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Abstract

Free navigation of a scene requires warping some reference views to some desired target view-
point and blending them to synthesize a virtual view. Convolutional Neural Networks (ConvNets)
based methods can learn both the warping and blending tasks jointly. Such methods are often
designed for moderate inter-camera baseline distance and larger kernels are required for warping
if the baseline distance increases. Algorithmic methods can in principle deal with large base-
lines, however the synthesized view suffers from artifacts near disoccluded pixels. We present a
hybrid approach where first, reference views are algorithmic-ally warped to the target position
and then are blended via a ConvNet. Preliminary view warping allows reducing the size of the
convolutional kernels and thus the learnable parameters count. We propose a residual encoder-
decoder for image blending with a Siamese encoder to further keep the parameters count low.
We also contribute a hole inpainting algorithm to fill the disocclusions in the warped views. Our
view synthesis experiments on real multiview sequences show better objective image quality than
state-of-the-art methods due to fewer artifacts in the synthesised images.

Keywords: View synthesis, View blending, Convolutional Neural Network, Hole inpainting.

1. Introduction

Free navigation systems allow users to freely browse a scene by arbitrarily changing view-
point. The key benefit of such systems is providing a new immersive user experience and inter-
activity that goes beyond higher image quality and higher realism. A smooth transition between
viewpoints would require to capture the scene from a large number of viewpoints. Because it
is infeasible to acquire all possible viewpoints, only a few selected views are actually captured
(with corresponding depth maps) [1, 2]. Missing viewpoints are usually synthesized exploiting
the captured neighboring view. In the rest of this work, we will refer to the synthesized view as
target view, and to the neighbors used for the synthesis as reference views.

Depth-Image-Based Rendering (DIBR) methods represent state of the art in view synthesis:
they synthesize the target view exploiting the 3D geometry of the scene and the associated depth
maps. First, reference views are warped to the target view position using their corresponding
depth maps. Then, the warped images are blended together to finally produce the sought target
view [3]. Usually, the quality of the synthesis process improves with the number of available
references, as well as its complexity [4] [5]. Much of existing research focuses on the case where
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only a pair of references are available for synthesis: similarly, in this work we will assume that
only two references are exploitable for synthesis.

DIBR-based methods perform less favorably in the case of occlusions, i.e. when a pixel
of the target view is occluded in both references [6]. Occluded pixels are usually inpainted
by interpolating the available neighbors, somewhat mitigating the issue [7, 8, 9, 10, 11, 12].
For example, in [13, 11], multiple warped reference views are combined to fill holes in the
target view. However, many of such methods still yield visible artifacts in the synthesized view,
prompting for improved view synthesis schemes.

Learning-based approaches based on Convolutional Neural Networks (ConvNets) have been
proposed with remarkable results. ConvNet based approaches have been proposed to learn the
view synthesis process end-to-end taking care of all the steps of a typical DIBR method (view
warping, blending and inpainting) [14, 15, 16, 17]. Such approaches limit not only the impact
of occlusions, but also texture misalignment, color dis-harmonization, and different exposures
among cameras [18]. In the case of large baselines, as it is often the case, large convolutional
kernels are in fact required to handle the larger baseline [19]. Large kernels increase the network
complexity at deployment time and makes the network prone to overfitting during training. In
our previous work [20], we explored the idea of preliminary warping the reference views to the
target position, then blending the warped views with the aid of a ConvNet.

We showed that a plausible novel target view can be obtained with a simple architecture,
which outperforms traditional algorithmic methods (blending and inpainting) in most cases.
However, the network showed reduced performance on more complex cases, mainly due to the
limited generalization capacity of such a simple architecture.

The present work builds upon our previous research [20] retaining the ideas of a hybrid
algorithmic-learning scheme where reference views are preliminary warped to the target position
and using an inpainting method built around a median filter to handle occlusions. However, this
work improves our previous approach under several aspects:

• We blend the warped views using a residual encoder-decoder architecture inspired by re-
cent advances in image-to-image translation [21, 22]. Namely, we reformulate our problem
as an image-to-image translation task, aiming to translate warped input real views into the
target view.

• We provide the ConvNet in charge of blending the warped views both the warped and the
inpainted views to allow the network to pick whatever is the best source for resolving each
occluded pixel.

• Unlike image-to-image translation problems, we must deal with multiple reference views
which entails one encoder for each view. To keep low the parameter count, we introduce
a flip-convolve-flip scheme that allows sharing parameters between encoders operating on
symmetric inputs.

• We improved the inpainting method built around a median filter to handle occlusions to
fill all the remaining holes in the warped views.

• We experiment the use of binary masks as an alternative to the inpainted views inputs to
reduce the network complexity.

We experimentally evaluate our proposed approach over multiple wide baseline multiview
video sequences comparing with purely algorithmic and purely learnable state of the art ap-
proaches. Our experiments show that our architecture outperforms competitors in terms of image
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quality for wide baseline sequences while striking a favorable balance between complexity and
performance.

The rest of this document is organized as follows. Section 2 reviews the relevant literature
and introduces the related background. Section 3 describes the proposed view synthesis method.
Section 4 experimentally evaluates the performance of our method, including an ablation study.
Finally, Section 5 discusses the learned lessons and discusses future research.

2. Related Works

View synthesis methods can be divided into algorithmic-based methods on one hand and
learning-based methods on the other. In this section we describe the state of the art for both
classes and we highlight the relative limitations. Finally, we recapitulate on the limitations of
existing view synthesis methods that motivate our work.

2.1. Algorithmic-based methods

Depth-Image-Based Rendering (DIBR) methods operate by first warping at least two ref-
erence views to a target virtual view position exploiting depth maps and cameras’ parameters.
Then, warped reference views are blended to synthesize the target virtual view. We review here
the most relevant representatives of such method.

2.1.1. MPEG VSRS and VVS
VSRS [23] is an early reference software for view synthesis released by the MPEG as a

result of a challenge for 6 degrees of freedom (6-DoF) of the MPEG-I group. The VSRS scheme
consists in warping the depth maps of the reference views to the target view position. Then
the warped depth maps are used by the reference textures and to project the target view by a
backward warping method, obtaining warped images. Finally, the warped views are blended by
exploiting the warped depth maps. Despite its robustness, VSRS had a few drawbacks that caused
its performance to flutter from content to content, especially when the synthesis is performed at
the receiver, after decoding the compressed reference views.

VVS [3] is a later reference software for view synthesis released by the MPEG superseding
VSRS. VVS is conceptually similar to VSRS, however it accounts for the compression artifact
on view textures and depth maps at the receiver side. Namely, VVS improves the precision of the
backward texture warping and better preserves edges via a conditional depth blending process,
up-sampling the reference textures, and using reliability maps that indicate which pixels are safe
to be warped to the target view position. Contrary to VSRS, VVS gives priority to foreground
pixels during warping, and warps ”triangles” instead of ”points” to generate fewer occlusion
artifacts in the warped view followed by a series of hole inpainting steps. VVS outperforms many
view synthesis methods in reason of the high quality of the warped reference views. However,
we notice that the method has difficulties to recover occluded regions in complex scenes (larger
baseline, or highly detailed content) producing persistent artifacts in the synthesized view. Our
investigations showed that errors accumulate all over the sequence of steps corresponding to the
warped textures blending and the inpainting process.
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2.1.2. Other algorithmic methods
Penner et al. [24] propose a soft 3D reconstruction of the scene that preserves depth uncer-

tainty through each stage of 3D reconstruction and rendering, improving quality, continuity and
robustness. Canclini et al. [25] estimate the infinite homography and assume it is sufficient to
generate a novel view from uncalibrated reference images. To improve quality of synthesized
views by DIBR Xu et al. [26] propose depth map misalignment correction and dilation. In
coding scheme and to enhance compression performance, Xiao et al [27] suggest a scalable bit
allocation between texture and depth views to enable synthesis virtual views in coding format.
However, Yao et al [28] propose depth map down-sampling in order to minimize the view syn-
thesis distortion. Lai et al [29] use a depth-reliability-map-based occlusion aware approach to
create a segmentation mask, that indicates where the information in the novel synthesized view
should be blended. Lin et al [30] propose a fast multi-view image rendering method that uses a
pixel mapping information to derive a rendering image. This method reduces rendering time and
memory size comparing to a conventional DIBR method, however it has the same effect in terms
of synthesized image quality as DIBR. Chaurasia et al [31] introduce a new DIBR algorithm
robust to missing or unreliable geometry by proposing a depth synthesis approach. They over-
segment the reference images, creating superpixels of homogeneous color content which tends
to preserve depth discontinuities.
However, the critical issues in all view synthesis algorithms remains in the occluded regions in
the output image when rendering a scene from a novel viewpoint. These regions typically have
to be filled using inpainting algorithms, which might yield unconvincing results.

2.1.3. Hole inpainting
A common issue with all the above methods is recovering occlusions in the reference views,

i.e. areas that are occluded in all references, that show up in the synthesized view as visual ar-
tifacts. Resolving occlusions is a challenge per se and several approaches have been proposed,
mainly based on hole inpaiting [7, 8, 9, 10, 11, 12, 32].
To minimize disocclusion holes in the synthesized novel view, Thatte et al. [33] proposed a sta-
tistical model that predicts the likelihood of missing data in synthesized images as a function of
the viewpoint translation.
Li et al. [34] employed multiple views to synthesize output virtual views, by proposing a scheme
of selective warping of complementary views developed by locating a small number of useful
pixels for hole reduction.
In [11, 13], multiple reference views are warped and combined to generate a blended image.
Other methods use the neighbor pixel color or the depth information to extrapolate or interpolate
the occluded pixels [8, 35], or by pre-processing the warped depth maps [36].
In [6], Luo et al. extract the foreground objects in reference images and synthesize the back-
ground to be used to fill holes in the synthesized view, as they consider that occluded pixels have
the same patterns as the background.
Yao et al [37] exploit the temporal correlation of texture and depth information to generate a
background reference image, used to fill the holes associated to the dynamic parts of the scene.

2.2. Learning-based methods
Over the years, a number of learning-based approaches to view synthesis relying on Conv-

Nets have been proposed.
Early approaches to view synthesis mainly addressed the problem of temporal frame rate

upsampling, where missing pixels are interpolated temporal or spatial neighbors. Niklaus et
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al. [38], for example, propose a convolutional architecture capable of joint motion estimation
and pixel synthesis for temporal up-sampling. Liu et al. [15] propose a convolutional architec-
ture that output is a 3D voxel flow field, used to sample the original input video with a volume
sampling function to synthesize the final frame. The work in [19] deals with large object mo-
tion or occlusion by explicitly detecting occlusion leveraging the depth information to warp the
temporally adjacent frames. Such approaches assume that the equivalent camera displacement
between consecutive frames of the same view is small. So, they are intrinsically unsuited to the
free viewpoint scenario we address due to the large baseline distance between cameras. Regmi
et al. [39] use a homography as a pre-processing step to map the images between reference
views and guide a generative adversarial networks to inpaint the missing regions in the novel
view. However, their method mainly addresses the problem of generating images across street
and aerial views.

Later on, view synthesis methods designed especially for free-navigation have been proposed.
Flynn et al. [10] proposes a deep convolutional architecture that synthesizes the target view
directly from the reference view pixels, avoiding the multiple pre-processing stages of traditional
approaches. Such an approach requires a large number of images to be trained end-to-end in a
supervised way. Hemad et al. [12] designed a ConvNet that takes four warped images with
a global mesh of the scene as inputs, and a voxelized representation of the scene is used to
accelerate the reference view selection. Each voxel indexes relevant triangles from the per-view
meshes, which will be rendered to the target viewpoint. Flynn et al. [9] estimate a multi-plane
image from sparse views that uses learned gradient descent. In this method, they use a set of four
input views captured in a 2D array, and its convenience is in complexity related to the number
of depth planes that increase with the maximum disparity in order to produce the multi-plane
images. Inchang et al. [40], they proposed a neural network in charge of the refinement of a
pre-synthesized view. However this method struggles to fix artifacts that look natural. Due to
network complexity issues, such methods would have challenges to cope with persistent artifacts.

More recently, end-to-end view synthesis methods relying on a single image have appeared.
In Xiaogang Xu et al. [41], the user specifies arbitrarily the desired new camera-pose, and their
encoder-decoder characterizes the input image properties in terms of 3D-structure, color and
texture, to hallucinate the image of a novel view. Olivia Wiles et al. [18] propose a novel end-to-
end model using a single image at test time, trained on real images without using any ground-truth
3D information, they instead develop a differentiable point cloud renderer used to transform 3D
point cloud of features to the target view. Other related works based on CNN for view synthesis
are proposed in [15] [16]. Due to complexity problems faced when warping a reference view
using a ConvNet and due to the lack of information on the 3D scene, such approaches would have
issues to deal with view synthesis with large disparity. Unlike the previous learning-based view
synthesis methods, Mildenhall et al. [42] opted for a non-convolutional deep fully-connected
neural network referred to as a multiplayer perceptron, it takes as input the spatial location and the
viewing direction coordinates to synthesize a 2D novel view. This technique achieves excellent
results, but it has been applied to cases of small baseline.

2.3. Objectives and approach
Our state-of-the-art analysis suggest that none of the existing methods is free from draw-

backs in the form of artifacts in the synthesized image. With algorithmic-based approaches such
as VVS, view blending and hole inpainting yield artifacts in the synthesized view. With learning-
based methods, problems in generalization and consistency can be traced back to the end-to-end
view warping and blending process. While blending warped reference views allows handling
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large baselines with small kernels, it does not solve the problem with the artifacts in the synthe-
sized view. In our previous work [20], we took inspiration from convolutional architectures for
image super resolution [43]. Conversely, in this work we take a different approach inspired by
recent advances in image-to-image (I2I) translation [21, 22]. I2I translation consists in mapping
one image to another and tackles problems such as image colorization, super-resolution and, to
some extent, also view synthesis. Most I2I approaches rely on encoder-decoder architectures
where the input image is first projected on a latent feature space by a convolutional encoder.
Usually, the encoder relies on pooling layers or multiple-strided convolutional layers to reduce
the spatial resolution of the feature maps. Next, such features may pass through a bottleneck
layer that projects them over a feature space of (usually) lower dimensionality. Then, these
features are projected back to the original pixel domain by a transposed convolutions decoder.
The decoder usually employs transposed convolutions (or fractionnally-strided convolutions) to
recover the original resolution of the translated image. The transposed convolution is used to
conduct optimal up-sampling, it also has learnable parameters. A key challenge to tackle in our
view synthesis scenario is i) how to encode into the latent features space the left and the right
warped views and ii) how to blend the features in the latent space towards the synthesized view.
A further key challenge for our application is how to prevent occlusions in the warped images
from generating artifacts in the synthesised view, a problem that in I2I architectures is usually
not present. In the next section, we propose a convolutional architecture for view synthesis that
takes inspiration from I2I methods yet tackles challenges unique to view synthesis problems.

3. Hybrid Dual Stream Blender (HDSB)

Warping process

Depth-based method
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Figure 1: The proposed hybrid pipeline for wide-baseline view synthesis: reference views are first warped to the target
position, disocclusions are inpainted and eventually blended by a ConvNet.

Fig. 1 illustrates the proposed wide-baseline view synthesis pipeline, where given two left and
right input reference views IL and IR are composed by textures T L and T R, and depths DL and DR

respectively. We aim at synthesizing texture T v of the target view that lies in the middle between
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the reference views. Towards this end, we propose a pipeline for view synthesis composed of a
warping step followed by a hole filling step and a final blending step. First, the reference views
are warped to the target position, producing warped references aligned with the target view to
synthesize. Warping allows us to blend the warped images using a ConvNet with small kernels
later on. Second, the hole inpainting consists in generating a filled texture (T Lw

f and T Rw
f ) for

each warped reference texture (T Lw and T Rw). Third and last, a ConvNet blends the left and right
warped references (with filled textures T Lw

f and T Rw
f ) to the target view T v. The details of each

step are detailed in the following.

3.1. Warping the reference views to the target position

The warping process consists in warping textures (T Lw,T Rw) to the target view position (T v)
with the aid of the depth maps. Namely, this step takes as input the two left and right reference
views T L and T R and produces as outputs two warped reference views T Lw and T Rw to the same
intermediate novel target view position T v. The textures are back-projected to the target position
as follows. Let pixels tr and tv be the projections of a same real world point denoted by X,
and with coordinates (ur, vr, 1), (uv, vv, 1) respectively. Lets us consider Kr, Kv and Rr, Rv the
respectively 3x3 intrinsic camera parameters and the 3x3 rotation matrix for each camera. Then,
tv can then be expressed as

tv = KvRv(KrRr)−1(ztr + KrRrCr) − KvRvCv, (1)

where z is the depth value. In particular, the two pairs of texture and depth IL = {T L,DL} and
IR = {T R,DR} are up-sampled to half-pixel or quarter-pixel accuracy, in which the warping and
interpolation steps are carried out.

In practical implementations of the above method, one has to decide the value to assign to
pixels that are occluded in the reference views but visible in the target (disoccluded pixels). In
practice, often those pixels are arbitrarily assigned a zero value, which entails a few drawbacks.
In fact, a zero-valued pixel is ambiguous as it could represent either a non-occluded dark pixel
or a disocclusion. While the ConvNet in charge of blending the warped views may learn this by
itself, this would make more challenging the learning problem.

One possible solution is to provide an occlusion map for each warped texture as input to the
network allowing a hypothesis on each pixel claiming whether yes or not it should be given a
value, cf. Sec 4.3.2. An even better solution (at least, according to our experimental results) is
to provide an additional version of the warped image where the disoccluded pixels are filled as
much as possible with relevant information. We take this latter approach and we detail it the
following section.

3.2. Hole inpainting

Due to the warping process of the reference view towards the target view, some visible area
in the target view are invisible in the reference view and thus, they are represented as black holes
in the warped views where each disoccluded pixel at a given position (r, c), T Lw(r, c) is set to
zero. An example of the filled textures (T Lw

f or T Rw
f ) is represented in Fig. 3.

The hole inpainting process fills in holes in textures (T Lw and T Rw) generated during warping
as a result of pixel disocclusions. Namely, hole inpainting takes as input the left and right warped
textures (T Lw and T Rw) and produces as output the corresponding warped, filled, textures (T Lw

f

and T Rw
f ) respectively. First, every disoccluded pixel at the position (r, c) in T Lw (i.e, every
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Figure 2: The two left and right warped input textures and their corresponding binary masks Baloons sequence.

T Lw(r, c) == 0) is filled with the value of the co-located pixel at the position (r, c) in T Rw if the
latter is not occluded (i.e T Rw(r, c) , 0). Then, the same procedure is followed to fill T Rw using
non-occluded pixels from T Lw. However some pixels may still be occluded at this point when
the new area in the target view is invisible in both left and right reference views.

To fill the remaining holes in T Lw
f and T Rw

f , we use for each remaining disoccluded pixel in
T Lw

f and T Rw
f its non-occluded neighboring pixels. Therefore, we assume that the disoccluded

pixels may appear only to the left or the right of foreground objects of the scene regarding the
warping direction. Accordingly, we assign to each disoccluded pixel the median value of its five
left or right neighboring valid pixels. Considering the remaining disoccluded pixels in T Lw

f to
be filled, each disoccluded T Lw(r, c) value is filled with the median value of the following five
neighboring valid non-occluded pixels: T Lw

f (r−1, c),T Lw
f (r−1, c+1), T Lw

f (r, c+1),T Lw
f (r+1, c+1)

and T Lw
f . (r + 1, c). A pseudo-code of this algorithm applied on the left warped image T Lw is in

Alg. 1. The resulting filled textures (T Lw
f , T Rw

f ) go along within the warped textures (T Lw, T Rw)
as inputs to the ConvNet responsible for the blending step described in the next section. In a
nutshell, to fill holes in the left warped view, we leverage the knowledge that the holes will appear
on the right side of the foreground objects, and we want to fill the missing information using the
background. Thus, we sweep the image row after row, from left to right, filling holes pixel by
pixel using the median over five right not occluded neighbours. We use the same technique to
fill holes in the right warped image but instead we sweep the image from right to left, since
the holes appears on the left of the foreground objects, using the median over the left five not
occluded neighbors. Combining the two steps together, our technique allows reasonable results
with larges holes. Finally, an approximation of the proposed method consists in using binary
masks, in place of the filled textures, increasing speed and trading off visual quality.

Eventually, since generating filled warped textures is time and memory consuming, we pro-
pose here a lower complexity alternative based on occlusion maps. First, we generate a binary
mask for each reference warped texture by labeling occluded pixels as 1, 0 otherwise. Fig 2 il-
lustrates how occluded pixels in the reference image correspond to the visual black holes valued
as 0. Therefore, as a low-complexity alternative, we propose to use the two reference warped
textures and their corresponding binary masks (ML

b ,M
R
b ) as inputs to our architecture, instead of

the filled textures. In Sec. 4.3.2 we will use such method as a benchmark method to evaluate our
proposed hole inpainting algorithm. C1

3.3. ConvNet-based blending
As a third and final step, the warped textures (T Lw,T Rw) and the relative filled counterparts

(T Lw
f ,T Rw

f ) are blended together into a novel viewpoint using a ConvNet. We describe here the
architecture of the CNN and the relative training procedure.
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TLw TRw

T Lw T Rw
f f

Figure 3: The two left and right warped input textures T Lw and T Rw and their corresponding filled textures T Lw
f and T Rw

f
with details Baloons sequence.

3.3.1. ConvNet architecture
Recently, image-to-image translation architectures [21, 44] have shown that it is possible to

map an image from a first visual domain to another image from a different domain. Indeed, we
consider that the image-to-image problem is refined to view blending, so it may be reasonable
to take inspiration from these architectures. However, there are some remarkable differences
between image-to-image translation and the view blending problem considered here. First, we
need to deal with a total of four inputs (the two warped reference textures and the relative filled
textures) rather than with a single input image. Second, each pair of inputs (T Lw,T Lw

f ) and
(T Rw,T Rw

f ) (cf. Fig 1), is characterized by a specific type of artifacts to be recovered. As one
reference view is warped from the left side and the other from the right side, they do not share
the same disocclusion problems. Therefore, our network should learn how to exploit such inputs
together to obtain one synthesized view using and adapted architecture originally conceived for
image-to-image translation task. Thus, we propose a specific encoder-decoder architecture that
combines its four inputs and generates one output.

Our architecture is illustrated in figure 4 and is composed of three parts, the two encoders,
the blender, and the decoder.

Encoders. Our ConvNet includes a pair of identical encoders, one for the left and one for the
right view. We assume that all textures are 3-channels color images, e.g, in RGB or YUV format.
The left encoder (the top encoder in Fig. 4) takes in input the left view composed of textures
(T Lw,T Lw

f ); the right encoder(the bottom encoder in Fig. 4) takes in input the right view made of
textures (T Rw

f ,T Rw). The role of each encoder is to project the views to a spatially-subsampled
latent feature space. To this end, each encoder includes three convolutional layers with 64, 128
and 256 filters respectively of size 7x7 for the first layer and 3x3 for the last two, all followed by
ReLU activations. Filters in the convolutional layers have 2-units stride, so that the feature maps
in output of each layer are half the size of the feature maps in input to the layer. Eventually, the
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Figure 4: Deep Dual Stream Blender Architecture sharing parameters in the encoder stage.

feature maps output by the encoder are 1
8−th the size of the input textures. We found by extensive

experimentation that such encoder topology achieves the best tradeoff between semantic depth
and spatial resolution of the output feature maps.

Next, we propose to reduce the number of learnable parameters by sharing weights among
encoders [45]. However, just sharing the same weights among the two encoders would be sub-
optimal (as we experimentally verify in Sec. 4.3.4) since the left and right views do not share
identical disocclusion artifacts. Indeed, occluded pixels in the left warped views will occur on
the right side of objects, whereas in the right warped views occlusions will occur on the left
side. That is, occlusion artifacts will show on the two opposite side of the objects in left and
right views. Therefore, we propose a flip-convolve-flip approach that allows sharing parameters
among encoders. First, we horizontally flip (mirror) the right view so that occluded pixels show
on the right side of objects, as in the left view and as illustrated in Fig. 5. Then, the feature
maps generated from the right encoder are horizontally flipped a second time. This produces fea-
ture maps that are semantically similar to those generated by the left encoder and can be easily
merged by the bottleneck block later on while sharing parameters among encoders. While an
extension of this scheme to the case of vertically arranged cameras by applying a vertical mir-
roring rather than horizontal may be theoretically envisaged, its discussion is out of the scope of
this work which deals with arrays of 1-D horizontally arranged cameras. In Fig. 4, the mirroring
operations are denoted by circled arrows.

Left warped texture Right warped texture Mirrored right warped texture

Figure 5: Occlusions in the left view appear to the right of objects, occlusions in the right view to the left. When the right
view is flipped, occlusions appear on the right of objects, as for the left view (Newspaper sequence).
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Blender. The blender includes 6 residual blocks with 512 filters each and blends the feature
maps extracted from the left and right views into a set of feature maps that holds a suitable
representation of the desired target view. Our experiments showed that residual blocks are better
suited than convolutional layers for the task of blending the downsampled feature maps into the
target view. The blender block is our original answer to the problem of blending features in a
latent, spatially subsampled, space originated from two different views of the same scene. By
comparison, other image-to-image translation architectures deal with monoscopic images only,
so they do not need to address this additional problem. In [20], features extracted from the input
views did not undergo any spatial downsampling and they were only concatenated to synthesize
the target view. We will experimentally show by ablation study the advantages of blending the
features in a spatially subsampled feature space.

Decoder. The decoder finally synthesizes the virtual view at the target position exploiting the
downsampled feature maps produced by the blender. The decoder includes 3 transposed convo-
lutional layers with 256, 128 and 3 filters per layer of size 3x3 for the first two layers and 7x7 for
the last layer. The decoder upsamples the low resolution feature maps produced by the blender
component to a higher resolution. The first two layers are followed by ReLU activation function,
while the output layer is followed by a hyperbolic tangent. We also stack a batch normalization
layer after each convolutional layer as in ResNet blocks, as our experiments showed it speeds
up the training process. Overall, our network produces in output a three-channels view where
each view is expected to have approximately zero-mean and the pixel intensity is bounded in the
[−1,+1] interval by the output layer nonlinearity.

3.3.2. Training procedure
The network is trained in a fully supervised way on quintuplets of patches (̃tlw, t̃lw

f , t
c, t̃rw

f , t̃
rw)

extracted respectively from textures (T Lw, T Lw
f , TC , T Rw, T Rw

f ), where and TC is the ground-truth
image to synthesize.

The training process for the proposed scheme may be hindered by the limited availability of
suitable data. In facts, multiview plus depth video sequences are not easily produced or avail-
able, and most of our sequences are taken from the MPEG test material. However, we avoided
the use of computer-generated (CG) video sequences. Typically, the characteristics of CG data
are relevantly different from natural content. In CG data we have perfect depth-maps but also,
depending on the rendering techniques, one can typically achieve a somewhat limited complex-
ity of textures, noise levels are much lower than natural videos, and some phenomena are more
difficult and more computationally intensive to be rendered (e.g., non-Lambertian surfaces, sub-
surface scattering, etc.). In short, relying only on computer-generated data would not improve
the training process so much if the methods are then to be used on natural data.

We randomly apply a vertical flip on each quintuplet as a form of data augmentation, to in-
crease the diversity in our training samples. Our experiments showed that, due to the limited
availability of suitable video contents, such augmentation method is fundamental to avoid over-
fitting on the training data. In order to keep the geometrical relationship between left, center and
right patches, only a vertical flip is applied in this case. Before being provided in input to the
network, patches are normalized so that the average per-channel pixel intensity has zero mean
and unitary deviation.

Concerning the loss function to minimize at training time, we alternatively experiment with
two options. The first function measures the distortion in the pixel space over a ground truth,
while the latter aims instead at assessing image reconstruction quality as perceived by the user.
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Pixel-based reconstruction loss.. For each pair of reference patches (̃tlw, t̃rw) provided in input,
the network is trained to minimize the quadratic error between the network output tv and the
ground truth tc. That is, at training time we minimize the loss function

L(w, tv, tc) =
1
n

n∑

i=1

(tv
i − tc

i )2, (2)

where tv
i and tc

i are the i-th pixel of tv and tc, respectively. We train our network by back-
propagating the gradient of the above error function and the network parameters are updated
using the Adam algorithm [46].

Perceptual reconstruction loss.. Alternatively, we experiment with a perceptual loss function
[47] to observe the perceived quality of the synthesized view. Perceptual loss relies on a feature
extractor usually trained for image classification to compare two images based on their high-level
features representations. Style transfer [21] experiments show that the perceptual loss training
may achieves visually more pleasant images than per-pixel loss functions. Johnson et al. [48]
first proposed the use of perceptual loss of image transformation tasks using a VGG16 trained
on ImageNet [47]. The feature reconstruction loss is defined as

lφfeat (̃y, y) =
1

CHW
||φ(̃y) − φ(y)||2, (3)

where lφfeat is the feature reconstruction loss from one layer of loss network φ of the content
image ỹ and content representation of the output image y. C is the number of filter in the input
image, H and W are the height and the width of the input image. φ(̃y) and φ(y) are the feature
representation of the content of the target image and the feature representation of the output of
the target image respectively. Our image transformation network is thus trained using stochastic
gradient descent to get weights that minimize the total loss, which is a weighted product of
the feature reconstruction loss. The training procedure ends after the perceptual loss function
measured over a validation set distinct from the training set stop decreasing.

4. Experiments and Results

In this section, we quantitatively and qualitatively evaluate our method HDSB in a compara-
tive way and we perform ablation studies to validate each of our design choices.

4.1. Experimental setup
We experiment with well-known multi-view sequences commonly used in MPEG experi-

ments as defined in the MPEG CTCs (Common Test Conditions) and detailed in Tab. 1 (views
and depth maps are in uncompressed YUV format). Such sequences account for a wide range
of content types with natural or artificial light, simple or complex objects motion, and differ-
ent resolution. All sequences are captured with a linear 1D camera array, i.e. cameras axes
are parallel, non-convergent. The inter-cameras distance is up to 55cm (e.g. poznanstreet) cf.
Tab. 1 with a moderately long focal length (23mm on average) which makes the angle of view
narrower and the overlap in the field of view smaller. Therefore, we notice large holes in the
warped views even in our smallest baseline sequences, like the ”painter” sequence, as illustrated
in Fig. 6. The Painter sequence is captured with a 2D camera array, so we extract three linear,
non-overlapping, camera setups of this scene for a total of 9 sequences. From each sequence we
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Figure 6: Example of large holes (in green) in the Technicolor painter sequence with a baseline = 21cm.

extract 3 neighbor views from the first 100 frames: the left and right views are used as references
(T L,T R) and the central view is used as target view (i.e ground-truth) TC . For each sequence,
we preliminary warp T L and T R to obtain T Lw and T Rw and then we generate the corresponding
filled textures T Lw

f and T Rw
f using the methods described in the previous Sec. 3. Then, from each

sequence we randomly extract 10k quintuplets of co-located patches (̃tlw, t̃lw
f , t

c, t̃rw
f , t̃

rw). Each
sequence is alternatively reserved for testing for a total of 10k testing patches. The other 8 se-
quences are used for training and validation purposes, for a total of 70k training patches and 10k
validation patches. Such approach guarantees that the test sequence is always left out from the
training set, i.e. there is no cross-contamination between train and test sets. All patches used for
training are 64× 64 as our experiments revealed it allows a favorable tradeoff between patch size
and number of non-overlapping patches that can be extracted from the available training video
sequences. Patches have fifty-fifty chance to be vertically flipped forming data augmentation.
Our experiments reveal that a reasonable trade-off between performance and convergence time
can be achieved using batches of 128 patches, and a learning rate of 0.0001, leading to the con-
vergence of our learning algorithm after 100 epochs. In all our experiments, including losses
experiments, we use the same hyper-parameters showing the best results. Concerning the param-
eters optimization algorithm, we rely on Adam, with weight decay = 0 and betas = (0.9, 0.999).
Our method is implemented in Pytorch and all the experiments are performed on a server with
an NVIDIA RTX2080GPU.

Finally, in all our experiments we measure the quality of the synthesized view both using the
PSNR and the SSIM metrics computed over the Y (luma) channel.

4.2. Comparison with prior works

In this subsection we compare our proposed view synthesis method with a number of refer-
ences and provide a quantitative and qualitative analysis of the synthesized view quality.

4.2.1. Reference schemes
Many of the state-of-the-art methods listed in Sec. 2 are learnable end-to-end architectures in

principle comparable with ours. However, while some require in input more than two reference
views, others deal only with small baseline views [41], [18]. The pipeline proposed in [12] is
comparable to our, however it relies on four warped reference textures and a global mesh of
the scene as input to their blending/inpainting network and the source code to reproduce their
method is not available. On the other hand, the video frame interpolation method [19] when
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applied to our setup did yield very weak performances, we hypothesize because designed for
different purposes purposes. For the above reasons, we compare with the following reference
schemes:

CNN-VB is the method in [20], it shares with the approach proposed here the preliminary
algorithmic warping followed by a learnable blending. Namely, first the the textures are warped
to the target view position, then holes are disoccluded. Next, each warped view is first processed
by two convolutional layers with 64 and 32 filters each sized 9 × 9 with ReLU activations. The
feature maps produced in output are concatenated and processed by a two convolutional layer
with 16 and 1 filters each sized 5×5, the output layer followed by a hyperbolic tangent activation.
This architecture notably includes no pooling layers nor other feature downsampling methods
and, albeit very primitive, validated the idea of preliminary warping the views to use smaller
filters. For these reasons, we keep it as a very baseline reference.

CNN-VB+ is an improved version of CNN-VB that we purposely developed for comparing
against HDSB as illustrated in Fig. 7. This scheme improves over CNN-VB in two aspects.
First, after warping and disoccluding the views, we compute two reliability maps that signal
which pixels are the result of a disocclusion. The two maps are then provided in input to the
ConvNet in charge of blending, that exploits the reliability maps as hints to improve the quality
of the synthesized view.
Second, we double the depth (8 vs. 4 layers) of the ConvNet in charge of blending, while keeping
the parameters count constant. Each pair of warped texture and reliability map is provided in
input to a separate branch of four convolutional layers with 64, 50, 42, and 32 filters respectively,
all sized 5 × 5 rather than 9 × 9. The last four convolutional layers include 50, 42, 32, and 3
filters respectively sized 3 × 3 in place of 5 × 5. It can be shown that each feature produced
in output by these four convolutional layers enjoy the same receptive field as in the case of the
CNN-VB architecture. Therefore, this scheme enjoys a deeper convolutional pipeline able to
learn a potentially better representations of the input views albeit leaving untouched complexity
and receptive field size. Finally, CNN-VB+ takes in input and outputs RGB rather than grayscale
images, so to be able to compare with our proposed HDSB.
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Figure 7: The CNN-VB+ architecture as an improved version of [20]. We use this architecture as a downsampling-less
reference against HDSB.

VVS, the MPEG-I view synthesizer reference software described in Sec. 3.1. This method is
not learning-based and is completely based on an algorithmic approach. VVS and HDSB share
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the basic warping scheme, so VVS is a proper reference to assess the benefits of a learning-based
blending stage over an algorithmic based approach.

Synsin, [18] is a purely learnable end-to-end view synthesis method. Synsin allows for
synthesizing novel target views of a scene given a single image only, using generative adversarial
networks (GAN) techniques and a new differentiable point cloud renderer. In our experiments,
it is refined on our training set following the same procedure described for the other methods to
allow for a fair comparison.

4.2.2. Results and discussion
In Tab. 2 and 3, we compare our proposed method HDSB with the references above. It

is clear that Synsin shows weak performances in all sequences, in terms of visual quality and
objective quality (cf. Tab. 2,Tab. 3 and Fig. 8). The results are linked to the use of only
one reference image unwarped as input to the network, to generate a high-resolution novel view
located at a long distance from the reference view. A possible explanation to this result could
be that, this method is effective on small baseline cases and lower image resolution. Concerning
CNN-VB and CNN-VB+, the latter improves over the former in all sequences, with gains in
excess of 0.5 dB for PoznanStreet and Lovebirds. Similarly, CNN-VB+ outperforms MPEG
VVS almost for all sequences, with a 0.8 dB gain for Kendo. We attribute such gains in part to the
deeper convolutional architecture, in part to the introduction of the reliability maps. Concerning
SSIM, CNN-VB+ outperforms CNN-VB on the average, albeit in some cases CNN-VB scores
better. Anyway, a visual inspection of the synthesized view (Fig. 8) shows that even CNN-
VB+ produces artifacts in the synthesized views, showing the intrinsic limits of this pooling-less
architecture in view synthesis. In the following, we compare HDSB mainly against CNN-VB+,
which is the best reference so far.

Tab. 2 shows that HDSB significantly outperforms all references by a significant margin (over
0.5 dB on the average). HDSB scores a top gain of 0.8 dB over CNN-VB+ for the PoznanHall
sequence and improves by 0.6 dB for PoznanStreet. SSIM results show similar trends, with
HDSB consistently outperforming every reference. We hypothesize that such gains are mainly
due to the downsampling and upsampling of the feature maps performed by the encoder and the
decoder respectively. In addition, we hypothesize that residual blocks in the bottleneck may have
also a role in such gain. Concerning the visual assessment, Fig. 8 illustrates how HDSB improves
over the three references. For PoznanStreet, for example, HDSB preserves the hanging lines on
the image background, that are otherwise lost by the reference methods. Similarly, the shape of
the black pole in the foreground looks much more like the ground truth as synthesized by HDSB.
For PoznanHall, our method remarkably approaches the desired outcome in the reconstruction
of the stairs and the handrail, or the clarity of the exit green plate on the wall.

Concerning computational complexity, inference and training times are as follows. The in-
ference time of CNN-VB+ network is around few seconds (2 − 3 sec) per frame, and around 8
hours for the network to converge in the training process with the MSE loss over 100 epochs. The
inference time of our network HDSB is on average 4.32s/frame, and the required training time
the network to converge is 12 hours using MSE loss on 100 epochs. For both methods, training
time drops by 3 times using the perceptual loss. Finally, Synsin inference time lies between 2 and
10 seconds per frame depending on image resolution, while training required 3 days to converge
over 350 epochs. About the purely algorithmic VVS, the time to synthesize one frame is around
100 sec, where 83% of this time is due to inpainting/blending.
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Figure 8: Details from PoznanStreet (top) and PoznanHall (bottom) sequences. First column is ground truth, second
column is Synsin, third column is VVS, fourth column is CNN-VB+, and the last column is the proposed HDSB.

4.3. Ablation studies

In this subsection, we alternatively ablate one element from our HDSB architecture and we
assess the effect on the synthesized view quality.

4.3.1. Encoder-decoder architecture
As a first ablation study, we explore the advantages of the encoder-decoder architecture with

feature map downsampling implemented by HDSB. Namely, we modify HDSB avoiding to
downsample the feature maps by reducing the stride of the filters in the convolutional layers
to 1 pixel (we refer to this architecture as ”Wo/EnDe”). In other words, Wo/EnDe is such that
all the feature maps produced by the hidden convolutional layers have the same size as the input
and output images. This architecture is composed of three convolutional layers, operating inde-
pendently on the left and the right views with 64 filters each and kernel size 7 × 7, 3 × 3, and
3 × 3 respectively. The bottleneck is composed of 8 residual blocks, and the last convolutional
layer is composed of 3 filters with 7 × 7 kernel size. The only difference with respect to HDSB
is the removal of the down-sampling. Indeed we preserve the same number of convolutional
layers, the residual blocks, and the number of the learnable parameters to study the impact of an
encoder-decoder architecture on the training/testing processes.
We train and test this architecture from scratch according to the same procedure used for HDSB.
However, due to the lack of downsampling, this architecture has a larger memory footprint which
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Figure 9: Ablation of the feature map downsampling: Balloons (top) and Newspaper (bottom). First column is the
ground truth, second column is the architecture without encoder-decoder, and last column is our proposed architecture.

forced us to reduce the batch size from 128 to 80 samples. Preliminary experiments show that
such architectures slows down the training process and increases the convergence time.

In Tab. 4, the experiments show how adopting an architecture without an encoder-decoder
reduces in average the PSNR and the SSIM by almost 0.5 dB and 0.023 respectively on our test
sequences. We illustrated the results in Fig. 9 for Balloons and Newspaper respectively. We
notice that the architecture without encoder-decoder (refered to in Tab. 4 as Wo/EnDe) do not
generalize well, and tends to overfit on the training data.

Indeed, HDSB our method focuses during training on fewer number of activation points to
reduce redundancy in feature maps. It also yields the network output to be more tolerant for
small translational changes in input images, which means that an encoder-decoder architecture
can tolerate equivariances in input images produced due to the warping process. Indeed the two
reference views are warped to the same target position, however they do not originally share the
same lighting and angles conditions.

4.3.2. Hole inpainting experiments
We also elaborate on the effect of using different additional inputs to our network rather than

the filled textures with the warped images. The filled textures T Lw
f and T Rw

f , were introduced in
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our proposed approach to strengthen the inpainting task in the network, and thus by better filling
the occluded pixels in the output texture, see Sec. 3.2.

We thus, experiment our architecture using the two reference warped textures and their cor-
responding binary masks (ML

b ,M
R
b ) as introduced in Sec. 3.2, as inputs, and we compare it with

our method (with filled textures).
We notice that using filled textures yields to better PSNR performances than using binary

masks on all our test sequences in table 5. Whereas, for the SSIM we did not notice any dis-
tinction. However, the improvements achieved in terms of PSNR are not easily visible with the
naked eye, and thus the visual quality difference is indistinguishable between the two methods
on our test datasets. Notably, we significantly raise the computational speed and we lower the
memory consumption by using binary masks. Therefore, for the sake of simplicity, we use the
binary masks as inputs to our network in the following experiments.

4.3.3. Loss functions experiments
In this section we consider the effect of changing the loss function used to train our network.

All the results presented previously in this paper come from our neural network trained using
a per-pixel loss function, the MSE. We re-train the proposed architecture on the same training
datasets, but we use instead the perceptual loss function, detailed in Sec. 3.3.2, essential for
the training convergence. The experiment shows that high-quality visual images are generated
when the perceptual loss is minimized . As well as it increases the SSIM on all the sequences,
cf. Tab. 6, over 0.003 in average. With the perceptual loss function the computation of the loss
between the output and the desired image is based on the image content and style rather than
on the individual pixel values, and thus we expect that the PSNR will decrease. However, we
notice that when the network is optimized towards another metric the PSNR decreases of 2 dB as
shown in Tab. 6. Finally, in terms of complexity, the training with perceptual loss is three times
faster than with MSE. In all our experiments in this work, we used the MSE loss function to
evaluate and compare our results using both perceptual SSIM and non perceptual PSNR quality
metrics. In the end, we observed that perceptual loss leads to visually pleasant synthesized
images, while somehow reducing the training time. On the other hand, MSE is more appropriate
when objectively benchmarking methods in PSNR terms.

4.3.4. Effect of the encoder architecture
Unlike image-to-image mapping monoscopic architectures that feature just one encoder, our

neural architecture features one one encoder for the left view and one for the right view. Such
design choice is motivated by the observation that disocclusion artifacts in the two warped views
lie on opposite side of the objects. For the same reason, we proposed the flip-convolve-flip
approach to be able to share parameters among encoders. We now experiment with two different
encoder typologies as follows.

First, we consider a HDSB variant where we drop the two convolve-flip-convolve encoders
with shared parameters in favor of a single encoder. This scheme leaves inaltered the number
of learnable parameters in the network, however the encoder takes in input both left and right
warped views and relative masks. That is, the encoder now faces the challenge of dealing with
occlusions potentially on both sides of the objects. This scheme is referred to as HDSB-1E in the
following.

Second, we consider another HDSB variant where the encoders do not share parameters, i.e.
each encoder indipendently processes the left or the right view. This scheme has the potential to
deliver better performance as the network includes more learnable parametrs and each encoder
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learns specialized feature for each view. Obviously, in this case the right view is not mirrored
anymore. This scheme is referred to as HDSB-2E in the following. We train and test both
architectures as for HDSB, and we show the results of these experiments in Tab. 7.

Concerning HDSB-1E, the quality of the synthesized view is usually lower than HDSB. For
example, for Balloons HDSB-1E scores 35.92 dB against 37.59 dB of HDSB, i.e. HDSB scores
almost 0.5 dB higher. While for some sequences (e.g.: Kendo, PoznanHall) HDSB-1E scores
marginally better, on the average HDSB scores almost 0.5 dB higher on the average. In terms
of SSIM, HDSB-1E always score worse than HDSB. We recall that HDSB and HDSB-1E count
the same number of parameters, nevertheless the inspection of the training curves shows that the
loss function of HDSB-1E flutters more. We attribute such results to the complexity of the single
encoder to deal with occlusions on both sides of the objects.

Concerning HDSB-2E, it outperforms HDSB-1E almost for any sequence yet it outperforms
HDSB only for Painter-1. We recall that HDSB-2E counts twice as many parameters in the
encoder as HDSB-1E. The analysis of the training curves show that HDSB-2E is more likely
to overfit to the training data in reason of the higher parameters count. We hypothesize that if
significantly more training sequences are available, HDSB-2E may have an edge over HDSB.

5. Conclusions

We presented a hybrid approach to wide baseline view synthesis where the warping is al-
gorithmic while the blending is learnable and inspired by image-to-image convolutional archi-
tectures. Extensive experiments on real multi-view video sequences show better performance
that pure-algorithmic approaches while avoiding the complexity of purely learning-based ap-
proaches and taught us some lessons. First, an encoder-decoder architecture improves over our
previous super-resolution based method by projecting the input features over a spatially sub-
sampled latent feature space. Second, the encoder complexity can be reduced by resorting to a
smart flip-convolve-flip approach that allows us to share parameters among encoders reducing the
network complexity. Third, providing additional filled textures to the blender helps preventing
disocclusions-induced artifacts better than binary masks. Finally, experiments with perceptual
loss show visually pleasant images, yet at the expense of a drop in objective visual quality. Our
current research aims at exploiting the temporal information to improve the hole filling proce-
dure and to impose temporal consistency among neighboring frames as an additional constraint
at training and inference times.
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Algorithm 1: Hole inpainting algorithm exemplified for view T Lw

Input: (T Lw,T Rw)
Output: Filled textures (T Lw

f ,T Rw
f )

1 ListLe f t ← the list of occluded pixels in ILw;
2 ListRight ← the list of occluded pixels in IRw;
3 for (r, c) in ListLe f t do
4 if if (r, c) is in ListLeft but not in ListRight
5 then
6 copy right to left, and remove from ListLeft
7 else if (r, c) is in ListRight but not in ListLeft then
8 copy left to right and remove from ListRight;
9 end

10 for (r, c) in ListRight do
11 if if (r, c) is in ListRight but not in ListLeft then
12 copy left to right, and remove from ListRight
13 else if (r, c) is in ListLeft but not in ListRight then
14 copy left to right and remove from ListLeft;
15 end
16 for (r, c) in ListLe f t do
17 if neighbor pixels are valid pixels not in ListLeft
18 then
19 T Lw

f (r, c) = Median[valid neighbor pixels in T Lw
f ]

20 else
21 continue
22 end
23 end
24 for (r, c) in ListRight do
25 if neighbor pixels are valid pixels not in ListRight
26 then
27 T Rw

f (r, c) = Median[valid neighbor pixels in T Rw
f ]

28 else
29 continue
30 end
31 end
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Table 1: The seven multiview video sequences used in our experiments (all sequences are 100 frames, average camera
baseline is 24 cm).

Sequence Characteristics Setup Resolution (T L, TC , T R) (T L, T R)

Balloons Indoor, colorful 1D 1024x768 (1,3,5) 20 cm
Kendo Indoor, white smoke 1D 1024x768 (2,4,6) 20 cm
Newspaper Indoor, people 1D 1024x768 (2,4,6) 20 cm
PoznanStreet Outdoor, nature 1D 1088x1920 (2,4,6) 55 cm
PoznanHall Indoor, building hall 1D 1088x1920 (5,6,7) 27.5 cm
Lovebirds Outdoor, nature 1D 1024x768 (4,6,8) 15 cm
Painter-1 Indoor, art studio 2D 2048x1088 (0,1,3) 14-21 cm
Painter-5 ” ” ” (4,5,6) ”
Painter-9 ” ” ” (8,9,10) ”

Table 2: Quality of the synthesized view for the proposed and reference methods in terms of PSNR

PSNR [dB]
Sequence Synsin[18] VVS[49] CNN-VB[20] CNN-VB+ proposed HDSB

Balloons 20.84 37.07 36.92 37.18 37.59
Kendo 21.87 38.21 38.98 39.08 39.19
Newspaper 19.28 34.53 35.08 35.35 35.65
PoznanStreet 18.16 36.96 36.17 36.81 37.44
PoznanHall 18.65 37.26 37.43 37.50 38.30
Painter-1 20.45 37.86 37.88 38.01 38.21
Painter-5 20.32 38.04 38.12 38.18 38.87
Painter-9 20.17 36.36 36.44 36.51 38.01
Lovebirds 19.89 34.56 34.70 35.34 35.54
Average ± Std 19.9589 ±1.13 36.76 ±1.38 36.85 ±1.41 37.11±1.26 37.64±1.28

Table 3: Quality of the synthesized view for the proposed and reference methods in terms of SSIM

SSIM
Sequence Synsin[18] VVS[49] CNN-VB[20] CNN-VB+ proposed HDSB

Balloons 0.752 0.922 0.965 0.964 0.978
Kendo 0.826 0.972 0.976 0.981 0.992
Newspaper 0.875 0.930 0.950 0.951 0.967
PoznanStreet 0.728 0.922 0.932 0.956 0.968
PoznanHall 0.745 0.921 0.932 0.961 0.966
Painter-1 0.841 0.948 0.956 0.955 0.970
Painter-5 0.829 0.945 0.953 0.948 0.961
Painter-9 0.813 0.930 0.941 0.937 0.952
Lovebirds 0.789 0.909 0.933 0.951 0.973
Average ± Std 0.7998±0.049 0.933±0.02 0.949±1.16 0.956±0.12 0.969±0.01
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Table 4: Quality of the synthesized view with our encoder-decoder architecture HDSB and without encoder-decoder
architecture

PSNR[dB] SSIMSequence Wo/EnDe HDSB Wo/EnDe HDSB

Balloons 36.90 37.59 0.943 0.972
Kendo 38.71 39.19 0.966 0.985
Newspaper 35.25 35.65 0.942 0.962
PoznanStreet 36.76 37.44 0.947 0.965
PoznanHall 37.30 38.30 0.960 0.965
Painter-1 38.04 38.21 0.958 0.964
Painter-5 38.39 38.87 0.944 0.958
Painter-9 37.58 38.01 0.933 0.949
Lovebirds 35.11 35.54 0.896 0.969
Average ± Std 37.12±1.27 37.56±1.35 0.943±0.02 0.966±0.01

Table 5: Quality of the synthesized view using the filled textures and the binary masks.

PSNR[dB]Sequence HDSB Wo binary mask

Balloons 37.24 37.59
Kendo 39.12 39.19
Newspaper 35.53 35.65
PoznanStreet 37.22 37.44
PoznanHall 38.25 38.30
Painter-1 38.09 38.21
Painter-5 38.85 38.87
Painter-9 37.95 38.01
Lovebirds 35.41 35.54
Average ± std 37.56±1.35 37.63±1.36

Table 6: Quality of the synthesized view using two different loss functions during the training process.

SSIM for HDSB PSNR for HDSBSequence w/per-pixel loss w/perceptual loss w/per-pixel loss w/perceptual loss

Balloons 0.972 0.980 37.24 35.84
Kendo 0.985 0.989 39.12 37.16
Newspaper 0.962 0.968 35.53 33.35
PoznanStreet 0.965 0.966 37.22 34.27
PoznanHall 0.965 0.968 38.25 36.41
Painter-1 0.964 0.965 38.09 37.03
Painter-5 0.958 0.962 38.85 37.18
Painter-9 0.949 0.957 37.95 36.22
Lovebirds 0.969 0.971 35.41 32.94
Average ± std 0.966±0.01 0.969±0.01 37.56±1.35 35.6±1.65
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Table 7: Effect of the encoder architecture: HDSB-1E includes just one shared encoder for both views, HDSB-2E
includes separated encoders for each view.

PSNR SSIMSequence HDSB HDSB-1E HDSB-2E HDSB HDSB-1E HDSB-2E

Balloons 37.24 35.92 37.03 0.978 0.967 0.972
Kendo 39.12 39.30 39.20 0.992 0.990 0.985
Newspaper 35.53 35.24 35.46 0.967 0.965 0.962
PoznanStreet 37.22 36.3 37.18 0.968 0.958 0.965
PoznanHall 38.25 38.32 38.31 0.966 0.964 0.965
Painter-1 38.09 38.01 38.18 0.970 0.963 0.964
Painter-5 38.85 38.25 38.81 0.961 0.960 0.958
Painter-9 37.95 37.55 37.67 0.952 0.941 0.949
Lovebirds 35.41 34.51 34.92 0.973 0.962 0.969
Average 37.52 37.04 37.42 0.970 0.963 0.966
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Free navigation systems allow users to freely browse a scene by arbitrarily changing view

Missing viewpoints are usually synthesized exploiting the captured neighboring view.

Free navigation of a scene requires warping some reference views to some desired target 
viewpoint and blending them to synthesize a virtual view.

Convolutional Neural Networks (ConvNets) based methods can learn both the warping an
blending tasks jointly.

Preliminary view warping allows reducing the size of the convolutional kernels and thus 
learnable parameters count.

A residual encoder-decoder can be used for image blending with a Siamese encoder to fu
keep the parameters count low.
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