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Direct Synthesis of Multiband Bandpass
Filters With Generalized Frequency

Transformation Methods
Yi Wu , Student Member, IEEE, Erwan Fourn , Member, IEEE, Philippe Besnier , Senior Member, IEEE,

and Cédric Quendo , Senior Member, IEEE

Abstract— This article presents a new generalized direct
synthesis method to design multiband bandpass filters (MBPFs).
Based on the proposed frequency transformation technique, it can
be used to synthesize an arbitrary number of bandpass filters
starting from a low-pass prototype filter. This synthesis allows
determining analytically all the resonant angular frequencies
and slope parameters of all the bandpass filters from the low
and high cut-off angular frequencies used as initial specifications
whatever the number of bands. To validate our method, triple-,
quad-, and quint-band third-order Chebyshev bandpass filters
are designed and implemented in microstrip technologies. Very
good agreements were achieved between simulation responses
and measurements.

Index Terms— Frequency transformation methods, microstrip
technology, multiband bandpass filter (MBPF), quad-band filter,
quint-band filter, triple-band filter.

I. INTRODUCTION

F ILTERS are key components in radio frequency trans-
ceivers in handing multiband operations. Their integration

is challenging with regard to requirements. In new terminal
generations providing several communication standards simul-
taneously, and especially in mobile terminals, embedded sys-
tems, or satellites, the footprint of the filtering parts needs to
be reduced in order to meet mass and volume requirements of
the whole system. Multiband bandpass filters (MBPFs) indeed
then appear as an attractive solution to select multiple bands
with a relatively compact circuit size. Thus, [1], [2] present
some examples of MBPFs to simplify the design of commu-
nication system for satellite applications. Many researchers
pay great attention on MBPFs leading to a large amount of
circuit topologies implemented in different technologies such
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as microstrip [3]–[7], waveguide [8], or substrate integrated
waveguide (SIW) [9]–[11].

More specifically, the synthesis of MBPFs, whatever the
implementation technology, can be done through numerous
methods. One of the most popular ones consists in deriving
coupling matrix to achieve multiband responses [12]–[16].
Actually, this method is based on the optimization of the
whole coupling matrix. High quality of initial values and
good optimization algorithms (such as genetic algorithm or
sequential quadratic programming) are needed to achieve
satisfying results. Such methods may be considered ineffi-
cient in some cases because the convergence is not always
guaranteed and the final topology is difficult to control
[16], [17]. A second popular method to design MBPF is based
on stepped-impedance resonators (SIRs) with two main con-
cepts. The first one makes use of multisection SIRs with differ-
ent resonant frequencies [18]–[24]. These resonators can have
different shapes such as ring or stub-loaded shapes or consist
of an assembling of quarter- or half-wavelength lines. For such
filters, each resonator can resonate at the center frequencies of
at least two bands. By coupling these resonators together, one
can realize multibands responses. However, MBPFs’ design,
especially beyond triple-bands, is still challenging because
it is really difficult to simultaneously satisfy all the desired
requirements for all bandpass, including resonant frequencies,
bandwidths, and so on. A third method consists in using dual
behavior resonator (DBR) filter [25], [26]. A DBR is based on
the parallel association of N band-stop resonators, which can
create N transmission zeros to form N − 1 bands. Based on
this method, dual- and triple-band bandpass filters have been
successfully synthesized and implemented. However, for this
type of filter, it is hardly possible to achieve more bandpass,
because of the harmonic frequencies, and high-order filters
because slope parameters are not taken into account into the
synthesis.

Another MBPFs’ synthesis technique is based on frequency
transformation methods. The first article was presented in [27]
in the case of a dual-band filter. The main idea of this article
is to map the lower and upper cut-off angular frequencies of
each bandpass to the low-pass prototype ones (positive and
negative). The dual-band resonator obtained using this trans-
formation then consists in the association of a bandpass res-
onator and a band-stop one, the latter creating a transmission
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Fig. 1. From a low-pass prototype to an N -band bandpass filter.

zero in the bandpass of the first to obtain the two bands.
Similar techniques were used to design dual- and triple-band
bandpass filters in [28] and [29] with different implementation
topologies and technologies. In [30], the authors also applied
the frequency transformation approach to design triple-band
bandpass filter. Additional transmission zeros were realized
before each bandpass using optimized multimode resonators.
However, the optimization-based multimode resonators are dif-
ficult to be implemented for filters more than triple bandpass.
A generalized synthesis method was proposed in [31]. In this
article, dual- and triple-band cases were presented to validate
the synthesis theory. This approach is based on coupling matri-
ces and frequency-invariant susceptances. However, practical
implementation of multiband filters with more than three bands
seems rather difficult.

In this article, a general analytical method to design MBPFs
with an arbitrary number of bands based on frequency trans-
formation technique is presented. It is a direct generalization
of the solution presented in [27] and differs from [31] by
the use of the slope parameters instead of coupling matrices,
leading to a relative greater simplicity and freedom in terms of
design and implementation. The design of high-order MBPFs
with an important number of bands is then relatively easy
unlike most of the solutions discussed above. To demonstrate
the effectiveness of this approach, several synthesis exam-
ples are also shown. The article is organized as follows:
Section II presents the generalized frequency transformation
technique in its mathematical aspects. Section III shows the
ideal implementation in LC element structure and Section IV
presents three examples of MBPFs implemented in microstrip
technology: A triple-band filter, a quad-band filter, and a
quint-band filter. The last section concludes this article.

II. GENERALIZED FREQUENCY TRANSFORMATION

TECHNIQUE FOR MULTIBAND BANDPASS FILTERS

The transformation from a classical low-pass prototype to
an N-band bandpass filter is schematically presented in Fig. 1.
The proposed frequency transformation function is a general-
ization of the one proposed in [27] in the dual-band case and
can be written as follows:

� = T (N)(ω)

= b0

(
ω

ω0
− ω0

ω

)
−

N−1∑
k=1

1

bk

(
ω

ωk
− ωk

ω

) (1)

where � is the normalized angular frequency (associated with
the normalized low-pass filter). T (N)(ω) is the transformation
function, N the number of bands of the MBPFs, and ω

the de-normalized angular frequency (associated with the
MBPFs), ω0 and b0 are the resonant angular frequency and the
susceptance slope parameter of the wide bandpass resonator,
respectively, ωk and bk (k ∈ [1; N − 1]) are the ones of the
stopband resonators.

The goal of the synthesis process is to link the 2N output
parameters of the transformation function (the resonant angu-
lar frequencies ωk and the slope parameters bk , k ∈ [1; N −1])
to the input ones, i.e., the low and high cut-off angular
frequencies of the N bands (ωLi and ωHi , i ∈ [1; N]) as
defined in Fig. 1.

First, let us denote

U (N)(ω) = T (N)(ω) − 1. (2)

Substituting equation (1) for T (N)(ω) in (2) leads to a new
expression of U (N)(ω) consisting in a ratio of two polynomials

U (N)(ω) = N(ω)

D(ω)
= ω2N + ∑2N−1

p=0 n pω
p∑2N−1

q=0 dqωq
(3)

where dq is equal to 0 when q is even and −nq when q is odd.
A first expression of the 2N n p (p ∈ [0; 2N−1]) coefficients is
then obtained as functions of the output parameters as detailed
below.

We now assume that the lower cut-off angular frequencies
ωLi and the upper cut-off angular frequencies ωHi (i ∈ [1; N])
are mapped to −1 and +1 in the � normalized domain,
respectively. As T (N)(ω) is an odd function, we then have

T (N)(−ωLi ) = T (N)(ωHi ) = 1 i ∈ [1; N]. (4)

Therefore, the N high cut-off angular frequencies and the
opposite of the N lower cut-off ones are the 2N roots of
U (N)(ω). A second expression of the n p coefficients is thus
obtained as functions of the input parameters this time.

So, 2N equations (one for each n p coefficient) link the
N resonant angular frequencies, the ωk , and the N slope
parameters, bk ((k ∈ [0; N − 1])), to the N low cut-off
angular frequencies, ωLi , and the N high cut-off ones, ωHi

(i ∈ [1; N]). As presented below, an analytical expression can
then be obtained for each output parameters.

Section II-A–II-C present the general expressions of the n p

coefficients (p ∈ [0; 2N − 1]) according to the cut-off angular
frequencies (see Section II-B), on the one hand, and according
to the resonant angular frequencies and slope parameters (see
Section II-C), on the other hand. To simplify the writing of
these equations and make the understanding easier, we first
introduce specific mathematical expressions in Section II-A.

A. Specific Mathematical Operators
Let Z (r→s) be a set of real numbers zi with i ∈ [r; s] (r ∈ N

and s ∈ N
�)

Z (r→s) = {zi }s
i=r . (5)

We then denote Z (r→s)
{ j} the same set of real numbers zi with

i �= j ((i; j) ∈ [r; s])
Z (r→s)

{ j} = {zi }s
i=r \ {z j}

= {zr , zr+1, . . . , z j−1, z j+1, . . . , zs−1, zs}. (6)

. 
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Let Pa(Z (r→s)) be the sum of all the different products of a

elements of Z (r→s). Pa(Z (r→s)) is thus a sum of
( s − r + 1

a
)

terms, each of them being a product of a elements of Z (r→s).
For instance

P1
(Z (1→3)

) = z1 + z2 + z3

P2
(Z (1→3)

) = z1 z2 + z1 z3 + z2 z3

P3
(Z (1→3)

) = z1 z2 z3

and

P2

(
Z (1→4)

{3}
)

= z1 z2 + z1 z4 + z2 z4.

Finally, we denote

P0
(Z (r→s)

) = 1. (7)

B. Expression of the n p C Coefficients as Functions of the
Cut-Off Angular Frequencies

In this section, an expression of the 2N n p coefficients used
in (3) is obtained as functions of the frequency transformation
input parameters, i.e., the cut-off angular frequencies of the N
bands. We use here the fact that the N high cut-off angular
frequencies ωHi and the opposite of the low cut-off ones ωLi ,
with i ∈ [1; N], are the zeros of U (N)(ω). We thus obtain
a first system of 2N equations (one for each cut-off angular
frequency) with 2N unknowns (n p, p ∈ [0; 2N − 1]).

According to the expressions presented in Section II-A,
we denote L(1→N) = {ωLi } and H(1→N) = {ωHi }, i ∈ [1; N].
Solving this first system leads to

n p =
p∑

r=0

(−1)N−rPN−r
(H(1→N)

)PN+r−p
(L(1→N)

)
for p ∈ [0; N − 1]

=
2N∑

r=p

(−1)2N−rP2N−r
(H(1→N)

)Pr−p
(L(1→N)

)
for p ∈ [N; 2N − 1]. (8)

C. Expression of the n p Coefficients as Functions of the
Resonant Angular Frequencies and the Susceptance
Slope Parameters

We now express the 2N n p coefficients as functions of the
frequency transformation output parameters, i.e., the resonant
angular frequency, ω0, and the slope parameter, b0, of the
wide bandpass resonator, and the parameters ωk and bk (k ∈
[1; N − 1]). We recall that these parameters are the resonant
angular frequencies and the slope parameters of the stopband
resonators, respectively. This is based on the introduction of
the expression of T (N)(ω) from (1) in (2), which allowed us to
obtain the expression of U (N)(ω) given in (3). We thus obtain
a second system of 2N equations giving each n p coefficient
as a function of the output parameters.

Here, we denote W (0→N−1) = {ω2
k} the set of all the

resonant angular frequency squares and W (1→N−1) = {ω2
k } the

set of the resonant angular frequency squares of the stopband

resonators only. We distinguish three cases for p = 0, p odd,
and p even, p ∈ [0; 2N − 1].

1) For p = 0, we have

n0 = (−1)NPN
(W (0→N−1)

)
= (−1)N

N−1∏
r=0

ω2
r . (9)

2) For p odd, we denote p = 2q − 1, q ∈ [1; N]. We then
have

n p = n2q−1

= (−1)N−q+1 ω0

b0
PN−q

(W (1→N−1)
)
. (10)

3) For p even, we denote p = 2q , q ∈ [1; N −1], and then
we obtain

n p = n2q

= (−1)N−q

{
PN−q

(W (0→N−1)
)

+ω0

b0

N−1∑
k=1

[
ωk

bk
PN−q−1

(
W (1→N−1)

{k}
)]}

.

(11)

D. Expression of the Resonance Angular Frequencies and
Susceptance Slope Parameters

Equations (9) to (11) give an expression of the 2N n p as
functions of the output parameters of the frequency trans-
formation technique (i.e., ωk and bk , k ∈ [0; N − 1]). In a
practical way, we have to reverse this equation system in
order to express the output parameters as functions of the 2N
n p coefficients, these latter being calculated from the input
parameters (ωLi and ωHi (i ∈ [1; N])) using (8).

First, using the expressions of n0, n1, and n2N−1 and
whatever the number of bands N , we can easily demonstrate
that the resonant frequency ω0 and the slope parameter b0 of
the wide bandpass filter can be written as

ω0 =
√

−n0n2N−1

n1
(12)

b0 =
√

− n0

n1n2N−1
. (13)

Using (10) for all the odd value of p, we can also demon-
strate (see Appendix A) that the resonant angular frequencies
of the band-stop resonators (ωk , k ∈ [1; N −1])) are the N −1
positive solutions of (14)

N−1∑
r=0

n2r+1ω
2r
k = 0. (14)

Once the resonant angular frequencies of the band-stop
resonators are determined using (14), the remaining unknowns
are the slope parameter coefficients bk , k ∈ [1; N −1] in (11).
This equation can also be rewritten as follows:

N−1∑
k=1

[
ωk

bk
PN−q−1

(
W (1→N−1)

{k}
)]

= PN−q
(W (0→N−1)

) − (−1)N−q n2q

n2N−1
(15)

. 
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for q ∈ [1; N − 1]. Using (15) for each value of q , we obtain
an N − 1 linear equation system with (N − 1) unknowns
(i.e., each bk or more precisely 1/bk). This system can be
written as follows:

X N−1,N−1 BN−1 = AN−1 (16)

where X N−1,N−1 is the (N − 1 × N − 1) matrix of xq,k

coefficients with

xq,k = ωkPN−q−1

(
W (1→N−1)

{k}
)
. (17)

BN−1 is the vector of the N − 1 unknowns

BN−1 =
[

1

b1
,

1

b2
, . . . ,

1

bN−1

]t

(18)

and AN−1 is the vector of already known coefficients a(N)
q

AN−1 = [
a1, a2, . . . , aN−1

]t
(19)

with

aq = PN−q
(W (0→N−1)

) − (−1)N−q n2q

n2N−1
. (20)

The slope parameters are then determined by inverting the
matrix X N−1,N−1

BN−1 = X−1
N−1,N−1 AN−1. (21)

By solving the above matrices, the slope parameters can be
written as

b1 = n1n2
3ω1

n1n2n3 − n0n2
3 − n2

1

for N = 2 (22)

bk =
ωk

∏N−1
j=1, j �=k

(
ω2

k − ω2
j

)
∑N−1

j=1 Y jω
2 j−2
k

for N � 3 (23)

where k ∈ [1; N − 1] and

Y j =
n2 j − n0n2 j+1

n1
− n2 j−1

n2N−1

n2N−1
. (24)

One should note that this synthesis technique leads to a
unique solution for a given specifications. So, there is theo-
retically only one transmission zero between two consecutive
bands whatever the order of the designed filter.

III. IMPLEMENTATION WITH LC ELEMENTS

Starting from a classical ladder structure composed of series
inductances and shunt capacitances, a low-pass prototype filter
can be modified to use only parallel capacitances separated by
J admittance inverters [32]. Using the generalized frequency
transformation technique presented in Section II, the i th capac-
itance, C L P

i , of such a low-pass prototype can be transformed
into a multiband bandpass resonator as shown in Fig. 2. The
multiband bandpass resonator then obtained consists in the
parallel association of one bandpass resonator (L(i)

0 ; C (i)
0 ) and

N −1 band-stop ones (L(i)
k ; C (i)

k ), k ∈ [1; N −1] whose values
are given by the following equations:

L(i)
0 = 1

b0C L P
i ω0

(25)

Fig. 2. Transformation of a low-pass prototype capacitance into a multiband
bandpass resonator (MBPR).

Fig. 3. Schematic representation of the proposed MBPF.

C (i)
0 = 1

L(i)
0 ω2

0

(26)

L(i)
k = bk

C L P
i ωk

(27)

C (i)
k = 1

L(i)
k ω2

k

. (28)

A M-order MBPF is then composed of M MBPRs separated
by J admittance inverters as shown in Fig. 3. The Ji,i+1

inverters are here defined in a classical way taking into account
only the bandpass part of each MBPR [32]

J01 =
√

GSβ
(1)
0

b0g0g1
(29)

Ji,i+1 = 1

b0

√
β

(i)
0 β

(i+1)
0

gi gi+1
(30)

JM,M+1 =
√

GLβ(M)
0

b0gM gM+1
(31)

where the gi coefficients are the low-pass prototype parame-
ters, GS and GL are the source impedance, and β(i)

0 = ω0 C (i)
0 .

To use only bandpass resonators, all the stopband
LC-series elements can be transformed in LC-parallel ones
using another set of J-inverters. A MBPR then consists only
in LC-parallel resonators (see Fig. 4), the main one (L(i)

0 , C (i)
0 )

being separated from the others (L(i)
k , C (i)

k ), k ∈ [1; N − 1],
and i ∈ [1; M], by new J-inverters defined as follows:

J (i)
k =

√
β(i)

0 β(i)
k

b0bk
(32)

with β(i)
k = ωkC (i)

k .
We should mention here that the values of capacitances

both for bandpass and band-stop resonators can be chosen
arbitrarily. However, in this article, considering the techno-
logical constraints, we have chosen the optimal capacitances

. 
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Fig. 4. MBPRs with parallel LC resonators.

values for band-stop and bandpass resonators with a view to
the implementation in microstrip technology.

IV. SYNTHESIS AND EXPERIMENTAL VALIDATION OF

THREE TEST MBPFS

For validating the frequency transformation method and
the implementation proposed in the previous sections, three
examples of MBPFs have been synthesized and experimentally
validated with 3, 4, and 5 bands, respectively. In the first case
(tri-band filter), all the output parameter expressions obtained
from (12) to (21) are presented directly here as an example.
In the other two cases, for the sake of clarity, these expressions
are presented in Appendix (see Sections B and C).

The three test filters are of order 3 with a Chebyshev
approximation and 20-dB bandpass return loss (RL). There
are implemented in a low-cost microstrip technology using
a RO4003C Rogers substrate (dielectric constant: εr = 3.55,
height: h = 0.508 mm, dissipation factor: tan δ = 0.0027)
with copper metallization (metal thickness: t = 17.5 μm,
conductivity: σ = 5.8 × 107 S.m−1). All MBPRs use a
star-like structure according to Fig. 4 topology connecting
N stubs at the same point allowing the implementation of
such multiband filters without a significant increase of the
circuit size compared to a single-band one. All prototypes were
simulated and optimized using ADS software from Keysight
Technologies©. The fabrication of the circuits was made by
laser engraving using a LPKF Protolaser U4.

A. Triple-Band Bandpass Filters

To synthesize a triple-band bandpass filter using the fre-
quency transformation method proposed here, one needs to
take N = 3 in (12) to (21). The resonance angular frequencies
and slope parameters are then given by

ω0 =
√

−n0n5

n1
(33)

ω1 =

√√√√−n3 −
√

n2
3 − 4n5n1

2n5
(34)

TABLE I

COMPONENT VALUES OF THE IDEAL LC TRI-BAND
THIRD-ORDER BANDPASS FILTER

ω2 =

√√√√−n3 +
√

n2
3 − 4n5n1

2n5
(35)

and

b0 =
√ −n0

n1n5
(36)

b1 = ω1(ω
2
1 − ω2

2)

Y1 + Y2ω
2
1

(37)

b2 = ω2(ω
2
2 − ω2

1)

Y1 + Y2ω
2
2

(38)

with

Y1 =
n2 − n0n3

n1
− n1

n5

n5
(39)

Y2 =
n4 − n0n5

n1
− n3

n5

n5
(40)

where the n p (p ∈ [0; 5]) are determined using (8) according
to the specifications of the designed triple-band bandpass filter
given in terms of low and high cut-off angular frequencies.
The latter are then transposed in terms of resonant angular
frequencies and slope parameters. As an example, the arbitrary
following specifications are proposed.

1) Bandpass 1: 2.00–2.10 GHz (BW: 100 MHz).
2) Bandpass 2: 2.45–2.65 GHz (BW: 200 MHz).
3) Bandpass 3: 2.95–3.20 GHz (BW: 250 MHz).

The resulting resonant frequencies and slope parameters are
f0 = ω0/2π = 2.604 GHz, f1 = ω1/2π = 2.191 GHz,
f2 = ω2/2π = 2.812 GHz, b0 = 4.735, b1 = 4.277,
and b2 = 5.818. A tri-band third-order bandpass filter is
first implemented in an ideal LC structure (see Fig. 3), each
resonator following the model of Fig. 4. All the resonator
components and J-inverters, calculated from (25) to (32),
are summarized in Table I. Note that the three tri-band
resonators are identical in order to simplify the microstrip
implementation in the next step. This is possible by fixing the
three C L P

i components at the same value using an admittance
scale factor when introducing the J-inverters in the low-pass
prototype [32]. Fig. 5 shows the frequency response of this
filter. The three simulated bands are in perfect agreement with
the specifications.

The filter was then implemented in microstrip technology
with the substrate characteristics given in the introduction
of this section. Fig. 6 presents the layout of the fabricated

. 
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Fig. 5. Ideal frequency response of the specified triple-band bandpass filter.

Fig. 6. Layout of the fabricated tri-band bandpass filter.

tri-band bandpass filter and Fig. 7 a picture of the fabricated
filter together with the quad- and quint-band ones. It consists
in three-branched stars, allowing to keep the filter compact.
Each star is made of a tri-band resonator together with its
previous and next inverters. A tri-band resonator consists in
one bandpass element, i.e., a short-circuit stub of length λ/4
at ω0, and two stopband ones consisting of a short-circuit stub
of length λ/4 at ω1 and ω2, respectively, and separated from
the connection point by another quarter-wavelength line at the
same respective frequency having the J-inverter role. Com-
pared with the method described in [30], our proposal allows a
direct determination of the values of circuit elements from the
transformation formulas. For implementation, as mentioned in
Section III, we have chosen suitable values to avoid too narrow
(less than 0.1 mm) or too wide (more than 4 mm) linewidth.
All lengths and widths of the resonators and the inverters are
summarized in Table II. The tri-band filter is 72.1×68.5 mm2

without taking account for the two 50 � access lines.
Fig. 8 presents the EM-simulated and measured frequency

responses of the fabricated tri-band bandpass filter. The
correlation between both responses is very good over the
entire frequency band. The measured RL are 12.3, 14.9, and
14.1 dB from the first to the last bandpass and the measured

Fig. 7. Photograph of the three fabricated filters: tri-band (top), quad-band
(bottom left), and quint-band (bottom right).

TABLE II

MICROSTRIP TRI-BAND THIRD-ORDER BANDPASS FILTER:
LENGTH AND WIDTH DIMENSIONS (IN MM)

Fig. 8. EM-simulated (dotted lines) and measured (solid lines) S-parameters
of the triple-band bandpass filter.

insertion loss (IL) are 1.98, 2.17, and 2.01 dB, respectively.
The isolation between the three bandpass are better than
58.1 and 57.6 dB.

B. Quad-Band Bandpass Filters

In the same way as for the tri-band case, the synthesis of a
quad-band bandpass filter using this frequency transformation

. 
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TABLE III

COMPONENT VALUES OF THE IDEAL LC QUAD-BAND
THIRD-ORDER BANDPASS FILTER

method starts with the determination of the expression of the
resonant angular frequencies and the associated slope parame-
ters as functions of the low and high cut-off frequencies. To do
so, one takes N = 4 in (12) to (21). The resulting equations
are given in Appendix B for a sake of clarity.

Arbitrary specifications are also proposed here as an exam-
ple to design, fabricate, and measure a third-order quad-band
bandpass filter. Note that a first example of quad-band band-
pass filter was already presented in [33] with four equal
absolute bandwidths. The equations presented in [33] and
here are slightly different in their writing (especially the n p

coefficients) but completely equivalent. This is only because
the generalization to any number of bands was not established
at the time [33] was written. The specifications proposed in
this article show different bandwidths for each band are as
follows:

1) Bandpass 1: 2.00–2.08 GHz (BW: 80 MHz).
2) Bandpass 2: 2.30–2.40 GHz (BW: 100 MHz).
3) Bandpass 3: 2.65–2.80 GHz (BW: 150 MHz).
4) Bandpass 4: 3.04–3.20 GHz (BW: 160 MHz).
The resulting resonant frequencies and slope parameters are

f0 = ω0/2π = 2.573 GHz, f1 = ω1/2π = 2.146 GHz,
f2 = ω2/2π = 2.501 GHz, f3 = ω3/2π = 2.951 GHz, b0 =
5.251, b1 = 6.381, b2 = 5.697, and b3 = 8.066. An ideal LC
structure implementation is then made as in the tri-band case
and all the resonators are again fixed identical by taking all the
C L P

i equal. All the resonator component values and J-inverter
ones are summarized in Table III. As shown in Fig. 9, the four
obtained bands are, as previously, in perfect agreement with
the specifications.

Fig. 10 presents the layout of the fabricated quad-band band-
pass filter and a picture is also shown in Fig. 7. Again, three
stars separated by J-inverters are obtained, each star including
six branches this time: one bandpass element, three stopband
ones, and the previous and next J-inverters. All lengths and
widths of the resonators and the inverters are summarized
in Table IV. The quad-band filter is 97.7 × 68.9 mm2 without
taking into account the two 50 � access lines.

Fig. 11 presents the EM-simulated and measured frequency
responses of the fabricated quad-band bandpass filter. As in
the tri-band case, both responses are in near perfect agreement.
The measured RL are 12.1, 14.2, 14.2, and 14.3 dB from the
first to the fourth bandpass and the measured IL are 2.90, 2.94,
2.95, and 2.65 dB, respectively. Very good isolation are here
again achieved between all the bandpass.

Fig. 9. Ideal frequency response of the specified quad-band bandpass filter.

Fig. 10. Layout of the fabricated quad-band bandpass filter.

TABLE IV

MICROSTRIP QUAD-BAND THIRD-ORDER BANDPASS FILTER:
LENGTH AND WIDTH DIMENSIONS (IN MM)

C. Quint-Band Bandpass Filters

In the same way as for the two previous cases, one can
derive the equations of the resonant angular frequencies and
the slope parameters for the quint-band bandpass filters as
functions of the low and high cut-off angular frequencies by
taking N = 5 in (12) to (21). The resulting equations are given
in Appendix C for the sake of clarity.

The arbitrary specifications proposed here to design an
example of quint-band bandpass filter are as follows:

. 
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Fig. 11. EM-simulated (dotted lines) and measured (solid lines) S-parameters
of the quad-band bandpass filter.

TABLE V

COMPONENT VALUES OF THE IDEAL LC QUINT-BAND
THIRD-ORDER BANDPASS FILTER

1) Bandpass 1: 2.00–2.10 GHz (BW: 100 MHz).
2) Bandpass 2: 2.30–2.38 GHz (BW: 80 MHz).
3) Bandpass 3: 2.60–2.69 GHz (BW: 90 MHz).
4) Bandpass 4: 2.88–2.98 GHz (BW: 100 MHz).
5) Bandpass 5: 3.20–3.30 GHz (BW: 100 MHz).

They leads to the following resonant frequencies and slope
parameters: f0 = ω0/2π = 2.548 GHz, f1 = ω1/2π =
2.178 GHz, f2 = ω2/2π = 2.480 GHz, f3 = ω3/2π =
2.797 GHz, f4 = ω4/2π = 3.137 GHz, b0 = 5.421,
b1 = 6.075, b2 = 5.735, b3 = 8.323, and b4 = 10.050.
An ideal LC quint-band bandpass filter is also implemented
to validate the method. The resonator component and J-inverter
values are summarized in Table V and the frequency responses
shown in Fig. 12. Once again, all the bands are in perfect
agreement with the specifications.

Fig. 13 presents the layout of the fabricated quint-band
bandpass filter and a picture is also shown in Fig. 7. Three
stars separated by J-inverters are obtained, each star including
seven branches with an additional stopband one compared to
the quad-band case. All lengths and widths of the resonators
and the inverters are summarized in Table VI. The quint-band
filter is 91.5 × 77.3 mm2 without taking into account the two
50 � access lines.

Fig. 12. Ideal frequency response of the specified quint-band bandpass filter.

Fig. 13. Layout of the fabricated quint-band bandpass filter.

TABLE VI

MICROSTRIP QUINT-BAND THIRD-ORDER BANDPASS FILTER:
LENGTH AND WIDTH DIMENSIONS (IN MM)

Fig. 14 presents the simulated and measured frequency
responses of the fabricated quint-band bandpass filter. Here
again, simulations and measurements are in a good correlation,
except a slight frequency shift in the higher transmission zeros.
This can be explained by the low-cost technology process,
which implies in particular that the vias were made by hand.

. 
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Fig. 14. EM-simulated (dotted lines) and measured (solid lines) S-parameters
of the quint-band bandpass filter.

Fig. 15. Ideal frequency response of the specified quint-band elliptic bandpass
filter.

The measured RL are 24.8, 17.5, 13.9, 10.9, and 10.8 dB from
the first to the fifth band and the measured IL are 3.01, 4.95,
4.98, 4.75, and 3.45 dB, respectively. Very good isolation are
again achieved between all the bandpass.

V. DISCUSSION

Using our proposed transform function, we always assume
that lower cut-off angular frequencies ωLi and the upper
cut-off angular frequencies ωHi (i ∈ [1; N]) are mapped
to −1 and +1 in the � normalized symmetrical domain,
respectively. This features that only transfer functions that
are symmetric in the low-pass domain can be used in this
method. Chebyshev, Butterworth, and elliptic filters have all
symmetrical structures where the symmetry is defined as
g0 = gn+1, g1 = gn, g2 = gn−1, etc., in the low-pass
domain. There are all therefore compatible with our pro-
posed synthesis method. For Gaussian low-pass prototype
(flat-group-delay), filters with order n = 1 are identical to
the first-order Butterworth low-pass prototype and can also
be synthesized with this method. However, Gaussian filters
with order n ≥ 2 are structurally asymmetrical as discussed

in [22]. It is therefore impossible to synthesize multiband filter
with this method. Nevertheless, flat group-delay can also be
obtained with symmetrical structures using cross-coupling as
presented in [34] and [35].

As an example, we present a multiband elliptic filter with
quint-band response. We consider a fourth-order filter with
an elliptic approximation (23-dB RL with normalized TZs at
±2.2 j ). The specifications for this case are as follows:

1) Bandpass 1: 3.00–3.10 GHz (BW: 100 MHz).
2) Bandpass 2: 3.30–3.40 GHz (BW: 100 MHz).
3) Bandpass 3: 3.60–3.70 GHz (BW: 100 MHz).
4) Bandpass 4: 3.90–4.00 GHz (BW: 100 MHz).
5) Bandpass 5: 4.20–4.30 GHz (BW: 100 MHz).

The resonating frequencies and slope parameters can be easily
obtained by the generalized formulas in Section II. Each
sub-band is a bandwidth-scaled and frequency-translated copy
of the original low-pass prototype (i.e., each bandpass reaches
23-dB in-band RL and owns two TZs on both sides, as shown
in Fig. 15). This example also shows that it is possible to
introduce several TZs between each bandpass with this method
using elliptic filters.

VI. CONCLUSION

In this article, a new generalized synthesis method for
designing MBPF has been proposed. This method is relatively
simple and leads to a completely analytical equation system.
It uses slope parameters offering flexibility to implement
the designed filters with noncoupled structures, using them
directly, or with coupled ones calculating the coupling coeffi-
cients from these parameters [36]–[38]. Note that from six
bands and beyond a numerical resolution of (14) will be
necessary because of the degree of this equation.

Three third-order MBPFs with a different number of bands
(3, 4, and 5, respectively) were implemented in microstrip
technologies to illustrate the efficiency of the synthesis
method. A star-like structure has been chosen to realize each
multiband bandpass resonator of the filters. This enabled
to keep the filters compact and the implementation simple.
Very good agreement has been achieved between theoretical
responses and measurements. This implementation solution
is in fact mainly limited by the maximum bandwidth that
can be obtained with the bandpass elements. Increasing the
number of bands would lead to narrow bandwidth for each
band and sharp rejection between them. Such a rejection could
be difficult to realize because it implies that the impedance of
J-inverters separating the bandpass part to the stopband ones
in each multiband resonator will increase potentially reaching
technological limits. Nevertheless, such an implementation is
just an example, which has the interests to be low cost and
easy to do, and any other topology or technology allowing
wider bandwidths can be used.

APPENDIX A
EXPRESSION GOVERNING THE RESONANT ANGULAR

FREQUENCIES OF THE BAND-STOP RESONATORS

As presented in Section II, the resonant angular frequen-
cies of the stopband parts of an N-band bandpass res-
onator (MBPR) are the positive solutions of (14).

. 
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In the case of an N-band bandpass filters, the coefficients
n p of the U (N)(ω) function [see (3)] are given by (10) in the
case of an odd value of p (p = 2q − 1, q ∈ [1; N]).

For q = N and so p = 2N − 1, this equation leads to

n2N−1 = −ω0

b0
(41)

knowing that P0
(W (1→N−1)

) = 1 as defined in Section II-A.
So, (10) becomes

n p = n2q−1

= (−1)N−q n2N−1PN−q
(W (1→N−1)

)
. (42)

Applying (42) with q = N − 1 (p = 2N − 3) leads to

n2N−3 = −n2N−1P1
(W (1→N−1)

)
. (43)

Considering any angular frequency of the stopband parts
ωk , k ∈ [1; N − 1], this expression can be written as follows:

n2N−3 = −n2N−1

[
P1

(
W (1→N−1)

{k}
)

+ ω2
k

]
(44)

which implies that

n2N−1P1

(
W (1→N−1)

{k}
)

= −[
n2N−3 + n2N−1ω

2
k

]
. (45)

In the same way, for q = N −2 ( p = 2N −5), (42) becomes

n2N−5 = n2N−1P2
(W (1→N−1)

)
= n2N−1

[
P2

(
W (1→N−1)

{k}
)

+ ω2
kP1

(
W (1→N−1)

{k}
)]

= n2N−1P2

(
W (1→N−1)

{k}
)

− [
n2N−3ω

2
k + n2N−1ω

4
k

]
(46)

which leads to

n2N−1P2

(
W (1→N−1)

{k}
)

= n2N−5 + n2N−3ω
2
k + n2N−1ω

4
k . (47)

Continuing thus for the other values of q from N − 1 to 1,
one can show that

n2N−1PN−q

(
W (1→N−1)

{k}
)

=
N−q∑
r=0

n2(q+r)−1ω
2r
k . (48)

Let’s focus now on the case q = 1 (p = 1). First, using (42),
we have

n1 = (−1)N−1n2N−1PN−1
(W (1→N−1)

)
= (−1)N−1ω2

k n2N−1PN−2

(
W (1→N−1)

{k}
)
. (49)

Using (48), this expression becomes

n1 = (−1)N−1ω2
k

1

(−1)N−2

N−2∑
r=0

n2r+3ω
2r
k

= −
N−1∑
r=1

n2r+1ω
2r
k . (50)

Therefore, we obtain the equation governing the resonant
angular frequencies of the band-stop resonators

N−1∑
r=0

n2r+1ω
2r
k = 0. (51)

This equation has 2(N−1) solutions, one half being positive
and the other half negative. Of course, in this case, only the
positive solutions are retained.

APPENDIX B
RESONANT ANGULAR FREQUENCIES AND SLOPE

PARAMETERS FOR A QUAD-BAND BANDPASS FILTER

ω0 =
√−n0n7

n1
(52)

ω1 =
√

− n5

3n7
+ 3

√
�1 + 3

√
�2 (53)

ω2 =
√

− n5

3n7
+ �3

3
√

�1 + �4
3
√

�2 (54)

ω3 =
√

− n5

3n7
+ �4

3
√

�1 + �3
3
√

�2 (55)

b0 =
√ −n0

n1n7
(56)

b1 = ω1(ω
2
1 − ω2

2)(ω
2
1 − ω2

3)

Y3ω
4
1 + Y2ω

2
1 + Y1

(57)

b2 = ω2(ω
2
2 − ω2

1)(ω
2
2 − ω2

3)

Y3ω
4
2 + Y2ω

2
2 + Y1

(58)

b3 = ω3(ω
2
3 − ω2

1)(ω
2
3 − ω2

2)

Y3ω
4
3 + Y2ω

2
3 + Y1

(59)

where

�1 = �1 +
√

�2
1 + �3

2 (60)

�2 = �1 −
√

�2
1 + �3

2 (61)

�1 = n5n3

6n2
7

− n3
5

27n3
7

− n1

2n7
(62)

�2 = n3

3n7
− n2

5

9n2
7

(63)

�3 = −1 + j
√

3

2
(64)

�4 = −1 − j
√

3

2
(65)

Y1 =
n2 − n0n3

n1
− n1
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n7
(66)

Y2 =
n4 − n0n5

n1
− n3
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n7
(67)

Y3 =
n6 − n0n7
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− n5

n7
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APPENDIX C
RESONANT ANGULAR FREQUENCIES AND SLOPE

PARAMETERS FOR A QUAD-BAND BANDPASS FILTER

ω0 =
√

−n0n9

n1
(69)

ω1 =
√

− n7

4n9
− 1

2

(√
R0 + √

R1

)
(70)
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√
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4n9
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2

(√
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R1

)
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