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A B S T R A C T

Piezo-electric ultrasonic fatigue machines are used to carry out fatigue tests more rapidly than what is possible 
using other technologies, at a frequency of 20 kHz. The very high cycle fatigue (VHCF) domain can be studied 
with these machines as 109 cycles are reached within 14 h when specimens are loaded at stress amplitudes below 
the yield stress or conventional fatigue strength. The estimation of stress in specimens fatigued at high frequency 
is a current challenge when adopting this technology. This paper discusses the accuracy and reliability of three 
methods used to estimate stress amplitudes in specimens subjected to VHCF tests at a high loading frequency. 
Two historically used methods using strain gauges and a laser vibrometer are discussed and compared with a 
third, recently developed method based on time-resolved in situ X-ray diffraction (XRD). The three methods are 
applied to estimate the stress amplitude in a pearlitic steel specimen. The experimental artifacts and uncertainties 
are evaluated quantitatively to compare the benefits and limits of the methods. The experimental results show 
that the three methods correctly estimate the stress amplitudes applied to fatigued specimens.   

1. Introduction

Several industrial applications, especially in transportation and en
ergy production have shown fatigue failure in the Very High Cycle Fa
tigue (VHCF) domain. For such lifetimes, it takes too long to determine 
the S-N curve experimentally with conventional hydraulic fatigue ma
chines, operating typically at a frequency of ∼ 10 Hz. As an example, at 
10 Hz, it takes three years of testing to reach 109 cycles for a single 
specimen. Efforts made to develop fatigue machines that load specimens 
to reach a very high number of cycles more rapidly and to study damage 
mechanisms taking place in the VHCF regime were described in [1–3]. 

For several decades, studies have focused on improving the control of 
piezo-electric converters, in the development of ultrasonic fatigue ma
chines. This type of piezo-electric machine was initially proposed in the 
1950s by Mason [4]. The machine loads a specimen (itself considered as 
a mass-spring system) by vibrating it in its first longitudinal mode. Such 
technology is designed to reach a vibration frequency close to 20 kHz 
[5,6] and up to 30 kHz [7] depending on the setup. The vibration is thus 
a perfect tension–compression loading with a stress ratio R = − 1. 
Owing to the very high frequency, this type of machine reaches 109 

cycles within only 14 h and allows the investigation of the VHCF 
domain. 

One issue to be addressed when using a fatigue machine at 20 kHz is 
the rise in the specimen temperature when applying high loading am
plitudes. Two solutions have been proposed to limit the temperature 
increase (to a maximum of 10 ◦C). (i) Bathias and coworkers [8,9] 
proposed blowing cold pulsed air on a specimen during continuous 
loading. (ii) S. Stanzl-Tschegg and coworkers [2,10] suggested a second 
technological solution, ”pulse-pause mode”, in which machines operate 
in blocks of a given number of cycles followed by pauses to give time for 
heat to dissipate during the test. During pulse-pause loading, the spec
imen can also be cooled by cold pulsed air. The pulse-pause technology 
is more efficient in reducing the specimen heating. Sun et al. [11] 
measured increases in the temperature of GCr15 steel loaded at 850 MPa 
of 70 ◦C in continuous mode and only 50 ◦C in pulse-pause mode. The 
target loading amplitude is generally reached in less than 2000 cycles 
(∼ 0.1 s) only at the beginning of a test in the case of Bathias’ machines 
and after 100 cycles (∼ 0.005 s) for each block in the case of Stanzl- 
Tschegg’s machines. Typically, the loading block duration ranges be
tween 50 and 250 ms, and the pause block duration varies from 250 to 
2500 ms. The history effect of these successive short loading phases has 
been found to artificially extend fatigue life [11]. 

The second difficulty when using a fatigue machine at 20 kHz is the 
precise estimation of the stress amplitudes applied to the specimen 
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• The first method involves gluing strain gauges to the specimen to
measure the uniaxial total strain (that is ΔL/L0). The specimen is
loaded at low stress and is supposed to deform in a purely elastic
manner, i.e., the plastic contribution is neglected. The stress is then
obtained by multiplying the total strain by the isentropic elastic
modulus. A complete description of the state-of-the-art can be found
in [10,16,17].

• The second method uses a laser vibrometer to measure the
displacement at the free end of the ultrasonic machine. The stress
field within the specimen can then be estimated by computing the
response of a modeled specimen with a 1D or 3D geometry loaded in
push–pull mode, and assuming that the specimen behavior is purely
elastic [9,10,16].

• More recently, Ors et al. [18] developed a third method based on
measurements of the elastic strain. The method requires that time- 
resolved X-ray diffraction (XRD) be carried out in situ at the
loading frequency (20 kHz) on a synchrotron beamline. This method
is the first in situ time-resolved XRD application at VHCF and was
also recently developed independently by Fitzka et al. in [19] who
investigated phase transformation in Nitinol. Complementary studies
that used x-rays at VHCF essentially focused on ex-situ tomography
measurements allowing the analysis of the damage network [16,20].

This paper makes a comprehensive comparison of the three methods
of estimating stress amplitudes in a fatigue test conducted at 20 kHz. The 
accuracy and capacity of the methods in estimating stress heterogene
ities are discussed. This requires first an in-depth analysis of the causes 
of experimental uncertainties in an ultrasonic fatigue test. Therefore, 
Section 2 presents the ultrasonic fatigue machine technology and 
explain the design of fatigue specimens. Section 3 will present the three 
methods used to estimate stress amplitudes in ultrasonic fatigue tests at 
20 kHz. Finally, in Section 4, experimental results obtained for pearlitic 
steel (as a study case) are presented and the reliability and capability of 
the three methods are discussed. 

2. Experimental setup

2.1. Setup of the ultrasonic fatigue machine

The present study used an ultrasonic fatigue machine to load speci
mens at 20 kHz. This machine is based on the original design of Bathias 
and coworkers [8], see Fig. 1. The machine comprises a power gener
ator, a piezo-electric converter from BransonTM (referenced as 2000 
Series Model CR-20), which converts an electrical signal into mechanical 
vibrations, a booster, and a horn that amplifies the displacement by a 
factor of 2.6. The converter is continuously refreshed with a cold air flux 
such that its temperature is constant. The specimen is screwed at the free 
end of the horn but, in this section, we first characterize the behavior of 
the machine itself with no specimen attached to it. Having a specimen 
screwed at the end of the horn slightly modifies the harmonic response 
of the system, which is characterized, in Section 2.2. The input of the 
converter is the voltage u(t) supplied by the generator. The current i(t)
and displacement amplitude of the end of the horn d(t) are the two 
outputs. Therefore, the electrical transfer function of the piezo-electric 
system is obtained, in the case of harmonic loading using the complex 
notations, as 

H(jω) =
I(ω)

U(ω), (1)  

with ω the angular frequency and I(ω) and U(ω) the complex amplitudes 
of the current and the voltage. The gain G(ω) of the system is defined as 
the modulus of the transfer function and computed as |H(jω)|. The phase 
φ of the system is defined as the argument of the transfer function φ =

Arg(H(jω)). Fig. 2a plots the measured gain G(ω) (in dB) of the transfer 
function against the frequency for a sinusoidal input voltage of ampli
tude 15 V. This curve has two extrema: a maximum (4 dB) at a frequency 
of 20090 Hz and a minimum ( − 65 dB) at 20232 Hz. These frequencies 
are respectively referred to as the resonance and anti-resonance of the 
system 1. At this anti-resonance frequency, the system needs the smallest 
amount of average power to work. The provided power compensates for 
the energy dissipated by the system. The system was thus made to work 
at its anti-resonance frequency. 

The displacement amplitude at the free end of the horn was 
measured using a HSV 2001 laser vibrometer and is plotted in Fig. 2b 
against the frequency for a voltage amplitude of 15 V. As the frequency 
approaches the resonance, a larger displacement amplitude is provided 
but more current is used to obtain this displacement. There are thus two 
benefits of working at a frequency close to the anti-resonance frequency, 
namely less power required for operation and a displacement amplitude 
that is less sensitive to frequency shifts (which is a property that is useful 
in carrying out mechanical tests under precisely controlled conditions), 
even though a lower displacement amplitude is accessible at (0.25 μm at 
20232 Hz for a voltage amplitude of 15 V). The phase φ between the 
current and voltage supplied to the system is plotted against the fre
quency, for a voltage amplitude of 15 V in Fig. 2c. Sharp evolutions are 
close to the resonance and anti-resonance frequencies 2. 

The remote control of the machine is needed to ensure that the 
machine works continuously at a frequency close to the anti-resonance 
frequency of the system. To this end, the phase plays an important 
role in controlling the machine because the anti-resonance is charac
terized by a strong phase change as shown in Fig. 2c. The target phase 
value is 0 degree corresponding to a working frequency of 20232 Hz. 
During a frequency sweeping (from 20500 to 19500 Hz) at a low input 

1 These values correspond to the ’converter  + booster  + horn’ assembly 
used for the present experiments 

2 It appears that in low damping systems such as the ultrasonic fatigue ma
chine, the gain anti-resonance frequency is close to the phase anti-resonance 
frequency (less than 2 Hz) 

during the test. This estimation is vital for following the applied load 
during the test. A control loop of a fatigue test relies on the accuracy of 
stress estimation. The stress level is the standard quantity used to 
compare fatigue loadings at different frequencies and to compare tests 
conducted using different technologies, such as the comparison of 
bending or torsion with classical push–pull loading [7,12]. Additionally, 
fatigue criteria such as those of Crossland and Dang-Vang [13,14] are 
usually expressed in terms of stresses. Therefore, being able to estimate 
stress amplitudes during fatigue tests is fundamental. According to the 
type of test conducted, fatigue machines are strain- or stress-controlled. 
Low Cycle Fatigue (LCF) tests are commonly total strain-controlled 
because macroscopic plastic strain might occur. High Cycle Fatigue 
(HCF) tests are commonly stress controlled. In the case of VHCF tests 
using ultrasonic fatigue machines, the stress (and strain) levels are so 
low that it is equivalent to conduct stress-controlled or strain-controlled 
tests. Such machines are controlled with a piezo-electric converter on 
which a precise electrical voltage is supplied [15]. Through a calibra-
tion, the supplied voltage is equivalent to a certain displacement 
amplitude at the end of the machine. This statement is only strictly true 
when no damage or macro-plastic deformation forms in the specimen or 
when the specimen geometry does not change with a temperature in-
crease in its central part. One difficulty in adopting ultrasonic fatigue 
machines is the estimation of the applied stress when only precise in-
formation on the prescribed displacement amplitude is available. Thus, 
the stress has to be estimated from complementary measurements. Very 
few papers in the literature and no standard provide a consensus on how 
the stress estimation can be achieved during ultrasonic fatigue tests. 

Three methods of estimating the stress amplitude have been reported 
in the literature:  



voltage amplitude, the frequency corresponding to the phase being 0 
degree is identified and stored. Then, using a phase locked loop, the 
control system adjusts the frequency so that the phase remains at φ =

0◦. When the anti-resonance frequency is reached, the system increases
the input voltage until the expected voltage is reached. This process 
takes 100 ms to complete in general. 

The displacement amplitude at the edge of the horn, which is 
measured with respect to the voltage amplitude supplied to the system 
without a specimen, is shown in Fig. 3. On this calibration curve, each 
data point is the mean value of 16 independent measurements. The input 
voltage amplitude ranges from 145 to 355 V, in 10 steps. Note that the 
working range of the converter expressed in voltage amplitude is be
tween 10 and 1000 V. The displacement evolves linearly with the 
applied voltage. The standard deviation is, on average, approximately 
1% of the measured displacement value, i.e. is too small to be repre
sented on Fig. 3. This error is considered as the random error of these 
measurements. The systematic error due to the measurement uncer
tainty of the laser vibrometer affects the slope. This slope is obtained as 
Kd = 0.0235 μmV− 1 with a systematic error of 1.2%. This curve can 
therefore be used for the calibration between displacement and voltage. 

2.2. Specimen design 

Having characterized the machine response, the next step is to design 

the specimen so that the machine and specimen vibrate independently in 
their own vibration mode. This guarantees the decoupling of the ma
chine and specimen; in other words, there is no stress at the interface of 
the horn and specimen. Thus, the specimen must vibrate in its first 
longitudinal mode of free vibration at a frequency close to the anti- 

Fig. 1. Schematic representation of the ultrasonic fatigue machine - a) perspective view, b) planar view.  

Fig. 2. Harmonic response of the ultrasonic fatigue machine obtained experimentally for a voltage amplitude of 15 V, a) gain and b) displacement and c) phase 
plotted with respect to the frequency. Data were acquired with a 0.5 Hz step. These measurements are for the machine with no specimen attached to it. 

Fig. 3. Evolution of the measured displacement at the free end of the horn with 
respect to the applied voltage for the ultrasonic machine at the anti-resonance 
frequency. Each data point has been measured 16 times. The standard deviation 
for each point is in the order of 0.04 μm. The linear fit of the data is also shown. 



fact, to get a frequency of 20232 Hz, L3D
s = 17.5 mm was determined for 

the 3D model 4. This value is taken as the optimal Ls in the following. 

2.3. Estimation of tolerance interval for sample dimensions and material 
properties 

The sensitivity of geometrical parameters (Ss, Sc, Lc and Ls) and ma
terial parameters (Eis and ρ) on the first mode frequency of the system 
was investigated using the 3D FE modelling previously defined. The first 
derivative of the frequency with respect to parameters ∂f/∂P(with P 
being one of the parameters mentioned above) is estimated numerically 
at 20232 Hz. As an example we consider the cross-sectional area Sc 

whose nominal value is 15 mm2. The effect of the variation in Sc in the 
range of 13 − 17 mm2 on the first mode frequency is shown in Fig. 5. The 
frequency evolution can be approximated by a quadratic fit. The slope at 
20232 Hz is: 

∂f
∂Sc

⃒
⃒
⃒
⃒

f=20232 Hz
= 468 Hz mm− 2. (2)  

The same analysis was applied to other parameters namely the di
mensions and material properties. The results are given in Table 3. Note 
that Poisson ratio sensitivity is two orders of magnitude lower than the 
other parameter sensitivity. That is why it is not considered in the 
following. 

The uncertainty of 4 GPa in the Isentropic Modulus Eis (see Table 2) 
induces an appreciable uncertainty in the estimated eigen-frequency of 
the first longitudinal mode of the specimen which is approximately ±
210 Hz (see Table 3) and and the highest induced uncertainty arising 
from material parameters. In the following, we consider that this un
certainty is the restricting criterion in terms of the possible eigen- 
frequency discrepancies of specimens. To ensure that no geometrical 
parameter overcomes the above statement criterion, specific tolerance 
intervals (TIs) are considered for all specimen dimensions (see Table 4). 

One then verifies: 

Δf = TIP ×
df
dP

⩽210 Hz. (3) 

Table 4 shows that TI of Sc is found to be on the order of ±0.45 mm2, 
inducing an uncertainty of ±0.06 mm in each lateral dimension of the 
cross-section. TI of Ss is found to be ±2.8 mm2 inducing an uncertainty 
of ±0.11 mm on each lateral dimension. Therefore, the accuracy of the 
cross-sectionnal dimensions must be greater than that of the lengths. A 
TI of ±0.4 mm and ±0.3 mm is then sufficient for Ls and Lc respectively. 
Following the presented procedure, the specimen dimensions and their 
tolerances are presented in Fig. 6. When machining, we take smaller IT 
than those prescribed to respect the design criterion. 

2.4. Experimental validation 

In addition to the experimental study carried out on the machine 
alone (Section 1), a similar study was carried out on the complete ma
chine  + specimen system. A first prototype specimen was machined 
with dimensions Ls = 17.52 mm, Lc = 15.0 mm, Ss = 145.0 mm2 and 
Sc = 15.06 mm2. Once screwed to the amplifying horn of the machine, 
the anti-resonance frequency detected experimentally for the complete 
system was found equal to 20279 Hz. This value is higher than the 
functionning frequency (20232 Hz) of the machine alone of + 47 Hz. 
An eigen-frequency of the specimen that is different from the anti- 
resonance frequency of the machine thus induces a shift (in this case, 
a shift of + 47 Hz) in the anti-resonance frequency of the complete 
system. 

During this preliminary test, the displacement was measured at the 
free end of the specimen and at the horn surface (where the displace
ment is identical that at the top surface of the specimen). For a voltage 
amplitude of 215 V applied to the machine, a displacement amplitude of 
4.9 μm was measured at the horn end and a displacement amplitude of 
5.1μm was measured at the free end of the specimen. The displacement 
of the machine (without a specimen) at this voltage amplitude was 
5.0μm. A 2% discrepancy in the displacement amplitude was found 
when a specimen was placed on the machine. Moreover, a +4% higher 
value at the free end of the specimen compared with the top was found, 
leading to a slight asymmetry of the displacement amplitude. However 
there is no temporal asymmetry as the loading ratio remains R = − 1. 
This spatial asymmetry is induced by the operating of the complete 
system at a frequency that is shifted (by + 47Hz) from the nominal anti- 
resonance frequency of the machine without a specimen. The errors 
induced by dimensionnal discrepancies on the specimen are smaller 
than the 210Hz criterion fixed earlier. This validates the design pro
cedure. More importantly, it is the parameter Eis that shows the highest 
influence on the frequency of the system machine  + specimen compared 
to the machine alone. 

3 used here as the present study is based on ultrasonic fatigue (i.e., dynamic) 
tests that are considered adiabatic because of the very short loading period 
(50 μs). A small discrepancy is observed between the isentropic and isothermal 
modulii. These modulii are related by the following formula Eis =

1/(1/ET − T0α2/ρC), where C is the volumetric heat capacity, T0 the ambient 
temperature, and α the thermal expansion coefficient. 

4 The mesh of the FE simulation was refined until a convergence was ach
ieved with a relative error in frequency smaller than 0.01%, corresponding here 
to ±2 Hz and elements size of 0.4 mm 

resonance frequency of the machine [3,21–25]. The objective of the 
design is therefore to determine all specimen dimensions. We consider 
here as a study case a specimen made of pearlitic steel (C70 steel). The 
specimen has the composition given in Table 1, an yield stress of 
396 MPa, a fatigue strength at 106 cycles of 265 MPa and a fatigue 
strength at 109 cycles of 250 MPa [26]. 

The specimen has an hourglass shape such that stresses are concen-
trated at the center of the specimen to reach higher stress amplitudes. 
Fig. 4 shows the general geometry of specimens with rectangular cross- 
section designed in this study. A rectangular cross-section is necessary to 
conduct X-ray diffraction tests on the largest surface. Several dimensions 
of the specimen are fixed, especially the cross-section and the length of 
the central part of the specimen. Only the shaft length Ls is changed to 
obtain a specimen that vibrates at the desired frequency. 

The density of the material was measured by double weighing. The 
longitudinal elastic modulus, here referred to as the isentropic modulus 
Eis and Poisson ratio ν are measured using ultrasound waves propagation 
method with a frequency of 5 MHz3. Values and uncertainties of mate-
rial properties are presented in Table 2 for the pearlitic steel considered 
here. The uncertainties of these quantities are considered as systematic 
errors owing to the method used to estimate the quantities. 

A 1D numerical model is used [27]. It takes into account the varia-
tion of the cross-section area along the specimen length. This model 
allows the rapid determination of a pre-optimized shaft length L[

s 
1D] at 

which the specimen vibrates in its first mode at the anti-resonance fre-
quency of the piezo-electric system. Ls values ranging from 16 to 19 mm 
were tested and a value of Ls

1D = 17.6 mm was found to be optimal using 
this 1D model. This value is used as an initial guess in the 3D modeling. 
Afterward, a 3D modal analysis is necessary to consider the stress het-
erogeneities in the cross-section of the specimen which can affect the 
vibration frequency. The 3D modal simulations of the specimen are 
conducted using the commercial Finite Element Method (FEM) software 
Abaqus. The threaded hole of the specimen is not considered in the 
simulations because it is completely filled with a screw when the spec-
imen is fixed to the machine. The initial guess of Ls coming from the 1D 
simulation greatly reduces the cost of the 3D calculation. As a matter of 



3. Stress amplitude estimation

This section presents and discusses three methods used to estimate
the applied stress in fatigue, namely the method of using a laser vibr
ometer, the method of using gauges and the method of adopting XRD. 

3.1. Method using laser vibrometer 

The first method comprises two main steps. First, the displacement 
amplitude has to be measured on the machine without a specimen for 
several voltage amplitudes as shown in Section 2.1. A calibration curve 
like the one presented in Fig. 3 is obtained. Second, the stress amplitude 
in the specimen is estimated in a 3D harmonic calculation: a forced si
nusoidal regime is computed with an imposed displacement amplitude 
of 1 μm at one end of the specimen, the other being free. The loading 
frequency is taken equal to 20279 Hz. A FE mesh (having an element 
size of 0.2 mm) finer than that employed for the harmonic calculation 
presented before is used as an accurate estimation of stress needs smaller 
elements at the center of the specimen. The stress heterogeneity along 
the specimen length is obtained as shown in Fig. 7. Owing to its hour
glass shape, the specimen has stress heterogeneities which are measured 
to be between 99% and 100% of the maximal stress in a small zone of 
1 mm along the longitudinal direction around the specimen center. 
Stress heterogeneity is also observed in the cross-section of the spec
imen. Fig. 8 presents a 2D map of the longitudinal stress distribution. 

The specimen response is supposed to be linearly elastic, and the 
nominal stress amplitude is thus calculated along the x axis in the central 
cross-section as σxx = Ks × dswith Ks a factor and ds the displacement 
amplitude of the end of the specimen. The mean stress factor over the 
central cross-section is estimated to be Ks = 23.8 MPa μm− 1 for this 3D 
harmonic calculation. However, a non negligible stress gradient is 
visible throughout the cross-section. As the stress is measured at the 
surface of the specimen, when using the methods adopting strain gauges 

C Si Mn S P Ni Cr Mo Cu Al Sn Fe 

0.68 0.192 0.846 0.01 0.01 0.114 0.16 0.027 0.205 0.042 0.016 balance  

Fig. 4. Specimen geometry (dimensions provided are those that are fixed in 
advance. Ls is to be determined). 

Table 2 
Values and uncertainties on the properties of pearlitic steel studied.  

Parameters Reference value Uncertainty 

ρ (kgm− 3)  7800 ±140  

c (ms− 1)  5115 ±100  

Eis (GPa)  204 ±4   

Fig. 5. Evolution of the specimen eigen-frequency with the cross-section size at 
the center of the specimen. 

Table 3 
Sensibility study of the specimen eigen-frequency with respect to material 
properties and dimensions of the specimen.  

Parameters P Ref. value df
dP  

ρ  7800 (kgm− 3)  − 0.65 Hzkg− 1m3

Eis 204 (GPa)  52.3 HzGPa− 1

Ls 17.5 (mm)  − 510 Hzmm− 1

Lc 15 (mm)  − 720 Hzmm− 1

Ss 144 (mm2)  − 74 Hzmm− 2

Sc 15 (mm2)  468 Hzmm− 2

Table 4 
Frequency uncertainties (at the anti-resonance frequency of 20232Hz) due to 
tolerance intervals on dimensions of the specimen; all given in millimeters.  

Dimensions Tolerance Interval from 
criterion 

Tolerance Interval from 
machining  

Ls (mm)  ±0.4 (mm)  ±0.1 (mm)   
Lc (mm)  ±0.3 (mm)  ±0.1 (mm)   

Ss (mm2)  ±2.8 (mm2)  ±2.5 (mm2)   

Sc (mm2)  ±0.45 (mm2)  ±0.4 (mm2)    

Fig. 6. Specimen geometry with optimal value of Ls. Note that the 2 opposed 
shaft parts of the specimen have identical dimensions. Dimensions and their 
tolerances are given in mm. 

Table 1 
Chemical composition of the C70 steel studied (% weight).  



and XRD, the stress factor Ks = 24.2 MPa μm− 1 is used in the following. 
Two main sources of systematic errors have been identified. The 

uncertainties in material parameters (see Table 2) result in an error of 
2% in the stress in the 3D harmonic calculations. Additionally, the 
construction of the calibration curve introduces a discrepancy of around 
1.2% (see Section 1) on the estimation of the displacement amplitude for 
a given stress amplitude. The systematic error made in the estimation of 
stress on the cross-section of the specimen using the laser vibrometer is 
approximately 3.2% because the stress estimation is a linear 

multiplication of the displacement and stress factor. Moreover, the 
experimental laser measurements introduce a 1% random error in the 
whole calculation (see Section 2.1), which is negligible compared to the 
estimated systematic error 5. 

3.2. Method using strain gauges 

Strain gauges are widely used to measure the total longitudinal strain 
in a specimen loaded at 20 kHz. Two gauges (KYOWA KFG-1 N-120-C1- 

Fig. 7. a) Longitudinal stress amplitude along the specimen central axis and b) longitudinal stress amplitude field (applied displacement amplitude 1μm ; loading 
frequency 20279Hz). 

Fig. 8. Longitudinal stress amplitude distribution within the specimen cross-section, in the center of the specimen for an applied displacement of 1μm at a frequency 
of 20279Hz. 

5 Note that possible additional errors due to visco-elastic (instead of elastic) 
response of the material can hardly be estimated. 



lattice strain of the diffracting crystallites for the hkl reflection and the 
macroscopic longitudinal stress in the specimen. During fatigue loading, 
the cyclic shift of the hkl diffraction peak is representative of the evo
lution of the average inter-reticular spacing among the hkl grains under 
the diffraction condition; that is, the average elastic strain of this set of 
grains. According to Bragg’s law (2), and for polycrystalline material, 
the x-rays diffracted by crystallographic planes having Miller indexes hkl 
and inter-reticular spacing dhkl are located across a cone aligned with the 
incident beam and a half-apex of 2θ (see Fig. 11a): 

λ = 2dhklsinθ. (4)  

The cone is intercepted with a 2D detector which only sees a ring. This 
ring, once integrated along its length, is represented as a 1D hkl 
diffraction peak. 

The in situ time-resolved XRD method applied to ultrasonic fatigue 
tests is a recently developed technique detailed in [18,19]. Its principle 
is the estimation of the applied stress (through the measurement of the 
lattice strain) from the measured Δ2θ shift of the diffraction peak po
sition on the 2D detector. Several prerequisites must be fulfilled to es
timate the applied stress from XRD data. First, the XRD images obtained 
on the detector must have counting statistics sufficient to reduce the 
photon noise. A stroboscopic method has been developed to improve the 
counting statistics (Fig. 10). Within a single detector opening (which 
lasts 1 μs), few photons are captured by the detector, and this leads to an 
image with too much photon noise. To reduce this noise, we need to 
capture more photons by accumulating many detector integration times 
for a given stress level within the loading cycles. To generate such a 
stroboscopic acquisition mode, the gauge signal is used to trigger the 
opening of the detector and thus the capture of one image. This process 
is repeated over many thousands of times (e.g. 200000 times in this 
study) to obtain sufficiently low image noise. To describe one period of 
oscillation with enough points as for the strain gauge method (around 50 
points), the temporal resolution of the method is set at 1 μs. This cor
responds to the opening duration of the detector used to capture the 
diffracted x-rays photons. After each image acquisition, an additional 
small delay is applied to the trigger so that the next detector image is 
captured at a different stress level within the sinusoidal loading. The 
setup requires an electronic system that synchronizes the short elec
tronic opening of the detector with the cyclic deformation applied by the 
piezo-electric machine, see [18] for further details. 

The above mentioned stroboscopic method, which requires very 
short opening durations for the detector shutter, only works when using 
an extremely brilliant X-ray source and a detector equipped with an 
electronic shutter. These prerequisites are met at the DiffAbs beamline of 

Fig. 9. Total strain evolution for a fatigue test at 75MPa during 5 cycles. The top x-axis represents the number of cycles as seen by the specimen during the 
measurements. 

11) are glued facing each other on opposite surfaces of the central cross- 
section. The useful area of a gauge has dimensions of around 1 mm × 
0.64 mm and is oriented with its length along the specimen length. 
These gauges can measure strain as low as 10−  6. Gauges are set in a full 
bridge circuit. A KYOWA (CDV-700A) signal conditioner is used to 
power the bridge and to amplify the output voltage. Two additional 
gauges (which are thermally compensated as should be for a full 
compensation of any room change in temperature) are glued on a second 
(dummy) specimen of the same material.

Strain gauges can measure the total strain in less than a micro-second 
for the reconstruction of one cycle described by 50 points. From strain 
gauges measurements during a fatigue test conducted at 20 kHz, Fig. 9 
presents the reconstructed evolution of strain with respect to time. In 
fact, each point on the curve is the mean of strain gauges values obtained 
for 200000 successive fatigue cycles. 

Assuming a purely elastic material response we estimate the longi-
tudinal stress at the center of the specimen as: σ = Eis × εe. The random 
error (i.e., the standard deviation of the 200000 values) is approxi-
mately 2% and tends to decrease with increasing the number of gauge 
acquisitions. The gauge method has two sources of systematic errors. 
First, the measurement of the elastic modulus introduces a 2% error. 
Second, uncertainty emerging from the use of the strain gauge amplifier 
during calibration with a shunt resistance, is approximately 1% of the 
measured strain value. The total systematic error is therefore around 
3%. The random error is kept smaller than the systematic error. 

3.3. Method adopting XRD 

A cyclic deformation of the specimen leads at the micro-scale (grain 
scale) to an elastic deformation that is heterogeneous owing to the 
anisotropy of the elastic grain behavior, for example see [28–30]. This 
micro-scale elastic deformation, when measured along the normal of the 
specific (hkl) lattice plane of the grains of the specimen, is usually 
referred to as lattice strain in the literature. Because the set of crystallites 
under diffraction conditions (i.e. ”the diffraction volume”) is only part of 
the whole specimen, scale transition models, which bridge the grain 
deformation with the macroscopic strain, are required to invert the 
diffraction data. Here, a micro–macro Self-Consistent (SC) model 
[31,32] was used to estimate the X-ray elastic constants (XECs) [33,34] 
for the studied material; these XECs relate the lattice strain with the 
applied macroscopic strain according to anisotropic elastic behavior. 
The SC model considers the volume fraction of ferrite and cementite in 
the steel as well as the crystallographic texture and average grain shape. 
Once the XECs are estimated, there is a linear relation between the 



the SOLEIL Synchrotron in France. The ultrasonic fatigue machine, with 
the specimen mounted on it, is placed horizontally in the diffractometer. 
The specimen center is aligned with the rotation center of a 4-circles 
goniometer and with an incident monochromatic X-ray beam coming 
from the synchrotron source (A wavelength λ = 0.775 nm is used here). 
Part of the diffraction cone is intercepted by a 2D planar hybrid pixel 
detector (an XPAD S140 with a pixel size of 130 × 130 μm2 in our case) 
[35]. To reduce geometrical aberration, diffracting surfaces with a small 
curvature of radius are generally preferred to cylindrical specimens, and 
a rectangular cross-section is thus considered in this study. The specimen 
surface is then tilted by 10◦ − 20◦ with respect to the incident beam to 
provide a reflection configuration. Fig. 11 shows the experimental setup. 
When the fatigue machine is started, the applied stress creates elastic 
strain in the specimen leading to slight periodic changes in dhkl. The 
aperture 2θ of the diffraction cone is thus expected to be modified 
accordingly at the same frequency. With a cross-section of the incoming 
beam of typically 200 × 300 μm and a penetration depth of ∼ 40 μm at 
the used wavelength, a large number of grains are measured simulta
neously 6. As an illustrative example, with the used setup, the 110 
diffraction peak of the C70 steel studied here has a Full-Width at Half 
Maximum of typically 0.1◦ (corresponding to ∼ 9 detector pixels), the 
signal-to-noise ratio is in excess of 90 and the maximum intensity is in 
the 105 − 106 counts range. The fitting of diffraction peaks with an 
asymmetrical Pearson VII distribution leads to errors on the order of 
4.10− 4 degrees in the 2θ angle. At the 2θ angle observed here (22◦), this 
corresponds to random error of up to 8% in the estimation of elastic 
strain. 

The XEC of the ferrite α phase, in the case of the peak 110 is esti
mated as − 1.32 × 10− 6 MPa− 1. The uncertainty in the estimation of the 
X-ray elastic constants has to be considered because it is linearly related
to the macroscopic stress amplitude. Such an uncertainty is difficult to
assess because an XEC depends on both the single crystal elastic con
stants and the specimen microstructure (e.g. the crystallographic
texture, grain shape, and grain arrangement) which can be characterized
experimentally only partly, and on a volume supposed to be sufficiently
large to be statistically representative of the material but again within a
certain degree of accuracy. The elastic SC model itself, as a scale tran

sition model, is found to provide results that are close to those of 
reference full-field computational homogenization methods, with the 
relative discrepancies being in the 10− 3 range [36,29]. The accuracy of 
the XEC is thus essentially limited by the lack of precise knowledge of 
the single crystal elastic constant and of the microstructure. The precise 
determination of the anisotropic stiffness at the grain scale in a given 
polycrystalline aggregate is not an easy task because we need to probe 
single grains individually [37], such as through nano-indentation, or by 
inversing XRD data as in [38]. Meanwhile, to the best of our knowledge, 
the estimation of the effect of microstructure on the XEC has not been 
thoroughly investigated in the literature. Notably, however, small 
microstructure effects were reported in [30] for architectured two-phase 
materials, with the difference in results between the used models and X- 
ray and neutron diffraction data being better than 10%. A similar 
conclusion was drawn by [39], with the discrepancy between the XECs 
estimated by the SC scheme and those computed using a full-field FE 
model, in which an (unrealistic) microstructure with cubic grains was 
considered, being mostly better than 10%. Additionally, the difference 
in the XECs of the (110) plane in ferrite estimated using Reuss and Voigt 
bounds, which provide rigorous lower and upper bounds for the elastic 
stiffness whatever the specimen microstructure, is 8%. One therefore 
expects that microstructure effects may be smaller than this difference. 
The accuracy of estimating stress using the X-ray method must account 
for the discrepancy sources cited above and the stress is therefore 
assessed estimated with an overestimated systematic error of 10%. 
Therefore, the random error determined above is negligible compared to 
the systematic error. 

4. Results and Discussion

4.1. Comparison of Methods

During the synchrotron experiments, the specimen was loaded at 
ambient temperature and continuously cooled by a compressed cold air 
flow. Stress amplitudes from 75 MPa to 258 MPa were applied. As dis
cussed above, the stress estimation requires to assume that the specimen 
response is purely elastic in the laser vibrometer and strain gauge 
methods whereas this assumption is not necessary when using the XRD 
method. In the method using a laser vibrometer, for comparion with 
XRD and gauges methods, the Ks factor was taken at the surface of the 
modeled specimen such that Ks = 24.2 MPa μm− 1, as already discussed 
in Section 3.1. As the method using XRD estimates stresses from elastic 

Fig. 10. Stroboscopic principle for data acquisition - Case of a reconstructed 2θ diffraction peak position for a loading amplitude of 190MPa (adapted from Ors 
et al. [18]). 

6 As the specimen surface is tilted by a few degrees from the beam direction, 
the size of the illuminated surface on the material is approximately 1000×

300 μm2 



strain measurements, the consistent results between the three methods 
prove that assuming an elastic response in the studied stress amplitude 
range is accurate enough. The studied stress amplitude range corre
sponds to two third of the yield stress of the material and it is below the 
fatigue strength at 109 cycles. It covers most of the VHCF loading 
domain. 

Results obtained using the three methods are plotted in Fig. 12. In 
this figure, the stress amplitude increases linearly with increasing 
displacement amplitude (which was measured at the free end of the 
horn). The values show good agreement among the three methods. 
Systematic measurement errors for each method, which were discussed 
earlier, are plotted as error-bars in Fig. 12. 

The high number of values used in obtaining average gauge and laser 
vibrometer measurements and the high number of accumulated XRD 
frames reduce the effect of random error. These errors were not 
considered in this comparison. 

4.2. Stress distribution along the specimen length 

One advantage of the XRD method is that the measurement is carried 
out in a small region of the surface of the specimen. The stress can 

therefore be estimated along the specimen length when the beam is 
positioned to probe different positions. Fig. 13 compares the results 
obtained with the method adopting XRD with the results obtained with 
the methods using the laser vibrometer and strain gauges. 

Notably, the stress heterogeneity measured with the XRD method 
effectively matches the 3D simulation with a similar stress distribution 
along the specimen length. The tails of the distribution obtained using 
the XRD method are a little tighter than those estimated using the FEM 
but their tendancies are the same. The XRD method obtains a strong 
vertical dispersion of about ±10 MPa in the central zone, which is about 
8% of the XRD values. This dispersion is in good agreement with the 
random errors estimated in Section 3.3. This random error might be 
alleviated by a longer exposure time or finer spatial and temporal res
olution. Additionally, all XRD measurements conducted apart from that 
at the specimen center have a slightly different experimental configu
ration with a different sample surface orientation with respect to the 
incident X-ray beam and detector. These slight changes in configuration 
might be a source of discrepancy with FEM modeling for data away from 
the specimen center shown in Fig. 13. The three methods give similar 
results when it comes to estimating the stress amplitude on the surface at 
the center of the specimen but the methods provide different 

Fig. 11. Experimental setup of the XRD method - a) schematic view b) picture of the setup installed at DiffAbs beamline at synchrotron SOLEIL, in France.  

Fig. 12. Stress amplitude plotted with respect to displacement amplitude applied to the specimen.  



possibilities in estimating the spatial stress distribution. The strain gauge 
method is a local estimation across the gauge surface whereas the nu
merical calculation of the laser vibrometer method gives information on 
the spatial distribution of stress in the specimen. Meanwhile, the XRD 
method allows us to estimate experimentally the stress distribution on a 
large specimen surface without relying on a harmonic calculation of the 
specimen response. 

5. Summary and Conclusion

This paper presented and compared three methods of estimating the
stress amplitude. The limits of these methods were investigated and 
conclusions on their capability and reliability in estimating the stress 
amplitude during a fatigue test conducted at 20 kHz were drawn. 
Additionally, the complete methodology of conducting a fatigue test at 
tens of kilohertz, from the detailed functioning of the ultrasonic fatigue 
machine to the specimen design, was presented. Methods of assessing 
stress amplitudes were presented to complete the description of the 
experimental process. 

The comparison of the three methods is summarized as follows: 

• The uncertainty in the isentropic modulus causes the largest devia
tion between the optimum operating frequency of the ultrasonic
machine and the real test frequency.

• In the case of a well-designed specimen, the deviations in dimensions
owing to the manufacturing process lead to deviations in frequency
lower than that induced by the uncertainty in the isentropic
modulus.

• The frequency drift results in a deviation of the displacement
amplitude imposed on the specimen of 2% compared to that pre
scribed to the machine.

• The method using strain gauges is the easiest to adopt because it only
requires strain gauges to be glued on the surface of the specimen. It
provides an accurate estimate of the longitudinal stress amplitude
with an accuracy of 3%. The method is based on the hypothesis that
the specimen response remains purely elastic during the whole test
duration. However, it provides no information about strain hetero
geneity along the specimen length.

• The method using a laser vibrometer cannot provide useful results
without being coupled with a 3D FEM harmonic computation. The
method then gives a precise and accurate estimation of the stress
amplitude (with an uncertainty of 3.2%) for every part of the

specimen but, like the method using strain gauges, and is based on 
the hypothesis of a purely elastic specimen response during loading. 
Furthermore, the calibration process is reliable only for the speci
mens for which the calibration was checked (see Section 2.4).  

• In the case of the time-resolved XRD method, the stress amplitude
accuracy essentially depends on the estimation of the XECs. Limita
tions mostly relate to the knowledge of the single crystal elastic
constant and material microstructure. The used X-ray setup must also
be calibrated to high accuracy. In addition to its unique capacity of
measuring the stress at different scales (e.g. using a different beam
size) and spatial positions by scanning the whole specimen surface
with the incoming beam, an important advantage of the method is
that it does not rely on a hypothesis of the mechanical response of the
specimen. It thus allows the stress to be followed during the loading
cycles. Even so, this method requires a micro–macro model and a
synchrotron facility that provides a high X-ray flux, a well collimated
X-ray beam and a detector for time-resolved analysis. As observed in
this study, the method adopting XRD introduces a larger systematic
error compared to the two other methods.

The comparison of the three methods reveals that considering a 
purely elastic response of the specimen is a valid approximation for the 
estimation of the applied stress, up to amplitudes close to the fatigue 
strength. It was seen that the XRD method that does not rely on this 
assumption provided results that are in good agreement with those of 
the two methods that are based on this assumption. 
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[32] Kröner E. Self-consistent scheme and graded disorder in polycrystal elasticity. 
J. Phys. F: Metal Phys. 1978;8:2261–7. 

[33] Faurie D, Castelnau O, Brenner R, Renault P-O, Le Bourhis E, Goudeau P. In situ 
diffraction strain analysis of elastically deformed polycrystalline thin films, and 
micromechanical interpretation. J. Appl. Cryst. 2009;42:1073–84. https://doi.org/ 
10.1107/S0021889809037376. 

[34] Vermeulen AC, Kube CM, Norberg N. Implementation of the self-consistent 
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