both invariants 1 and 2 were plotted for the classic UT, PS and EQT loading cases, as well as for the present experimental results. Note that this distribution is given for the maximum applied displacement. For lowest applied displacements, the points in Fig. 8 are located from the origin of the ( 1 , 2 ) plane ( 1 = 2 = 3) to the distribution corresponding to the maximum applied displacement. This means that the maximum principal stretch distribution is large enough whatever the loading case considered. The maximum value of the principal stretch reaches 3 in the UT zone for the maximum value of the displacement equal to 70 . This value is large enough for activating the stress hardening phenomenon. Among the models considered in this study, this phenomenon is only described by the second-order Ogden model. The other two models can be therefore suitable for describing the behavior of the material up to a strain level corresponding to the occurrence of the stress hardening. The data obtained experimentally were used in the identification of the constitutive parameters for randomly-generated and sensitivity-based virtual displacement fields. 

Identification from randomly-generated virtual fields

The identification procedure described in section 2.3.1 was applied herein for the determination of the hyperelastic constitutive parameters. As described above, the virtual displacement was randomly generated at the nodes of the correlation grid (data points). Then, the virtual displacement field at any point was obtained by interpolating the nodal displacements. For the Mooney model, the virtual displacement fields were chosen in such a way that the conditioning of the matrix in Eq. ( 12) was above The two virtual displacement fields used in the identification of the Mooney parameters are presented. For the Ogden model, no criterion was found for the choice of the virtual displacement fields in Figure 9. Hence, a set of 100 virtual displacement fields was randomly generated and used in the identification procedure, (i.e. the 100 randomly-generated virtual displacement fields were used in the cost-function of Eq. 16). Note that for both models, the identification procedure was performed several times in order to obtain an objective criterion which could assess the efficiency of the method. Furthermore, the initial values for the fminsearch function (denoted 0 ) were set to the reference ( ), minimum ( ) and maximum ( ) values reported 4. The parameters identified using this approach are reported in Table 3. The parameters for the three models appear to be in good agreement with the values found in the literature for natural rubber, (see [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF]). However, no significant change on the ability of the identified parameters to predict the mechanical response has been found for this model. This is due to the non-linearity of the stress upon the constitutive parameters for this model which led to the lack of an objective criterion in the choice of the virtual fields. The final values of the objective function for the Ogden models were 0.42 and 0.20 for the first and second orders, respectively.

Identification from sensitivity-based virtual fields

The identification procedure presented in section 2.3.2 was then used to obtain the hyperelastic constitutive parameters from the same test data. First, a virtual mesh had to be generated (it can be different from the correlation grid). Then, the virtual fields were generated proportionally to the stress sensitivity fields. The reference values for the parameters used in this work are given in Table 4. These values are found in the literature for similar materials, see [START_REF] Marckmann | Comparison of hyperelastic models for rubber-like materials[END_REF]. As an example, the two virtual fields used with the Mooney model are shown in Figure 10, where * (1)

1 , .., * (2) 
2 designate the components of the two sensitivity-based virtual 26) displacement fields 4 . The values of the identified parameters are given in Table 5. Contrary to results obtained with randomlygenerated virtual fields, the identified parameters for all the models considered are in good agreement with the reference values of a natural rubber. The identification took in average about 75 seconds for each model. Note that the parameters reported in Table 5 are obtained for several simulations with different sensitivity parameters, i.e. with different virtual fields. Furthermore, the mean parameter values used in the generation of the sensitivity-based virtual displacement fields do not affect the final result of the identification. In fact, the mean values for each parameter could change within the reference range without affecting the final result of the identification. For the Ogden model, the mean least squared error (the value of the objective function of Eq. 23 at the end of the identification procedure) is about 1.5 10 -5 and 2.5 10 -6 for the first and the second orders, respectively. This values are negligible compared to the ones obtained with randomly-generated virtual fields reported in the previous section.

Comparison of the results

To evaluate the accuracy of the identified parameters, the biaxial experiment used in this work was simulated using Abaqus software for a plane stress problem using the parameters reported in Tables 3 and5. The finite element model is presented in Figure 11. The element type used was the CPS4 element, which is a four-noded bilinear plane stress quadrilateral. The four edges of the cruciform specimen were subjected to a tension displacement of 70 each. The displacement was blocked in the transverse direction along the edges of the specimen. For each set of parameters, the resulting force in every branch was compared to the experimental force obtained during the experiment. It is worth noting that the force was measured in the two perpendicular directions. Since the loading was symmetric, only one load cell was used in each direction. The results of the comparison are shown in Figure 12, in which SBVF and RVF refer to sensitivity-based virtual fields and randomly-generated virtual fields, respectively. For the RVF method, the Mooney model appears to fairly predict the response for a global stretch up to 2, which is just before the inflection point of the force-displacement curve. This is the usual validity range for the Mooney model. On the other hand, both Ogden models either underestimated or overestimated the force in the branch for the whole test and the different initial values for the fminsearch function. This is due to the procedure for the choice of the virtual displacement fields, which were randomly generated in this case. With this approach, no criterion was found in their selection for the Ogden model. For the SBVF method, the Mooney model also correctly predicted the experimental force for a global stretch up to 2.

Better results were obtained with the first-order Ogden model for a wider strain range, corresponding to a global stretch up to 2.15. The results given by these two models were very satisfactory since they do not take into account the stress hardening phenomenon. The second-order Ogden model predicts very well the experimental force for the whole test. Especially, the stresshardening phenomenon, which is observed by the inflection point in the experimental force curve for a global stretch around 2.15. Such a result could not be obtained with the RVF method. This shows the good ability of the SBVF method to generate optimized virtual displacement fields for hyperelastic behavior. For the Ogden model, only four loading levels were considered in the identification procedure. They corresponded to an applied 

GENERALIZATION CAPABILITY OF THE IDENTIFICATION PROCEDURE

The section aims at evaluating the generalization capability of the proposed methodology by characterizing other hyperelastic materials. In order to illustrate the potential of the methodology, four hyperelastic materials that differ significantly in stiffness and stress hardening have been considered. They are denoted by M1, M2, M3 and M4. As in the previous section, the accuracy of the identified parameters is highlighted the fact that these parameters enable us to correctly predict the force measured during the test. Figure 13 shows these results. It can be concluded that, regardless of the load level obtained with the material and the amount of the stress hardening, the SBVF is a well suitable method to generate virtual displacement fields for hyperelastic models

CONCLUSION

In this work, the VFM was applied in order to identify the constitutive parameters of two hyperelastic models. Two methods were employed for the generation of the virtual displacement fields. The first method consisted in randomly generating the virtual displacement at all nodes of the correlation grid. Then, the virtual displacement was interpolated around every point using a finite element formulation. The second method is based on the sensitivity of the stress fields to changes of the constitutive parameters. The virtual displacement fields were then computed from the stress sensitivity fields following a finite element formulation. A sufficient number of virtual fields was generated to be used in the identification procedure. Two hyperelastic models were investigated in this work: the Mooney model and two orders of the Ogden model. For the Mooney model, good results were found using both the RVF and the SBVF methods in the corresponding valid deformation range. Indeed, for both methods, the force in the branch of the cruciform specimen obtained from numerical simulations using identified parameters was very close to the experimental force for a global stretch up to 2. For the Ogden model, the RVF method did not give good results for both the first and the second orders. The parameters did not accurately predict the experimental response of the specimen. On the other hand, the parameters obtained from the SBVF method were in good agreement with the experimental results in terms of the force in the cruciform branches. Furthermore, the stress hardening phenomenon was well described with the parameters identified for the second-order Ogden model. As in the experiments, the inflection point in the force-displacement curve was found around a global stretch of 2.15. Hence, for a global stretch greater than 2.15, the force-displacement curve slope increases significantly. This feature is very important in the design of rubber component undergoing large deformations in industrial applications. Consequently, for the models considered in this work, the SBVF method constitutes a rational procedure for the selection of the virtual fields when applying the VFM in the identification of hyperelastic constitutive parameters. This method could be applied for the identification of other parameters characterizing other physical phenomena observed for rubber materials such as viscoelasticity, Mullins effect or Payne effect. To this end, an adaptation of the method has to be done with respect to the loading conditions as well as the numerical implementation of the method. This will be the subject of future work. 
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 8 Figure 8 Loading states distributions over the ROI for a global stretch = 2.33, each point in the graph corresponds to a data point in the ROI
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 5111213A1A2 Figure 11 Finite element model for the simulation of the biaxial experiment

  

Table 2

 2 DIC Analysis parameters
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Table 3

 3 Identified hyperelastic constitutive parameters using randomly-generated virtual displacement fields

			-3	-	-
	Ogden 1	1	0.38	0.29	0.36
		1	2.39	2.85	2.31
	Ogden 2	1	0.073	0.378	0.145
		1	2	1.34	2.76
		2	0.375	0.24	0.227
		2	1.99	1.34	2.77
	Model	Parameter Reference	Max	Min
	Mooney	1	0.4	1	0.1
		2	0.04	0.1	0.01
	Ogden 1	1	0.768	0.84	0.68
		1	1.26	1.63	0.8
	Ogden 2	1	0.114	0.81	1.4 10 -4
		1	7.297	11.94	1.58
		2	0.772	1.6	-9.6 10 -3
		2	-0.295	1.31	-7.81

Table 4

 4 Reference values for the constitutive parameters displacement of 17.5, 35, 52.5 and 70. Moreover, the identification was carried out with the fourth loading, for which the Mullins effect was eliminated.

It should be noted that the EQT can be compared to the uniaxial compression (UC)[START_REF] Treloar | The physics of rubber elasticity[END_REF] 

chosen here to be the undeformed configuration

the ratio between the current and the initial lengths of the specimen in a given direction

These displacement fields are reported in Appendix A for the other two models.
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