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Inverse-PageRank-Particle Swarm Optimisation for inverse identification 

of hyperelastic models: a feasibility study 

G. Bastos · L. Sales · N. Di Cesare · A. Tayeb · J.-B. Le Cam1

Abstract 

 In this study, the Finite Element Model Updating (FEMU) technique is used in order to identify hyperelastic 

parameters from only one heterogeneous test. A residual considering measured and identified stretches as well as 

the global reaction force of the specimen is built. The originality of this paper is to investigate the feasibility of the 

resolution of this minimisation problem by using the Inverse-PageRank-Particle Swarm Optimisation (PSO) for 

identifying hyperelastic parameters. For that purpose, the so-called PSO technique has been enriched with a 

PageRank algorithm to adapt iteratively the PSO parameters. As the paper examines whether Inverse-PageRank-

PSO is adapted or not to the minimisation of the objective function in the present case, only two basic hyperelastic 

models have been considered. 

Keywords Inverse identification · hyperelasticity · FEMU · Particle Swarm Optimisation · Rubber · 

Heterogeneous test · Digital image correlation 

Introduction 

Hyperelasticity is widely used to predict the mechanical response of soft materials under large strains, for instance 

tissues [26, 8, 9], laminates [25, 1] and membranes [36]. Hyperelastic models are generally identified from several 

homogeneous tests, see [5] and [38] for instance, since the values of their constitutive parameters strongly depend 

on the strain state [44]. Three homogeneous tests are classically considered, namely the uniaxial tension (UT), the 

pure shear (PS) and the equibiaxial tension (EQT), to completely describe the domain of possible loading paths 

[45,48]. A trade-off between the sets of values obtained with the different tests has therefore to be found to obtain 

parameters that can reasonably be considered as intrinsic to the mechanical behaviour of the material. As explained 

in [10], such identification approach has many disadvantages: 

⁻ each of the tests carried out are assumed to induce a homogeneous strain state, which is a strong 

assumption in case of PS and EQT tests, 

- several specimen geometries are required,

- several testing devices are needed to apply these loading conditions,

- dispersion obtained for each test requires testing several specimens for each loading condition,

- the comparison between the constitutive parameters identified from different loadings is a matter of

debate,

- the elaboration process may differ from one specimen geometry to another one (typically compression

moulding versus injection moulding).

This can have a significant effect on the values of the identified constitutive parameters and therefore on the 

predicted mechanical response. An alternative method consists in performing only one heterogeneous test as long 

as the strain/stress fields are sufficiently heterogeneous. This is typically the case when a multiaxial loading is 

applied to a 3-branch [16] or a 4-branch (cruciform) [37] specimen, which induces a large number of strain/stress 

states at the specimen’s surface. This approach was also explored in Johlitz and Diebels [20], Sasso et al. [39] and 

Seibert et al. [41]. Such tests are all the more interesting that the full kinematic field can be measured and used to 

enrich the identification process. As no analytical relationship is available between measurements and parameters 

to be identified, an inverse identification procedure has to be used. 

In the present paper, the identification is carried out with the Finite Element Model Updating (FEMU) 

technique. A residual considering measured and identified stretches as well as the global reaction force of the 

specimen is built. As this type of heterogeneous tests can be used to identify more complex behaviours, also 
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governed by viscosity, permanent set and softening, to name a few, the number of parameters to be identified can 

increase drastically and methods such as the Particle Swarm Optimisation (PSO) [22,13,11,42,6,33,46] can be 

envisaged for the resolution of this minimisation problem. 

The main goal of this paper is to investigate the feasibility of using the Inverse-PageRank-Particle Swarm 

Optimisation (I-PR-PSO) and has therefore to be considered as a feasibility study. For that purpose, the so-called 

PSO technique has been enriched with a PageRank algorithm to adapt iteratively the PSO parameters to increase 

the convergence capabilities of the particles as the optimisation calculation is going on. As the paper examines 

whether Inverse-PageRank-PSO is adapted or not to the minimisation of the objective function in the present case, 

only two basic hyperelastic models have been considered. 

The paper is organised as follows. First, the main features of the PSO and the PageRank algorithm used 

are presented. Secondly, a numerical study illustrates the relevance of the approach with a special emphasis on the 

influence of measurement noise on identified parameters. Third, the experimental test corresponding to an 

equibiaxial tensile test is described and the identification results are discussed. Concluding remarks close the paper. 

Inverse identification method 

In this section, the inverse identification of the constitutive parameters is presented. First, the finite element (FE) 

model is described. Secondly, the optimisation strategy carried out with a metaheuristic population based algorithm 

(the PSO algorithm) involving artificial intelligence (the PageRank algorithm) is precisely detailed. Third, the 

methodology is validated with a purely numerical approach. The section closes with a discussion on the effects of 

the measurement noise on the identified parameters.  

FE model 

The geometry chosen is presented in Fig. 1. It is a 105 mm long and 2 mm thick cruciform specimen. Such a 

geometry leads to a strong heterogeneity of the strain fields in terms of both the strain states and the distribution 

of the strain levels for a given strain state (see [37] and [16] for further details).  

Fig. 1 Specimen geometry (dimensions in mm) and FE mesh. It should be noted that with FEMU, a problem is 

often encountered, which is to determine the correct force distribution along the boundary of the specimen. Indeed, 

slippage in the grips inducing heterogeneities in the force distribution cannot be really measured. The problem is 

resolved by adding small cylinders at the end of the four branches of the specimen and by using suitable grips. 

They prevent slipping into the machine’s grips 
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The FE code used is ANSYS APDL. The finite element calculation is performed by assuming plane stress state 

and material incompressibility. For that purpose, the four-noded PLANE182 element is used. The mesh is made 

of 9600 nodes and 9353 elements. It is illustrated in Fig. 1. 

The equibiaxial tensile loading is prescribed by applying the same maximum displacement of 70 mm to the four 

specimen branch ends. The time increment is chosen in such a way that the predicted and measured strain fields 

can be compared at the same prescribed displacements. Seven displacement levels were considered: 11, 21, 31, 

41, 51, 61 and 70 mm. 

Two hyperelastic models were chosen. The first one is the Mooney model [30] and is given by the 

following form of the strain energy density: 

𝑊! = 𝐶"(𝐼" − 3) + 𝐶#(𝐼# − 3)	 (1) 
In Eq. 1, 𝐼" and 𝐼# are respectively the first and second invariants of the right Cauchy-Green strain tensor C. 

They are calculated by considering the material as incompressible (detF = 1). This model predicts quite well the 

nonlinear strain-stress relationship up to a moderate strain, i.e. until a stress hardening leading to an inflection in 

the mechanical response curve is observed at large strains. 

In order to account for the stress hardening effect, the Yeoh model has also been considered [49]. The 

corresponding strain energy density is written as follows: 

𝑊$ = 𝐶"%(𝐼" − 3) + 𝐶#%(𝐼" − 3)# + 𝐶&%(𝐼" − 3)&	 (2)	 
The values of the constitutive parameters to be identified were evolving at each iteration of the optimisation 

process. The value of the incompressibility parameter (𝐾'") was set to 10'( 𝑀𝑃𝑎'" for all the FE calculations 

proceeded, which is low enough to consider the material incompressibility [3]. Note that only one and four 

(equally-spaced) displacement levels are sufficient for the identification of the Mooney and Yeoh models, 

respectively. This has been found from both experimental and generated data considering several combinations of 

the displacement levels considered in the identification. 

Metaheuristic optimisation strategy 

Definition of the objective function 

The optimisation process aims at determining the constitutive parameters for the predicted data to fit the 

experimental ones. Experimental data considered here are the kinematic fields at different displacement levels in 

the specimen’s branches, as well as the reaction force in the branches. Indeed, as the hyperelastic models chosen 

involve a linear relationship between the stress and the constitutive parameters, the kinematic fields can be the 

same for two different sets of constitutive parameters. This is the reason why the force also needs to be considered 

in the objective function calculation. The objective function to be minimised is thus defined as the squared relative 

difference between the experimental (exp) and the numerical (num) data: 
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where N is the number of nodes and k corresponds to the number of strain states (displacement levels applied) 

considered in the optimisation process. 𝜆012(/,,)
 and 𝜆0/6(/,,)

 are the maximum and the minimum in-plane principal 

stretches. 𝐹(/) is the horizontal force measured at the machine horizontal grip. Only one strain field (𝑘 = 1) is 

sufficient to identify the two constitutive parameters of the Mooney model as soon as a sufficient distribution in 

the strain level and the strain state is induced. Since the stress hardening cannot be predicted by the Mooney model, 

the corresponding displacement fields were not used within the identification procedure. For the Yeoh model, all 

the strain fields are used, obtained at different displacement levels, to activate the three constitutive parameters 

and therefore to be able to take the inflection point into account, corresponding to a stress hardening in the stress-

strain curve. 

1.1.1. Classical Particle Swarm Optimisation algorithm 

The classical Particle Swarm Optimisation (PSO) algorithm is considering particles (initially belonging to a bird 

flock or fish swarm, see for instance [22] for further details) that are each a potential solution to the optimisation 
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problem to solve [40, 34]. These particles are then "flying" through the solution domain, whatever its dimension, 

to converge together to the global minimum by smartly following each other. For that purpose, the particles 

positions, denoted 𝑿, and velocity2, denoted 𝑽, have to be calculated for every particle at each iteration of the

optimisation process. Their movement in the solution domain is obtained by making them follow the best one 

denoted 𝑮789: and the best one from their neighbourhood denoted 𝑷789:. The speed and position of particle m at

iteration 𝑡	 + 	1 are given as:

C𝑽0:;" = 𝜔 × 𝑽0: + 𝑐" × 𝑟𝑎𝑛𝑑" × I𝑷0,789:: −𝑿0: J + 𝑐# × 𝑟𝑎𝑛𝑑# × (𝑮789:: −𝑿0: )𝑿0:;" = 𝑿0: + 𝑽0:;" , (4)
𝑷0,789: is the best particle in particle 𝑚’𝑠 neighborhood, 𝑐" and 𝑐#  are confident parameters that weight the

importance of the neighbourhoods’ memory and the global swarms’ memory, respectively. The inertia weight 𝜔
is weighing the influence of the last iteration’s speed on the calculation of the new one. 𝜔 is then considered as an

inertia imposed to the particle as the calculation is going on. A proper value of 𝜔 can balance the particles’ ability

to (i) explore the solution domain when 𝜔 is large (around 1:2), and (ii) exploit interesting areas of the solution

domain when 𝜔 is small (around 0:4).

The particle’s speed and position have to be constrained for the calculation to converge. The extremal speed of the 

particles is then defined in [−𝑉012; 𝑉012] where 𝑉012 is given as a function of the solution domain, such as 𝑉012 	=	(𝑋012 − 𝑋0/6) = 5	where 𝑋012 and 𝑋0/6 are the boundaries of the solution domain. The neighbourhood of every

particle can be defined as a link to the other particles [23, 28, 29, 4], i.e. the way the particles are influencing each 

other. Some static neighbourhoods have been proposed in the literature [23], such as the Global Best (GBEST) 

topology, in which every particle is influenced by all the others, and the Local Best (LBEST) topology, in which 

every particle is linked and influenced by two of its peers. Moreover, some dynamic particles topologies have been 

proposed in the literature [2,19,35,43,18], in which the way the particles are linked is evolving as the calculation 

is going on. 

 Inverse-PageRank-PSO 

The Inverse-PageRank-PSO algorithm used in this work is based on both the PSO and the PageRank algorithm 

used by the world-famous search engine Google [7,15, 24]. In this strategy the population’s topology is based on 

the GBEST one, but the links between all the particles are weighed regarding their fitness i.e. their instant 

capability to converge to the global minimum of the considered objective function. This means that the closest 

particles to the littlest minimum found so far have a greater influence on the others than the distant ones. As 

demonstrated in [12], the particles topology can be seen as an oriented graph, in which the particles are the nodes, 

and the links between them represent the influence of the particles on each other. As these weights are not 

depending on the past, this oriented graph can be seen as a Markov chain, in which the transition probabilities are 

the probabilities for a particle to follow one or the other of its peers. To calculate the weighted influence of every 

particle on the others, an inverse version of the PageRank algorithm is used. The PageRank algorithm is used by 

the search engine Google to rank the webpages when a search is formulated: the more the links going in a webpage, 

the higher the rank of this webpage. The aim here is to do the opposite, which is to deduce the probability 

transitions of the Markov chain by considering the PageRank, i.e. the steady-state of the Markov chain, as known. 

Each particle performance fitness (𝑷0) is compared to the best one 𝑮789: and transformed into a transition

probability in the PageRank vector π as follows: 

𝝅:1<=8:> (1,𝑚) = U 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑮789:) × 100𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑮789:) − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑷0) + 𝜖U∀	𝑚 ∈ [1, 𝑝] (5)
where p is the number of particles in the swarm and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑿) is the objective function value calculated for

particle 𝑿, previously defined in Eq. 3. Then, a pseudo-random process called inverse PageRank is used to

calculate the transition probability matrix 𝑪 corresponding to the previous 𝝅 vector. In the final converged

connectivity matrix, the elements of row 𝑟 are relative to the links going out of node 𝑟, while the elements of

column 𝑐 are relative to the links going into node 𝑐. The components of matrix 𝑪 are then considered as the

influence of all the particles on the others, that is the probability for each of them to follow every other one. In this 

2 called "the velocity" in the literature, this parameter actually represents the particles displacement in the solution 

domain 
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way, the best particles - that is the ones obtaining the littlest values of the objective function - obtain the greatest 

values in 𝝅 and in 𝑪 as well. This inverse PageRank process is launched at every iteration of the optimisation

process, for the particles topology to be smartly evolving and adapting to the swarm’s performance as the 

calculation is going on. The neighbourhood part of Eq. 4 is then modified, weighing the influence of all the particles 

by using the components of 𝑪, as follows:

]𝑽/:;" = 𝜔 × 𝑽/: + 𝑐" × 𝑟𝑎𝑛𝑑" × I𝑷/,789:: −𝑿/:J + 𝑐# × 𝑟𝑎𝑛𝑑# ×^ 𝑪/,6

,-"

× _𝑷/,789::;" −𝑿/:`
𝑿/:;" = 𝑿/: + 𝑽/:;" . (6)

In this work, every particle will be a vector containing as much variables as the model contains parameters to be 

identified, and the objective function defined in Eq. 3 will be calculated for each of them. In the present study, the 

authors have made their own algorithm, coded with Matlab software [27]. 

Numerical validation 

In this section, the inverse identification methodology proposed is applied to data obtained from FE simulations 

of the biaxial test previously defined in 2.1 with a given set of constitutive parameters for both the Mooney and 

Yeoh models. The constitutive parameters used are reported in Table 1. The research domains for each constitutive 

parameter to be retrieved are reported in Table 2. Note that 𝐶#% is imposed to be negative for the Yeoh model, in

order to fairly predict the shear modulus for all ranges of strain as explained in [49]. The stability criterion defined 

by Drucker [14] is used within the FE code ANSYS APDL in order to ensure the behaviour law stability. If the 

energy density is unstable, then the FE simulation will not converge. In this case, a large value of the objective 

function is affected (10? typically). Therefore, this research domain area will not be considered as a promising

zone to be exploited by the PSO particles in the next iterations of the optimisation process. The objective here is 

to retrieve the values of the constitutive parameters for the two hyperelastic models, which predict the mechanical 

response of the cruciform specimen. As above mentioned, the kinematic fields used in the identification procedure 

are the maximum and minimum in-plane principal stretches. 

Mooney Yeoh 𝐶" MPa 0.4 - 𝐶# MPa 0.04 - 𝐶"% MPa - 0.5 𝐶#% MPa - -0.02 𝐶&% MPa - 0.005 

Table 1 Reference Constitutive parameters 

Min Max 𝐶" MPa 0.1 1 𝐶# MPa 0.01 0.1 𝐶"% MPa 0.1 1 𝐶#% MPa -0.04 0 𝐶&% MPa 0.001 0.01 

Table 2 Research domains for the constitutive parameters

The distribution of the maximal principal stretch for a displacement of 70 mm is reported in Fig. 2a. It lies between 

1.8 for equibiaxial tension state and 3.2 for uniaxial tension. The heterogeneity is enough for the identification to 

be carried out. This is in a good agreement with the conclusion previously drawn for such a test in [37]. 

In order to account for experimental measurements, the stability of the identification procedure to 

measurement uncertainties is examined by adding three amplitude noise levels 𝑁𝑜𝑖𝑠𝑒@0A of 0.01, 0.05 and 0.1 to

the numerical principle stretches fields, which are dimensionless quantities. This noise was generated by using 

Matlab function 𝑟𝑎𝑛𝑑𝑛. It should be noted that noise in real camera sensors is signal-dependent (or

heteroscedastic) and that a uniform (or homoscedastic) noise is considered here instead for the sake of simplicity, 

as in similar studies dealing with identification [37]. 

The noised numerical data are reported in Figs 2b, 2c and 2d for 0.01, 0.05 and 0.1 noise amplitudes,

respectively. It should be noted that the maximum error caused by the noise introduced to the numerical data can 

exceed 11% from its original value. This error is greater than the correlation error calculated in Section 3.1. The
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identification methodology was applied to identify the constitutive parameters for both Mooney and Yeoh models 

by considering the three noise levels for each of them. 

 
(a) Numerical data 

 
(b) 𝑁𝑜𝑖𝑠𝑒@0A = 0.01 

 
(c) 𝑁𝑜𝑖𝑠𝑒@0A = 0.05 

 
(d) 𝑁𝑜𝑖𝑠𝑒@0A = 0.1 

Fig. 2 Maximal principal stretch fields for a displacement equal to 70	𝑚𝑚: numerical and noised data 

Identification results for the Mooney model 

Given that the Mooney model is not able to describe the hardening phenomenon, a maximum displacement of 51	𝑚𝑚	is considered for the identification procedure. This value corresponds to the appearance of the inflection 

point in the experimental force-displacement curve. Only one strain state (𝑘	 = 	1 in Eq. 3) corresponding to the 

maximum displacement applied is considered for the identification. It should be noted that no post-processing is 

needed for the numerical data since the kinematic fields were obtained from the same Ansys FE model. The 

identified parameters from reference and noised numerical data are reported in Table 3. The first parameter 𝐶" is 

fairly identified since the relative error is inferior to 3	% for the reference and noised data. However, the second 

parameter was not fairly retrieved from the noised data. This is due to its greater sensitivity to noise as it is not 

sufficiently activated at this displacement level, which was also seen in [37]. Moreover, following the formulation 

of the Mooney model, this error is not as significant as it seems because the first parameter has a greater 

contribution to the strain energy density of Eq. 1 than the second one. This is due to its association with the second 

invariant 𝐼#, which needs a larger EQT zone to enhance its contribution to the global response of the material. The 

overall veracity of the identification procedure is seen in the values of the force error and the objective function 

values. Fig. 3 illustrates the accuracy of the identified parameters from the force response of the cruciform 

specimen during the biaxial test. 
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Fig 3 Force response versus displacement for parameters of Table 3 (Mooney model) 

𝑁𝑜𝑖𝑠𝑒@0A 0 0.01 0.05 0.1 𝐶" MPa 

Error 

0.4014 0.35	% 

0.3902 −2.4	% 

0.3892 −2.7	% 

0.3944 −1.4	% 𝐶# MPa 

Error 

0.0377 −5.7	% 

0.0563 40.75	% 

0.0579 44.75	% 

0.0491 22.75	% 

Force error (N) 3.4	10'? 5.39	10'( 8.4	10'( 1.4	10'( 

Objective function 1.16	10'B 2.9	10'B 7.1	10'B 2	10'"% 

Table 3 Identification results for Mooney model 

Identification results for the Yeoh model 

For the Yeoh model, four strain states corresponding to a prescribed displacement of 11	mm, 31	mm, 51	mm and 70	mm (𝑘	 = 	4 in Eq. 3) were used in the identification of the constitutive parameters. These several strain states 

are necessary to account for the inflection point in the force-displacement curve3. The identified parameters from 

the reference and noised numerical data are reported in Table 4. These parameters show the capacity of the 

identification procedure to retrieve the constitutive parameters even from noised data. This is also shown in terms 

of the value of the final force error, which lies between 10'? and 10'# and the final objective function values, 

which lies from 10'C to 10'" for all the analysed data. Furthermore, the evolution of the force during the biaxial 

test is well predicted, especially the inflection point in the force-displacement curve2. This is shown in Fig. 4. As 

a conclusion, for the two models under consideration, the identification procedure showed its relevancy even when 

the kinematic fields are strongly noised. This methodology is applied to experimental data in the next section. 

 
3 Note that in this case, the mechanical behavior is fully described by the Yeoh model, which is not necessarily the 

case when dealing with experimental force-displacement curve. Thus, other intermediate strain states, i.e. strain 

states that would not be homogeneously distributed during the test, can be used in the identification procedure. 
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Fig. 4 Force response versus displacement for parameters of Table 4 (Yeoh model) 

𝑁𝑜𝑖𝑠𝑒@0A 0 0.01 0.05 0.1 𝐶"% MPa 

Error 

0.502 0.4	% 

0.4997 −0.06	% 

0.5004 0.08	% 

0.5034 0.68	% 𝐶#% MPa 

Error 

−0.0201 −0.5	% 

−0.0195 2.5	% 

−0.0198 1	% 

−0.0203 −1.5	% 𝐶&% MPa 

Error 

0.00496 −0.8	% 

0.00494 −1.2	% 

0.00497 −0.6	% 

0.0048 −4	% 

Force error (N) 2.6	10'& 9.2	10'? 1.14	10'& 1	10'# 

Objective function 3.37	10'( 5.4	10'C 6	10'C 4.67	10'" 

Table 4 Identification results for Yeoh model 

Application to experimental data 

In the previous part, the methodology has been successfully applied to numerical data. It was shown how much 

noise effect influences the identification methodology. The result obtained clearly shows that the methodology is 

well suitable for identifying constitutive parameters from experimental, i.e. noisy, kinematic fields, which is the 

aim of the present section.  

 

Fig. 5 Experimental setup 
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Fig. 5 presents an overview of the experimental setup. It consists in a home-made biaxial testing machine 

and an optical camera. The machine is composed of four independent electrical actuators, controlled by an inhouse 

LabVIEW program. Two load cells, whose capacity is equal to 1000	𝑁, measure the force in the two perpendicular 

directions. In the present study, four equibiaxial load-unload cycles were prescribed in terms of grip displacement. 

The displacement and the loading rate were set at 70	mm and 150	mm/min respectively for each of them. 

Full kinematic field measurement  

Images of the specimen surface were stored at increasing displacement of the grips at a frequency equal to 5 Hz, 

which is the lowest frequency allowed by the current experimental setup, with an IDS camera equipped with a 55 

mm telecentric objective. The charge-coupled device (CCD) of the camera has 1.920	 × 	1.200 joined pixels. The 

displacement field at the specimen surface was determined by using the DIC technique. It consists in correlating 

the grey levels between two different images of a given zone, each image corresponding to a different strain state. 

DIC hardware and analysis parameters are reported in Tables 5 and 6, respectively, such as recommended in the 

guideline [21]. In order to improve the image contrast, a white paint was sprayed on the specimen surface before 

the test, which led to a random speckle with a feature pattern of about 6 pixels approximatively. A uniform cold 

lighting at the specimen surface was ensured by a home-made LED lighting system. DIC was performed using 

SeptD [47]. The parameters used for the DIC are reported in Table 6. Namely, the smallest distance between two 

independent points, also referred to as the step size, was equal to 4 pixels (here the size of the zones of interest 

(ZOIs)) corresponding to 289.6	µ𝑚. The Region Of Interest (ROI) used to compute the displacement field with 

the DIC technique is depicted in Fig. 6. It corresponds to an area of 384 × 680 pixels. The displacements and 

strains noisefloors reported in Table 6 were obtained by performing the DIC using static images i.e. before 

application of the mechanical loading. Note that these values present the standard deviation of the displacement 

and strain fields over the ROI. These are the typical values for a good DIC performance, see [21] for further details. 

Given that the applied displacement and strains are large, the strain formulation used in this work is the logarithmic 

one, which is recommended for the finite strain framework [17]. 

It should finally be noted that the strain measurement used here is the maximum and minimum in-plane 

principal stretches of the transformation gradient tensor F, denoted 𝜆012	and 𝜆0/6	 respectively. 

Camera  

Image Resolution 

Lens  

 

 

 

Aperture 

Field-of-View 

Image Scale 

Stand-off Distance 

Image Acquisition Rate  

Patterning Technique 

Pattern Feature Size (Approximation) 

IDS UI-3160CP Rev. 2 

1920 x 1200 pixels2 

55 mm C-mount partially telecentric. 

Constant magnification over a range of working 

distances 

±12.5 mm of object movement before 1% 

error image scale occurs 

f/5.6 

139.4 x 87.1 mm 

14 pixels/mm 

1100 mm 

5 Hz 

White spray on black specimen  

6 pixels 

Table 5 DIC Hardware parameters 
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Fig. 6 Region of Interest (ROI) 

 

DIC software 

Image Filtering 

Subset Size 

Step Size 

Subset Shape Function 

Matching Criterion 

Interpolant 

Strain Window 

Virtual Strain Gauge Size 

Strain Formulation 

Post-Filtering of Strains 

Displacement Noise-Floor 

Strain Noise-Floor 

7D©  

None 

20 pixels/1.45 mm 

4 pixels/ 0.29 mm 

Affine 

Normalised Cross Correlation 

Bi-cubic 

5 data points 

36 pixels/2.62 mm 

Logarithmic  

None  

0.036 pixels/2.6 µm 

6.1 mm/m 

Table 6 DIC Analysis parameters   

Kinematic fields processing 

As the data point coordinates of experimental and numerical fields did not coincide, the experimental kinematic 

fields were fitted locally by polynomial functions. When the stretch fields obtained by the DIC technique exhibited 

uncorrelated zones, the values in these zones were interpolated from surrounding ZOIs and then fitted by the 

polynomial functions. This post-processing step reduces the noise effect, without altering the signal, as no strong 

strain gradients are induced under such loading conditions. The polynomial fit was carried out at the local scale, 

i.e. for every point in the ROI, by considering the 6 closest points to calculate the 6 coefficients of the second-

order polynomial used. The experimental data were replaced by the polynomial functions in the objective function 

calculation, for the errors to be calculated at exactly the same coordinates. 

Results and discussion  

In this section, the experimental data are first given; the mechanical response, the kinematic field measurement 

and post-processing and the results of the identification methodology proposed are highlighted. 
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Mechanical response 

Fig. 7 gives the experimental mechanical response obtained in terms of the force in the horizontal direction versus 

the displacement applied for each specimen branch. The force used in the identification procedure is the one 

obtained during the fourth load (plotted in red colour Fig. 7). This choice was made to identify the stabilised 

behaviour of the specimen, since the material accommodates during the first cycles [31]. It should be noted that 

the accommodation level is different from one point to another in the specimen. Therefore, the identification is 

done in the case of an accommodated structure. As above-mentioned, the curve exhibits a strong non-linearity that 

is amplified at the largest displacement applied due to the hardening effect. An inflection point is indeed observed 

at a prescribed displacement of 50	mm. 

 

Figure 7: Mechanical response in terms of the horizontal force versus the displacement applied 

1.2. Kinematic field measurement and post-processing 

Fig. 8 illustrates the distribution of the images considered to determine the strain fields. 8 images are used to 

determine 7 strain fields at increasing displacement. The first image is the reference one, which corresponds to the 

undeformed state. The DIC process was carried out iteratively. The correlation is first done between two successive 

images and the strain field is then built with respect to the undeformed state. In the case of the Mooney model, the 

inflection in the mechanical response curve is not predicted. Only one image before the inflection point (Image 

#6, corresponding to a displacement equal to 51	𝑚𝑚 applied to each branch) was required for the identification of 

the two constitutive parameters. In the case of the Yeoh model, several images are considered to account for the 

hardening up to a displacement equal to 70	𝑚𝑚 at the branch end. Fig. 9 gives the fields of maximum and 

minimum (Figs. 9a and 9c respectively) principal in-plane stretches for a displacement of 51 mm. In these fields, 

the values in uncorrelated zones (white ZOIs in the measured fields) are first interpolated from surrounding ZOIs 

and then fitted by the polynomial functions as previously described in Section 3.2. The obtained fields are given 

in Figs. 9b and 9d respectively. 

 Fig. 10 provides the same fields as in Fig. 9, but for a displacement equal to 70 mm, which was the 

maximum displacement applied during the test. In order to evaluate the relevancy of the experimental data post-

processing, the differences between the kinematic fields obtained with the DIC technique and the polynomial-

based functions are calculated for every point in the ROI. The calculations were performed for displacements equal 

to 51	𝑚𝑚 and 70	𝑚𝑚. For a displacement equal to 51	𝑚𝑚, 98.51	% of the points in the ROI exhibit an error 

inferior to 1% for the maximal stretch and 97.52	% of the points in the ROI exhibit an error inferior to 1	% for 

the minimal stretch. The results are better for the largest displacement (70	𝑚𝑚): all the points exhibit an error 

inferior to 1	%. 
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Fig 8 8 images are considered to determine the 7 strain fields during the test 

(a) 𝜆012 measured (b) 𝜆012 interpolated

(c) 𝜆0/6 measured (d) 𝜆0/6 interpolated

Fig. 9 Principal stretch fields for a displacement equal to 51	𝑚𝑚
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(a) 𝜆012 measured 

 
(b) 𝜆012 interpolated 

 
(c) 𝜆0/6 measured 

 
(d) 𝜆0/6 interpolated 

Fig. 10 Principal stretch fields for a displacement equal to 70	mm 

1.3. Inverse identification 

The FE simulation was launched according to the procedure given in Section 2.1. The images and principal stretch 

fields were processed as described in Section 3.2. The optimisation process to carry out the inverse identification 

consists in minimizing the objective function presented in Section 2.2.1 by changing the constitutive parameter 

values chosen by the I-PR-PSO algorithm detailed in Sections 2.2.2 and 2.2.3. Concerning the I-PR-PSO algorithm 

parameters, as the particles speeds and positions have to be constrained for the calculation to converge, the 

extremum values of the domains and speed imposed are given in Table 7. 

Mooney 

Research domain Speed limits 

 min max  min max 𝐶" MPa 0 1 𝐶" MPa -0.5 0.5 𝐶# MPa 0 0.1 𝐶# MPa -0.05 0.05 

Yeoh 

Research domain Speed limits 

 min max  min max 𝐶"% MPa 0.1 1 𝐶"% MPa -0.105 0.105 𝐶#% MPa -0.035 0 𝐶#% MPa -0.003 0.003 𝐶&% MPa 0.001 0.01 𝐶&% MPa -0.00025 0.00025 

Table 7 Research domains 

Optimisation algorithm parameters are given in Table 8. The inertia of the particles has been chosen to be linearly 

decreasing as the calculation is going on, to encourage the particles to explore the design domain at the beginning 

of the calculation, and to focus on interesting areas of the domain at the end of the calculation. Fig. 11 gives the 

convergence curves of the optimisation calculations for the two models. The values of the optimised objective 

function and design variables are given in Table 9. The errors between the experimental and numerical values of 

the principal stretches for every point of the ROI are depicted in Fig. 12 and 13 for the Mooney and the Yeoh 
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model, respectively4. We recall here that several strain states were necessary to identify the parameters for the 

Yeoh model. Contrarily to what was done in the numerical validation section, the strain states used were not 

homogeneously distributed with respect to the prescribed displacement. As explained previously, the mechanical 

response has not exactly the same shape as the one given by the Yeoh model. It should be noted that several 

possibilities have been tested beforehand. 

Fig. 11 Convergence curves of the optimisation processes 

Mooney Yeoh 

Iterations 50 30 

Particles 15 20 𝜔 1.2 − 0.4 1.2 − 0.4
Table 8 Optimisation parameters 

For the Mooney model, the maximal stretch field was fairly retrieved since 92.25	% of the points in the ROI

exhibit an error inferior to 3%, whereas for the minimal stretch, over 90	% of the points have an error inferior to5	%. But this deviation has no significant effect on the global response as it is seen in Fig. 14. For the Yeoh model,

both maximal and minimal stretches were fairly retrieved since the error was inferior to 5	% for the whole ROI.

Mooney Yeoh 𝐶" MPa 2.13	10'" - 𝐶# MPa 3.45	10'# - 𝐶"% MPa - 2.7	10'"𝐶#% MPa - −1.1	10'#𝐶&% MPa - 1.2	10'&
Objective function 9.74	10'? 2.85	10'#

Table 9 Results of the optimisation calculation 

4 As the CPU time needed to calculate the objective function strongly depends on the machine used, the CPU time 

needed to converge is not a reliable indicator to evaluate the performances of the proposed methodology. 

Nevertheless, a more relevant information could be the number of calls to the OF calculation. It can be seen in Fig. 

11 that the calculation can be considered as converged after 15 iterations, that is after 225 and 300 calls for the 

objective function calculation, for the Mooney and Yeoh models, respectively. 
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Fig. 12 Mooney model: final results 

 

Fig. 13 Yeoh model: final results 

 The validation of the optimised values of the constitutive parameters is performed by comparing the 

experimental and numerical forces - displacement curves. The mechanical responses measured and predicted are 

given in Fig. 14. For the Mooney model, a good agreement is found for a maximum displacement equal to 51	mm. 

For the Yeoh model, the result was satisfactory for the whole displacement range investigated here, i.e. including 

the inflection in the curve, meaning that the hardening was predicted quite well. This result shows that only one 

deformed state is sufficient to identify the Mooney constitutive parameters and only 4 deformed states for the Yeoh 

model. It should be noted that several combinations were tested for the identification of the Yeoh model. 
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Fig 14 Comparison between optimised numerical results and experimental data 

2.  Conclusion 

In this study, an identification methodology based on the coupling between PSO and FE simulations is proposed 

for determining hyperelastic model parameters from only one heterogeneous tests. A PageRank algorithm is used 

to adapt iteratively the PSO parameters. The mechanical test considered consists in stretching a cross-shaped 

specimen, which induces simultaneously a wide range of strain states, especially the uniaxial tension, the pure 

shear, the equibiaxial tension and many intermediary strain states. The data used for the identification is the 

kinematic fields and the reaction force in one of the specimen’s branches. The identification methodology is first 

benchmarked with a purely numerical approach. Then, it has been successfully applied to experimental data. The 

kinematic field was characterised with the DIC technique. The identified parameters enabled us to satisfactorily 

model the material behaviour. This study provides numerous perspectives as the number of unknown constitutive 

parameters can increase significantly if other phenomena have to be taken into account in the mechanical response 

of rubbers: hysteresis, permanent set, strain-induced anisotropy, strain-induced crystallisation, accommodation 

(the Mullins effect [31]), to name a few. 
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