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Artificial Intelligence (AI) applications are developing at a high rate, facing soon a tremendous energy challenge. In this context, the original Axon-Hillock (AH) Artificial Neuron (AN) has been optimized to achieve ultra-low power (ULP) consumption. The membrane capacitance was taken out, and in order to drastically reduce its power consumption, the (feedback) capacitance is lowered to 5 fF, the transistors gate width is reduced to 120 nm and the supply voltage is decreased to as low as 200 mV. Designed and fabricated using 65 nm CMOS Technology, the refined AH neuron features a standby power of 11 pW, and when excited, a power consumption that does not exceed 30 pW for a firing frequency of 15.6 kHz. Its energy efficiency per spike is lower than 2 fJ / spike when the DC power is included (around 1 fJ / spike excluding the DC power), for an area of 31 µm². These performance confer to this ULP AH neuron a high potential for future development of highly energy efficient Spiking Neural Networks, required to design future neuroprocessors embedded in various applications (smart visual sensors for autonomous vehicles, robotics).

Introduction

Moore's law is reaching its end, which paradoxically may be viewed as an opportunity [START_REF] Waldrop | The chips are down for Moore's law[END_REF]. This motivates to investigate new paradigms particularly to address the energy dissipation challenge for huge AI applications. In this context, spiking neural networks (SNNs) constitute an interesting alternative to process information, in view of providing cognitive characteristics. Hence, the development of high energy efficient artificial neurons and synapses using standard CMOS technology is important. In a previous work [START_REF] Sourikopoulos | A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology[END_REF], we have proposed an AN having an outstanding energy efficiency of few fJ / spike, whose features are very close to the biology, because it constitutes an approximation of biological Morris-Lecar (ML) model. In its simplest version, this ML AN uses only six transistors and two capacitances (Fig. 1). Its performance was basically achieved by applying the following design rules: decreasing as much as possible the supply voltage and the membrane capacitance values. Following this work, we have carefully looked throughout the abundant literature for other CMOS based AN architectures [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF][START_REF] Basu | Nullcline-Based Design of a Silicon Neuron[END_REF][START_REF] Joubert | Hardware spiking neurons design: Analog or digital?[END_REF][START_REF] Cruz-Albrecht | Energy-Efficient Neuron, Synapse and STDP Integrated Circuits[END_REF], to identify which one would possibly be competitive in terms of reducing both the DC power and the energy efficiency against the ML AN. It turned out that the Axon-Hillock (AH) artificial neuron originally proposed by C. Mead [START_REF] Mead | Analog VLSI and Neural Systems[END_REF] was worth to be optimized to address the ultralow power challenge, and this is the main objective of this work. The rest of this article is organized as follows: The original AH AN architecture is recalled and the simplified version that was implemented onto silicon is presented. Then the electrical behavior, power consumption, temperature and supply voltage dependence, process variability robustness, are discussed for the refined AH AN. All simulations were carried out by Spectre simulator, on typical corner PDK models, and performed at 300°K (besides temperature sweeps). Details about the circuit fabrication and measurement setup follow and then experimental AH AN results and performances are presented at 300°K. This article concludes with a benchmarking of state-of-the-art artificial neurons in conclusion.

From the Original Axon-Hillock to its simplified ultra low power version

Original Axon-Hillock

The original Axon-Hillock circuit is presented in Fig. 2 [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF][START_REF] Mead | Analog VLSI and Neural Systems[END_REF]. The circuit is made of a Voltage Amplifier (VA) -usually made using two inverters cascaded in series-and uses two capacitances: the membrane capacitance Cmem and a feedback capacitance Cf. Iex is the excitatory current, which mimics the overall synaptic current flowing out of the dendritic tree. Because the main objective was to achieve extremely low DC power and an outstanding energy efficiency for any spike generation, the following arrangements were applied with respect to the original circuit shown in Fig. 2. The first one was to remove the explicit membrane capacitance Cmem, keeping only the parasitic component, which corresponds to the first inverter input capacitance. The second one was to remove MNW, the nMOS to which the "weight" voltage Vpw, is applied in Fig. 2; the current Ir can be set by adjusting transistor dimensions as explained in the next section. The (nominal) supply voltage VDD was chosen to 200 mV, ensuring that MOSFETs will operate in deep subthreshold regime. The source to drain voltage of any MOSFET conductive channel cannot exceed VDD. Such a supply voltage favors low power consumption. After these arrangements, the refined AH architecture is depicted in Fig. 3. 

Basic behavior of the refined Axon-Hillock circuit

The basic behavior of the circuit drawn in Fig. 3 is as follows: without excitatory current (Iex = 0 A), the output and membrane voltages (Vmem and Vout) are 0 V, Cf is not charged and MN3 (nMOS) is OFF. When an excitatory (DC) current Iex is applied, a charge is stored by Cf and Vmem increases. When the magnitude of Iex is sufficient, Vmem reaches the switching voltage of the first inverter, both inverters change states, and Vout rises towards VDD (Fig. 4). Meanwhile, a positive feedback occurs through Cf, pulling up the membrane voltage Vmem to a positive value higher than Vout and MN3 turns ON. Vout magnitude is limited by the voltage, which develops between drain and source of MP2, following the increase of the reset current Ir. Ir is now set by the conductance ratio (and effectively the sizing) of the pull-up (MP2) and pull-down (MN3) transistor. With Vout in a high state, having an Ir much larger than Iex, will cause Vmem to decrease and to reach (again) the switching voltage of inverter 1 (Fig. 4); as a result, the inverters switch again, forcing Vout to 0 V. Vmem changes sign, thus source and drain electrodes for MN3 are interchanged. Through the adding currents (Iex + │Ir│), the membrane potential is rising towards positive values and when the membrane potential crosses 0 V, source and drain for MN3 recover their original location (that is, the source is connected to the ground in Fig. 3) and leading MN3 to be turned OFF again. Cf is charged again through only Iex, and the cycle starts again. 

Power consumption of the refined AH circuit

First of all, when the neuron is not excited (Iex = 0 A), the total DC power consumption of inverter 1 (Pinv1) and of inverter 2 (Pinv2) is around 1 pW in simulation (W/L=120nm/65nm for transistors, Cf =5 fF). This low power consumption is explained by the fact that that both the membrane and output voltages are 0 V when the neuron is not excited. Nevertheless, when an excitatory current is applied while not sufficient to trigger a spike, the membrane voltage increases; it turns out that both MP1 and MN1 are in an "on-state", which contributes to increase the DC current. Hence, just before the AH is going to fire, the DC current of inverter1 has increased to around 20 pA, which leads to a dissipated DC power of 4 pW. At the mean time, Pinv2 is negligible.

When the AH is firing, the power delivered to each inverter is plotted in Fig. 5 (note that a power consumption analysis of the Axon-Hillock neuron can be found in [START_REF] Yao | VLSI Extreme Learning Machine: A Design Space Exploration[END_REF]). The power is obtained through the product of VDD times the DC current (that is, the mean value) for each inverter.

In Fig. 5, the dissipated power of inverter 1 (Pinv1) is rather constant while those of inverter 2 (Pinv2) continuously increases. The capacitive load of inverter 1 is limited to a low value, set by the parasitic capacitance of inverter 2, making its "switching power" negligible. Nevertheless, because the membrane voltage slowly varies as a function of time (see Fig. 4), the current IMP1 is also slowly varying with a rising time close to the period of the spike; thus, the inverter 1 dissipates a "short-circuit power" [START_REF] Dokic | Subthreshold Operated CMOS Analytic Model[END_REF], almost independent of the firing frequency (Fig. 5).

The situation is very different for inverter 2. Indeed, as shown in Fig. 4, out of TH duration, Vout is close to 0 V, forcing the current flowing in MP2/MN2 to a low value; indeed, the supply voltage mainly delivers the current IMP2 during the spike duration TH (Fig. 4), which is found almost independent through simulation. Because during TH, IMP2 equals the capacitive current flowing in Cf, Pinv2 is frequency dependent, signature of a "switching power".

From this qualitative analysis, it turns out that Pinv1 is the major neuron dissipated power for the low excitatory currents (or low firing frequencies) while Pinv2 is the major one for the highest excitatory currents (or high firing frequencies). In this context, the elements sizing for the designed AH NA were chosen by following these considerations: (i) in order to decrease as much as possible the DC/short-circuit powers, the gate width (W) for all transistors were chosen as low as possible (for the CMOS technology used), (ii) in order to reduce as much as possible the switching power, the value for feedback capacitance Cf was chosen as low as possible, paying attention that it remains much higher than parasitic capacitance of inverter 1.

Impact of Temperature

The variation of spike frequency is plotted as a function of temperature in Fig. 6, for Iex = 10 pA. When temperature increases from 25°C to 40°C, a 20% spike frequency decrease is observed. Such a drop is directly related to the deep sub-threshold operation of the CMOS transistors [START_REF] Degnan | On the temperature dependence of subthreshold currents in MOS electron inversion layers, revisited[END_REF]. 

Impact of supply voltage (VDD) variation

The variation of spike frequency is plotted as a function of the supply voltage in Fig. 7. For constant Iex = 10 pA and a supply voltage variation of 0.2 ± 0.05 V the frequency shift is of ± 25% from the nominal firing frequency (that is 12 kHz for VDD = 0.2V). Fig. 7 provides also good information about how the AH AN could behave to potential VDD noise perturbation.

Process variability robustness

As previously mentioned, the transistors are operating in deep-threshold regime, and their current-voltage characteristics are subject to variations. Fig. 8 shows a Monte Carlo simulation with one thousand simulations with the criterion to have the AH AN spiking output peak-to-peak voltage greater than half of VDD. As it is seen in Fig. 8, the yield was 820/1000. In conclusion to this section, we should underline that the extremely low excitation and consumption characteristics of the proposed circuit are indeed accompanied by an important margin of operation to what regards PVT variation. This should be taken into account when designing multineuron networks with information representation schemes utilizing spiking frequency, inter-spike interval, time to first spike etc.

Circuit fabrication and measurement setup

The AH neuron implemented onto silicon was designed using W/L=120nm/65nm transistors (all transistors have the same dimensions, with all nMOS body contacts connected to ground and all pMOS body contacts connected to VDD) and a MOM feedback capacitance Cf=5fF. It was fabricated using TSMC 65 nm process in the LP option. It used external biasing, as shown in Fig. 6 ("VDD", "VSS" and VEX pads). The excitation current was tuned through on-chip externally biased transconductance MPex (Fig. 9) modeling the synaptic pre-neuronal excitation. The electrical measurements were performed on a probe station and voltage supplies resolution in the order of 100 fA.

In order to save area on the chip (this one comprised other circuits and the available area was constrained), a common VDD -set to 200 mV-was connected to both the AH neuron and the excitation transconductance. The AH neuron output was monitored through an on-chip unity gain buffer ("VOUT-buffer" pad in Fig. 9) that was designed ensuring that the frequency response of the neuron circuit would not be affected. More precisely, the buffer featured a high input impedance (corresponding to a capacitance equal to 3 fF, the impact of parasitic DC current is negligible). The output buffer also featured independent DC supply (connected to the pads "VDDANA" and "VSSANA" in Fig. 9) to enable accurate power consumption measurements. The AH neuron core area is 31 µm 2 .

Experimental results

Measurements, using the protocol described in the previous section, were performed on the chip. A step response is reported in Fig. 10. A voltage VEX close to VDD, so that the neuron doesn't spike, is initially applied to the gate of MPex, thus corresponding to an off-state. After 400µs, a VEX step is applied and the AH neuron generates spikes for as long as VEX is sustained. When VEX returns to its initial value (≈ VDD), the neuron is not excited anymore. Because it was not possible to check the exact buffer gain value (theoretically equal to unity), the DC bias current source connected to the buffer was tuned so that the maximum voltage for VOUT-buffer reaches 200 mV (VDD). As it is shown, the shape of the output waveform (Fig. 10) agrees well with the simulated waveform in Fig. 4. After verifying the correct behavior of the simplified AH neuron, its performance was measured in terms of frequency, power consumption and spike energy efficiency. Because the excitation current is tuned by adjusting the gate voltage applied on pad "VEX" of the transconductance (Fig. 9), the measured (DC) current Idd delivered by the supply voltage -the only one accessible-varies. As shown in Fig. 9, Idd corresponds to the summation of both the excitatory current Iex (flowing out the transconductance) and the current consumed by the neuron Ineuron (transconductance and neuron supply voltages are physically connected to the same supply pad). Thus, the actual power consumption and energy efficiency for the designed AH neuron are likely slightly better.

In Fig. 11, the AH neuron starts firing with a frequency equal to 290 Hz (Idd = 57 pA), then the firing frequency continuously increases up to 15.6 kHz (Idd = 150 pA), covering more than a decade of frequency. The power consumption, which is reported in Fig. 11, corresponds to the product of the supply voltage times the supply current VDD x Idd (VDD=200mV). On one hand, it corresponds to the "DC power" when the AH neuron is not excited. On the other hand, it includes both the DC and dynamic powers when the AH neuron is excited. As shown in Fig. 11, the DC power is around 11 pW, while when the AH neuron reaches its highest frequency, the power consumption goes up to 30 pW; the excess of power -19 pW-corresponds to the dynamic power. Knowing the power consumption and firing frequency, the energy efficiency per spike of the AH neuron, including or excluding the DC power, was calculated (Fig. 12). In this plot, when the DC power is included, the energy efficiency is equal to 10.2 fJ / spike for a spike frequency of 1.2 kHz and drops afterwards to attain its lowest value of 1.9 fJ / spike for the highest spike frequency. As discussed in Section 2 related to the power dissipation discussion, when the AH neuron is spiking at low frequencies, the dissipated power of inverter 1 (almost frequency independent) is the most important, which explains the decrease of energy efficiency in Fig. 12. On the other hand, for the highest firing frequencies, the inverter 2 dissipated switching power explains why the energy efficiency becomes independent.

It is to be noted that when the DC power (namely, the power when Iex = 0 A) is deducted, the energy efficiency stands around 1 fJ/spike, whatever the firing frequency. 

Conclusion

The performance of recent state of the art neuron implementations is reported in Table 1. Let us describe the performance reported in Table I. In [START_REF] Basu | Nullcline-Based Design of a Silicon Neuron[END_REF] the capacitances are in the order of few hundred fF and voltages are higher than 1V. In [START_REF] Joubert | Hardware spiking neurons design: Analog or digital?[END_REF], the architecture corresponds to a leaky integrate and fire AN, which adds up an extra circuit (comparator) to set the firing threshold AN, the latter contributing to extra power consumption. Moreover, the membrane capacitance is equal to 500 fF and the AN operates at supply voltage VDD around 1 V. In [START_REF] Cruz-Albrecht | Energy-Efficient Neuron, Synapse and STDP Integrated Circuits[END_REF], the architecture of the AN is based on a transconductance amplifier designed with more than 10 transistors, and operates under VDD equal to 0.6 V. It is obvious that for these AN, a down-scaling on the membrane capacitance nor on the supply voltage VDD was not carried out, leading to a non-optimized energy efficiency. In light of the comparison between the ML [START_REF] Sourikopoulos | A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology[END_REF] and the AH neurons, the following comments can be addressed: (i) the DC power is three times lower for the AH. As already stated, the main reason lies in the fact that both the membrane and output voltages are 0 V when the neuron is not excited. When not excited, the membrane voltage is of few tens of mV for the ML, making the sodium (MPNa) and potassium (MNK) transistors (Fig. 1) dissipating a DC power, (ii) the energy efficiency per spike (including the DC power) is better for the AH: the benefit comes from the lower DC power and also the use of only one capacitance.

It is to be noted that the emulation of bursting mode (of interest in a robotic context) or the highlight of stochastic resonance, which has been shown for the ML [START_REF] Danneville | Ultra low power analog design and technology for artificial neurons[END_REF], could also be obtained with the AH.

In conclusion, we believe that the ULP AH neuron presented in this work constitutes a serious candidate for SNNs design, if combined with synapses such the one described in [START_REF] Bartolozzi | Synaptic dynamics in analog VLSI[END_REF], to address the energy dissipation challenge to come due to the growing AI applications. Further works need to address the temperature sensitivity of such a subthreshold circuit.
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 1 Fig. 1. Simplified Morris-Lecar Neuron Circuit.
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 2 Fig. 2. Original Axon-Hillock artificial neuron (as drawn in [3]).
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 4 Fig. 4. Membrane and output voltages (Cadence simulation), for Iex = 10 pA (W/L=120nm/65nm for transistors, Cf =5 fF).
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 5 Fig. 5. Power dissipated (Cadence simulation) in each inverter of the AH refined neuron when excited (W/L=120nm/65nm for transistors, Cf =5 fF).
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 6 Fig. 6. Firing frequency (Cadence simulation) as function of temperature, for Iex = 10 pA (W/L=120nm/65nm for transistors, Cf =5 fF).
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 7 Fig. 7. Firing frequency (Cadence simulation) as function of VDD, for Iex = 10 pA (W/L=120nm/65nm for transistors, Cf =5 fF).
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 8 Fig. 8. Monte Carlo (Cadence) simulation: the criterion is to have the AH AN output voltage magnitude exceeding 50% VDD (half VDD).
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 9 Fig. 9. Chip photograph (left) and block diagram (right).
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 10 Fig. 10. Waveform of the AH AN output voltage.
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 11 Fig. 11. Firing frequency and power consumption as a function of the DC current (Idd) delivered by the supply voltage VDD.
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 12 Fig. 12. Energy efficiency as a function of the spiking frequency

Table 1

 1 Comparison of recent silicon artificial neuron implementations

	Ref.	Node (nm)	Area (μm 2 )	Spiking frequency (Hz)	Power (W)	Energy Efficiency (pJ/ spike)
	[5]	350	1887	100	1.74n	17.4
	[6]	65	120	1.9 10 6	78µ	41
	[7]	90	442	100	40p	0.4
	[2]	65	35	26 x 10 3	105p	0.004
	This	65	31	15.7 x 10 3	30p	0.002
	work					
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