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Abstract5

This paper reports two experiments in which attitudes towards temporal risk resolution6

is elicited from choices between two-outcome lotteries that pay out at some future fixed7

date and can be resolved either now or later. We show that matching probabilities provides8

a simple method to measure attitudes towards temporal resolution –via the utility scale–9

under Kreps and Porteus’ (1978) recursive expected utility. We also analyze our data using10

a general recursive model that can reveal attitudes towards temporal risk resolution through11

the utility scale and/or the probability weighting scale. In terms of goodness of fit, as12

well as of prediction accuracy, our results point to a better performance of the probability13

weighting approach. More specifically, we show that individuals become less sensitive and14

more pessimistic with respect to winning probabilities when lotteries are resolved later rather15

than now.16
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1. Introduction21

Many real-world choices involve the resolution of uncertainty over time. Examples include such22

economically important decisions as consumption, savings, investment, portfolio management,23

and production. Temporal resolution of uncertainty also plays a role in most medical decisions24

such as when patients undergo genetic tests to determine the likelihood of getting a disease25

in the future. In all of these cases, we expect that the decision maker is not indifferent to26

temporal resolution of uncertainty because he assigns a value to informative signals about it. This27

value is instrumental when it allows taking actions conditional on information (Mossin, 1969;28

Spence and Zeckhauser, 1972). Alternatively, the value assigned to such information is intrinsic29

when it is psychological in nature, involving attitudes toward knowing (or not) about future30

consequences, even when it is impossible to act on these consequences (Ganguly and Tasoff,31

2017). For some decisions (e.g., prenatal diagnosis, whether to sell stocks during a financial32

crisis), delayed resolution of uncertainty may result in anxiety about the final outcome (Wu,33

1999; Epstein, 2008). For some others, e.g. a submission to a top journal, the decision maker34

may actually prefer delayed resolution in order to keep up his hope of winning under an unlikely35

high-stakes event (Chew and Ho, 1994).36

Kreps and Porteus (1978), “KP” hereafter, developed the first extension of expected utility (EU),37

called recursive expected utility (REU), that accounts for the intrinsic value of information as38

related to attitudes towards risk resolution (or “temporal risk” for short)—that is, attitudes39

towards uncertainty resolution with known probabilities. Basically, under REU, preference for40

early resolution of uncertainty can be modelled as higher certainty equivalents (more risk seeking)41

for early lotteries than for delayed ones. Preference for late resolution is the converse. Formally,42

KP opted for an EU-based evaluation of lotteries and introduced a transformation function ϕ43

that relates (recursively) the utility U0 for immediately resolved lotteries to utility UT for delayed44

lotteries resolved at some future given date T , i.e., U0 = ϕ ◦ UT . The convexity (concavity) of45

the transformation function ϕ reveals preference for early (late) resolution of risk. This model46

and Epstein and Zin’s (1989) parametric specification, is widely used for macroeconomic and47

finance applications as it explains, inter alia, many asset-pricing anomalies (Epstein and Zin,48

1991; Bansal and Yaron, 2014; Epstein et al., 2014). Yet, from a descriptive standpoint, KP’s49

model may fail to accurately depict behavior when EU is violated (Gonzalez and Wu, 1999;50

Wakker, 2010; L’Haridon et al., 2019).51

Assuming a rank-dependent utility framework (henceforth RDU; Quiggin, 1982), Wu (1999, Sec-52

tion 2) proposed an alternative model to REU in which preferences are represented by a temporal53
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RDU functional.1 In this model, nonlinear probability weighting (for delayed lotteries) plays a54

key role with regard to attitudes towards temporal risk (Epper and Fehr-Duda, 2018). Specifi-55

cally, the latter is captured through the difference between the probability weighting used in the56

RDU-evaluation of early resolved lotteries and the probability weighting involved in the RDU-57

evaluation of lotteries resolved at a later date.2 Wu (1999) argued that, in addition to a better58

descriptive accuracy (Tversky and Kahneman, 1992), this approach also accounts for experi-59

mental findings showing a decline in the percentage of subjects exhibiting preference for early60

resolution when facing small-gain probabilities than high-gain ones (Chew and Ho, 1994). Along61

the same lines, Epstein (2008, Section 5.3) argued that allowing for an early vs. late resolution62

probability weighting in his general KP’s setup could explain the anxiety (hopefulness) that63

results from delayed resolution when a risky favorable outcome is likely (unlikely). Descriptively,64

however, the issue of whether and how temporal risk affects utility or probability weighting re-65

quires a systematic investigation in order to provide a reliable measurement of attitudes towards66

temporal risk in empirical applications.67

The present paper proposes a simple measurement method to elicit preferences for temporal risk.68

Two experiments are conducted to compare the descriptive power of REU and a more generalized69

version of it, a recursive RDU model (RRDU, Epstein 2008, Sections 4 and 5 therein). Basically70

we assume a RDU-evaluation of two-outcome lotteries, where both probability weighting and71

utility depend on the timing of uncertainty resolution. Similar to REU, RRDU implies that72

the utility index U0 (for early resolution lotteries) is related to the utility index UT (for delayed73

resolution lotteries) through a transformation ϕ, i.e., U0 = ϕ ◦UT . In the absence of probability74

weighting, RRDU reduces to REU.75

We first show that, under REU, the evaluation of two-outcome lotteries using matching proba-76

bilities allows for a simple elicitation of the transformation function ϕ. We also show how this77

function can be elicited from certainty equivalents of early vs. late resolution lotteries. Second,78

we investigate the descriptive power of different strategies to capture attitudes towards temporal79

resolution under RRDU in terms of goodness of fit and prediction accuracy.80

Overall, the elicited matching probabilities show a predominant preference for early resolution of81

temporal risk both at the aggregate and individual levels.3 Furthermore, matching probability-82

based evaluations reveal a more pronounced preference for early resolution when subjects face83

1Wu (1999, Lemma 1) assumed EU for immediately resolved lotteries (t = 0) and proposed an axiomatization

that allows for a temporal risk-based probability weighting. Specifically, lotteries resolved at two different future

dates (t1 > t2 > 0) are evaluated using two different probability weighting functions.
2A recursive version of RDU was introduced to analyze ambiguity through two-stage lotteries in Segal (1987,

1990).
3Aggregate level analyses assume that all the choices of the different subjects in the sample can be considered

as the choices of one “representative subject.”
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moderate and high delayed-winning probabilities than small ones. Among other things, this result84

could explain the previous empirical findings of Chew and Ho (1994) and Lovallo and Kahneman85

(2000) showing that the percentage of subjects exhibiting preference for early resolution declines86

when the winning probability decreases (see also Masatlioglu et al., 2017). Similar model-free87

results are obtained when attitudes towards temporal risk is inferred from certainty equivalents.88

We use matching probabilities to directly estimate different parametric specifications of the89

transformation function ϕ under REU. We observe that ϕ is convex at the aggregate level and90

predominantly convex at the individual level, thus showing that REU captures the previously91

elicited model-free preference for early resolution. On the other hand, the estimation of REU92

from certainty equivalents reveals a more convex ϕ than from matching probabilities. When REU93

is supplemented with atemporal probability weighting, i.e., we allow for a single probability94

weighting function under RRDU, we still observe that ϕ exhibits more convexity than when95

elicited from matching probabilities, but in a less pronounced manner. Furthermore, this RRDU96

version performs better than REU in terms of both goodness of fit and prediction accuracy.97

Under “full force” RRDU where attitudes towards temporal risk can be revealed through both98

utility and probability weighting, our data cannot reject the null hypothesis of an identity99

transformation ϕ, be it a power, an exponential, or an expo-power function. This points to100

a more parsimonious version of RRDU, where attitudes towards temporal risk is exclusively101

revealed through a change in early vs. late probability weighting. Finally, we find that in terms102

of both goodness of fit and prediction accuracy, this parsimonious version of RRDU outperforms103

RRDU with an atemporal probability weighting.104

The rest of our paper proceeds as follows. In section 2 we introduce the theoretical framework and105

explain how attitudes towards temporal resolution can be elicited under REU through matching106

probabilities and certainty equivalents. Section 3 describes the experimental design. Section107

4 reports the model-free results measuring attitudes towards temporal risk through matching108

probabilities (in studies A and B) and certainty equivalents (study B). Section 5 focuses on109

the parametric measurement of the transformation function ϕ under REU. Section 6 provides110

a comparative analysis of the different descriptive extensions in terms of goodness of fit and111

prediction accuracy. Section 7 discusses our results and concludes.112
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Figure 1: Matching present probability vs. certainty equivalent

2. Theoretical framework113

2.1. Notation and Definitions114

We consider both delayed and immediately resolved two-outcome lotteries. All outcomes are115

nonnegative monetary amounts (i.e., gains). To avoid considerations related to discounting (when116

outcomes are received at different dates), both type of lotteries pay out at a fixed future date117

T > 0 (Ahlbrecht and Weber, 1997; von Gaudecker et al., 2011). Outcomes are elements of118

an interval [0,M ] of monetary amounts, with M > 0. We use (X, pt, x) to denote a lottery,119

resolved at some time t ∈ [0, T ], that yields outcome X with a “winning probability” pt, and120

outcome x ≤ X otherwise. When the probability superscript is set at 0, it means that the lottery121

is immediately resolved; otherwise t > 0, e.g. t = T , meaning that the resolution is delayed122

(Figure ??). In our setup, uncertainty is resolved in one-shot through one-stage lotteries.4 The123

indifference between two lotteries lA and lB is denoted by lA ∼ lB.124

The certainty equivalent (CE) ct of a lottery (X, pt, x) is a monetary amount defined by ct ∼125

(X, pt, x). As all outcomes, ct is received at time T . Similarly, for (X, pt, x), m0 denotes the126

probability (referring to an immediate resolution) such that (X,m0, x) ∼ (X, pt, x); m0 is called127

a matching present probability (MPP). Under standard assumptions of continuity and mono-128

tonicity, ct and m0 exist and are unique. Figure ?? illustrates the two types of evaluations used129

for a lottery (X, pt, x) with t = T .130

4Ahlbrecht and Weber (1997) investigated temporal risk under REU in a setup where uncertainty can also

be gradually resolved through two-stage lotteries. More recently, Nielsen (2020) reports model-free experimental

results showing that attitudes towards temporal resolution may depend on whether the uncertainty is framed as

a two-stage lottery or information structure.
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Figure 2: Eliciting attitudes towards temporal risk resolution under REU

2.2. Formal setup131

We elicit attitudes towards temporal risk in two different ways. The first is based on the proba-132

bility premium pt−m0. A positive (negative) probability premium implies preference for a lower133

winning probability in return for an immediate (delayed) resolution of uncertainty. The second134

method used to elicit attitudes towards temporal risk employs the outcome scale. Specifically,135

we compare the certainty equivalents c0 and ct of a two-outcome lottery resolved either now or136

later, respectively. Here, a positive (negative) premium c0− ct implies preference for early (late)137

resolution. Figure ?? illustrates how pt −m0 and c0 − ct affect the shape of utility under REU138

(with t = T ).139

2.3. Recursive expected utility140

In our setup, we assume REU with two dates of risk resolution: t = 0 (early) and t = T (late).141

The model assumes EU for both immediately and delayed lotteries with two possibly different142

von Neumann and Morgenstern utility functions U0 and UT , respectively. We assume that the143

utility functions are continuous and strictly increasing over the set of monetary outcomes [0,M ].144

The certainty equivalent cT of a delayed lottery (X, pT , x) is consequently given by145

cT = U−1
T (pTUT (X) + (1− pT )UT (x)). (1)

Similarly, the certainty equivalent c0 of the immediately resolved lottery (X, p0, x) is given by146

c0 = U−1
0 (p0U0(X) + (1− p0)U0(x)). (2)
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The CEs and transitivity, establish the preferences between delayed and non-delayed lotteries.147

We next assume that the two outcomes X and x are fixed at M and 0, respectively, and148

adopt the normalization U0(X) = UT (X) = 1 and U0(x) = UT (x) = 0. If m0 is the MPP149

corresponding to lottery (X, pT , x), Eqs. (1) and (2) – with m0 instead of p0 – give the same CE,150

implying U−1
0 (m0) = U−1

T (pT ). In other words, there exists a strictly increasing transformation151

ϕ = U0 ◦ U−1
T : [0, 1]→ [0, 1], i.e., U0 = ϕ ◦ UT , such that152

m0 = ϕ(pT ).

Consequently, determining the matching present probability m0 allows for a direct elicitation of153

the transformation function ϕ; so there is no need to elicit the utility functions U0 and UT . In154

our setup, when the shape of ϕ is modelled by a single parameter, it can be revealed by a single155

choice list. As illustrated in Figure ?? (left-hand side panel), preference for early resolution (i.e.,156

m0 < pT ) is represented by a convex transformation ϕ.157

Note that under REU with normalized utility functions U0 and UT , we can also elicit ϕ from158

the CEs of the lottery (X, p, x) resolved at 0 and T , respectively. In other words, Eqs. (1) and159

(2) result in160  c0 = (ϕ ◦ UT )−1(p)

cT = U−1
T (p),

& (3)

as illustrated in the right-hand side panel of Figure ??. In other words, the elicitation of the161

transformation function ϕ requires the prior measurement of U0 and UT .162

2.4. Recursive rank-dependent utility163

Inspired byWu (1999) and Epstein (2008), our general model (for two-outcome lotteries), RRDU,164

reveals attitudes towards temporal risk through both the utility and the probability weighting165

scales. In addition to the two utility indexes U0 and UT , RRDU supplements REU with prob-166

ability weighting, based on two assumptions. The first postulates that nonlinear probability167

weighting represents the main source of deviations from EU in choice settings involving two-168

outcome lotteries (Tversky and Kahneman, 1992; Wakker, 2010). Note that assuming RDU-like169

preferences for two-outcome lotteries also subsumes other non-EU models for risk as Gul’s (1991)170

disappointment aversion and Birnbaum’s (1988) configural weight models (see also Miyamoto,171

1988). The second assumption postulates that temporal risk in our early vs. late setup results172

in two probability weighting functions w0 and wT for the evaluation of immediately resolved173

and delayed lotteries, respectively (Epstein, 2008, Section 4). In the sequel, w0 and wT are174
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strictly increasing over the probability interval and satisfy wi(0) = 0 and wi(1) = 1 for i = 0, T .175

In other words, RRDU assumes RDU with utility U0 (UT ) and weighting function w0 (wT ) for176

immediately resolved (delayed) lotteries.177

Under RRDU, the certainty equivalent cT of a delayed lottery (X, pT , x) is given by178

cT = U−1
T [wT (p

T )UT (X) + (1− wT (pT ))UT (x)]. (4)

Similarly, the certainty equivalent c0 of the immediately resolved lottery (X, p0, x) is given by179

c0 = U−1
0 [w0(p

0)U0(X) + (1− w0(p
0))U0(x)]. (5)

As under REU, the CEs and transitivity, establish the preferences between delayed and non-180

delayed lotteries.181

Taking into account the utility normalizations we introduce in the previous Section, if m0 is182

the MPP corresponding to lottery (X, pT , x), Eqs. (4) and (5) – with m0 instead of p0 – give183

the same CE, implying U−1
0 (w0(m

0)) = U−1
T (wT (p

T )). In other words, there exists a strictly184

increasing transformation ϕ = U0 ◦ U−1
T : [0, 1]→ [0, 1], such that185

w0(m
0) = ϕ[wT (p

T )]. (6)

Consequently, the attitudes towards temporal risk, as elicited through MPPs, involves the trans-186

formation function ϕ = U0 ◦ U−1
T on the one hand, and the two probability weighting functions187

w0 and wT on the other hand. Note that in the presence of neutrality towards temporal risk,188

i.e., U0 = UT and w0 = wT , matching probabilities m0 should coincide with the corresponding189

pT s.190

Under RRDU, the determination of certainty equivalents c0T and cTT of a lottery (xT , p, yT ) with191

p = p0 and p = pT , respectively, implies the following two equations192  c0 = (ϕ ◦ UT )−1(w0(p))

cT = U−1
T (wT (p)).

& (7)

Note that a CE-based elicitation of attitudes towards temporal risk under RRDU requires in193

principle that the four components ϕ, U0, w0, and wT of RRDU, to be elicited. In the absence194

of nonlinear probability weighting, Eqs.(??) reduce to Eqs.(??).195

In sections 4 and 5 of the present paper, we investigate the descriptive power and prediction196

accuracy of RRDU and three of its restrictions. The first restriction is the standard REU, i.e.,197

RRDU with no probability weighting at all. The second restriction supplements REU by an198
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atemporal probability weighting w0 = wT ; meaning that attitudes towards temporal resolution199

is exclusively revealed through the transformation ϕ. The third restriction of RRDU assumes200

an extension of REU where attitudes towards temporal risk is exclusively revealed through201

probability weighting functions w0 and wT (with an atemporal utility U0 = UT , i.e., ϕ is the202

identity function).203

3. Experimental setup204

We conducted two experiments. Study A investigates attitudes towards temporal risk through205

MPPs in an incentivized experiment. Study B goes one step further and uses both MPPs and206

CEs to elicit attitudes towards temporal risk from incentivized choices. The CEs collected in207

study B also allow for an investigation of the goodness of fit and prediction accuracy of the208

different versions of RRDU (including REU).209

3.1. Subjects and procedure210

Subjects in study A were 70 undergraduate students from the University of Paris Descartes211

(France). Each of them received a participation fee of 1€7 for a one-hour computer-based in-212

terview. Instructions concerning the experiment were communicated to the subjects through a213

power point presentation. The experiment began with a few practice questions to familiarize the214

subjects with the software used to display and collect choices. Each individual interview took215

about one hour.216

To test whether the presence of real incentives affected individual behavior, subjects were divided217

into two subsamples of 35 subjects each: the “real incentives” group and the “hypothetical218

choices” group. At the beginning of the individual interview, each subject in the real incentive219

group was informed that, at the end of the session, a random draw from an urn containing one220

winning ball out of a total of 20 balls would take place to decide whether he was selected to221

have one choice question (randomly drawn and) played out for real.222

Two subjects in the real incentive group had one of their choices played out for real. For one, it223

resulted into a sure gain of 25 euros. For the other, a lottery was resolved 9 months after the224

experiment and resulted in no gain.225

The subjects in study B were 68 undergraduate students from ESSEC Business School (France);226

each of them received a participation fee of 1€7 Upon arrival, the subjects were shown a 10-227

minutes video with the instructions for the experiment. This was followed by a survey with228
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comprehension questions, in order to determine whether or not the subject needed further ex-229

planations. The experiment began with a few practice questions to familiarize the subjects with230

the software used to display and collect choices. Each individual interview took about one hour.231

Real incentives were implemented for all of the subjects, and the related procedure was explained232

in the instructions. Each of the subjects had one of their choices played out for real at the end233

of the experiment. According to the Prince principle (Johnson et al., 2020), the number of the234

question to be played out for real was selected before the beginning of the experiment, and235

only revealed at the end of it. For t = 0, lotteries were resolved the day after the experiment,236

producing a small front-end delay. When t = 6, lotteries were resolved 6 months after the237

experiment.238

For both immediate and late resolution, uncertainty was resolved by drawing from a physical239

random device (a bingo cage). In order to avoid suspicion or transaction costs, it was up to240

the subject to choose between watching the resolution through a Skype session or coming to241

the lab (the day after the experiment, in the case of an immediate resolution). In the case of a242

gain, money was paid by Paypal transfer. Overall, the procedure systematically separates the243

experiment from the resolution and the payment, and ensures that the conditions “now” (t = 0)244

and “later” (t = 6) do not differ in terms of transaction cost or one-vs-multiple-shot resolution245

of uncertainty.246

The total payment in study B was 1€795 (excluding the show-up fees). Specifically, 36% of the247

subjects got an average sure gain of 1€7.54; 42% got the sooner resolution, with an average248

value of 1€7.43 euros; 22% got the later resolution, with an average value of 1€7.249

3.2. Stimuli250

As shown in Tables ?? and ??, both studies A and B elicited baseline risk preferences, i.e., risk251

preferences for immediately resolved lotteries (t = 0). Specifically, studies A and B elicited 11252

CEs of each for the lotteries (X, p0, x), where the date of receipt of outcomes T was fixed at253

12 and 6 months, respectively. The elicitation of CEs with a fixed (variable) probability pt and254

varying (fixed) outcomes X,x was mainly devoted to capture the utility (probability weighting)255

curvature.256

To elicit attitudes towards temporal risk, both studies elicited MPPs of delayed lotteries for 5257

levels of the winning probability pt. Specifically, studies A and B elicited MPPs for t = 3, 6, 9, 12258

and t = 6, respectively (last five rows of Tables ?? and ??). Furthermore, study B elicited 11 CEs259

for lotteries (X, pt, x) with t = 6. This allowed us to check whether the elicitation of attitudes260
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Resolution
Lottery

Task
X x pt

t = 0

100 0 0.50

CE

200 0 0.50
400 200 0.50
450 150 0.50
500 200 0.50
500 100 0.50

t = 0

500 0 0.10

CE
500 0 0.20
500 0 0.50
500 0 0.80
500 0 0.90

t = 3, 6, 9, 12

500 0 0.10

MPP
500 0 0.25
500 0 0.50
500 0 0.75
500 0 0.90

(a) Study A

Resolution
Lottery

Task
X x pt

t = 0, 6

60 0 0.25

CE

60 0 0.75
80 20 0.25
80 20 0.75
90 10 0.25
90 10 0.75

t = 0, 6

100 0 0.10

CE
100 0 0.25
100 0 0.50
100 0 0.75
100 0 0.90

t = 6

100 0 0.10

MPP
100 0 0.25
100 0 0.50
100 0 0.75
100 0 0.90

(b) Study B

Table 1: Stimuli

towards temporal risk is robust to the scale used to evaluate lotteries: the probability scale for261

MPPs vs. the outcome scale for CEs. The elicitation of CEs for delayed lotteries in study B262

also allowed us to compare the descriptive power of the utility vs. the probability weighting263

approach to temporal risk.264

In both studies, CEs and MPPs were determined using an iterative bisection choice process in a265

first step. Then, in a second step, the subjects were presented with an already completed choice266

list and were asked to either validate or change it (Appendices ?? and ??). This means that267

any error that might have occurred during the bisection process could be fixed before validation.268

Both the subjects in the real incentive group of study A and the subjects in study B were269

informed that all the decisions made in each choice list were eligible and equally likely to be270

selected and played out for real. CEs were elicited with a precision of 5 euros in both studies.271

MPPs were elicited with a precision of 0.02 in study A and 0.05 in study B.272

The following section reports a model-free analysis of the data. Sections 5 and 6 report econo-273

metric estimations from likelihood maximization of structural equations (see Appendix C).274

4. Model-free measurement of attitudes towards temporal risk275

Attitudes towards temporal risk can be measured model-free by means of MPPs of delayed276

lotteries in studies A and B, and by comparing CEs of lotteries resolved now and later in study277
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pt
Study A (t = T = 12; n = 70) Study B (t = T = 6; n = 68)

Median Std t-test #(m0 < p12) Median Std t-test #(m0 < p6)

0.10 0.09 0.03 2.13? 62??? 0.12 0.06 4.56??? 29ns

0.25 0.21 0.05 -0.47ns 55?? 0.22 0.04 -3.85??? 51???

0.50 0.45 0.08 -7.80??? 63??? 0.42 0.05 -10.72??? 64???

0.75 0.67 0.10 -8.27??? 55??? 0.67 0.08 -9.80??? 66???

0.90 0.79 0.12 -9.19??? 63??? 0.77 0.08 -11.09??? 66???

ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001; n: sample size

Table 2: Empirical distributions of MPPs

B. Both methods of measurement consistently point to a predominance of preference for early278

resolution that declines in intensity for small winning probabilities. More details about reliability279

and real incentives in study A are given in Appendix ??. Appendix ?? reports details about280

baseline risk preferences in studies A and B.281

Lottery t = 0 t = 6 Comparison of CEs
pt X x Median Std Median Std t-test #(c6 ≶ c0)

0.25 60 0 12.50 5.80 12.50 5.00 3.82??? 28/9??

0.75 60 0 32.50 7.30 27.50 6.70 8.31??? 51/4???

0.25 80 20 32.50 4.60 32.50 3.90 4.17??? 28/5???

0.75 80 20 47.50 8.20 37.50 6.50 11.64??? 59/4???

0.25 90 10 27.50 6.50 22.50 5.80 3.42?? 27/7??

0.75 90 10 52.50 9.40 37.50 9.70 9.19??? 56/4???

0.10 100 0 15.00 8.90 7.50 7.20 4.43??? 27/8??

0.25 100 0 22.50 6.20 17.50 5.90 4.68??? 29/5???

0.50 100 0 37.50 6.10 32.50 6.60 8.92??? 52/4???

0.75 100 0 52.50 12.10 42.50 11.70 10.26??? 58/2???

0.90 100 0 65.00 11.90 57.50 13.80 7.07??? 58/4???

ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001; sample size: n = 68

Table 3: Empirical distributions of CEs in study B

4.1. Measurement from matching present probabilities282

Table ?? reports the medians and standard deviations of the elicited MPPs in studies A and283

B for t = T = 12 and t = T = 6 respectively (see also Table ??, Appendix ??, for interme-284

diary resolution dates t = 3, 6, 9 in study A). At the aggregate level we observe that, in both285

studies, median MPPs are consistently lower than the corresponding delayed probabilities. One-286

sample t-tests confirm that, overall, MPPs differ from the corresponding delayed probabilities287

in both studies A and B. At the individual level, MPPs were below the corresponding delayed288

probabilities for a large majority of subjects (Table ??: columns 5 and 9 for studies A and B,289

respectively). This suggests a predominance of preference for early resolution.290
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(a) MPPs (studies A & B) (b) Normalized CEs (study B)

Figure 3: attitudes towards temporal risk from linear regression

Table ?? also shows that, in study A, the difference between delayed probabilities (pt) and the291

corresponding MPPs (m0) increases from 0.01 when pt = 0.10 to 0.11 when pt = 0.90 (Page292

trend test, p < 0.001). A similar pattern of the probability premium pt − m0 is observed in293

study B (Page trend test, p < 0.001). This is confirmed by the linear regression of MPPs on294

the corresponding delayed probabilities, where the probability premium pt −m0 is the vertical295

distance between the 451€7line, that materializes neutrality towards temporal risk (m0 = pt),296

and the regression line (Figure ??). In both studies A and B, the regression lines (of MPPs on297

delayed probabilities) do not coincide with the 451€7line (Fisher test: p < 0.01). Regression298

estimates show that the slopes of regression lines are similar and below the unit; furthermore, the299

intercepts are close to zero. Again, this suggests a preference for early resolution of uncertainty300

which declines (in terms of magnitude) when the delayed winning probability decreases.301

4.2. Measurement from certainty equivalents302

Study B also elicited CEs, c0 and c6, of lotteries (100, p0 = p, 0) and (100, p6 = p, 0), respectively,303

for five different values of probability p. Here, preference for early resolution of uncertainty304

corresponds to a positive difference c0− c6, meaning that, lottery (100, p, 0) is assigned a higher305

value (CE) when resolved now (p0 = p) as compared to later (pt = p). At the aggregate level, we306

observe that the null hypothesis of equal CEs, c0 = cT , is rejected by paired t-tests (Table ??,307

column 8). This conclusion accords with the observation that the mean CEs are systematically308

lower for delayed lotteries as compared to immediately resolved ones, and this for each of the309

five winning probability levels (pt = 0.10, 0.25, 0.50, 0.75, 0.90). At the individual level, Table ??310
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(last column) shows that a majority of subjects assign a higher value to lotteries resolved now311

than the equivalent lotteries resolved later.312

Figure ?? confirms the results obtained from MPPs, displaying that preference for early reso-313

lution, as inferred from CEs, is predominant at the aggregate level. A Fisher test shows that314

the regression line of c0 on c6 does not coincide with the 451€7line materializing neutrality315

towards temporal risk (p < 0.01). Furthermore, as the regression line have a slope below the316

unit and an intercept which is positive, the magnitude of the difference c0 − c6 declines when317

the delayed-winning probability is decreased (Page trend test, p < 0.01).318

Power Exponential Expo-power

xα (1− e−αx)/(1− e−α) (1− e−α1xα2 )/(1− e−α1)

Table 4: Parametric specifications for ϕ and UT

5. Attitudes towards temporal risk under REU319

As explained in section 2.3, REU uses two utility functions: UT and U0 = ϕ ◦ UT , where the320

transformation ϕ reveals the impact of temporal risk. The present section elicits the transforma-321

tion function using two different methods. The first directly determines ϕ from MPPs. Based322

on CEs, the second method infers ϕ from the elicitation of both UT and U0 = ϕ ◦ UT . We use323

the two-parameter expo-power family reported in Table ?? to estimate REU components. This324

family has the advantage of including the power and the exponential specifications as a limiting325

case (α1 → 0), and particular case (α2 = 1) respectively (Peel and Zhang, 2009). In addition to326

their popularity in the empirical literature, the power and the exponential specifications are used327

to detect simple convex / concave shapes. The expo-power is particularly suitable for goodness328

of fit comparisons when the data set is rich enough.329

Study A Study B
Component Aggregate Individual Aggregate Individual

Estimate SE Median IQR Estimate SE Median IQR

Transformation (ϕ)
α1 -1.86??? 0.24 -0.90 [-1.99;-0.21] -2.50??? 0.02 -2.48 [-2.61;-1.10]
α2 0.69??? 0.04 0.96 [ 0.81; 1.01] 0.53??? 0.01 0.62 [ 0.52; 0.76]

SE: standard error; ???: p < 0.001

Table 5: Estimates of ϕ under REU from MPPs

330
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Figure 4: Aggregate estimates assuming an expo-power ϕ (Study B)

5.1. Eliciting ϕ from matching present probabilities331

Under REU, MPPs allow for a simple elicitation of the transformation function ϕ. As shown332

in Section 2.3, the transformation function links MPPs m0 to the corresponding present prob-333

abilities pT . We use a maximum likelihood procedure to estimate ϕ both at the aggregate and334

individual levels while assuming a normal error, that is335

m0 = ϕ(pT ) + ε, (8)

where ε ∼ N(0, σ). Table ?? reports MPP-based estimates of ϕ assuming an expo-power spec-336

ification in studies A and B for t = T = 12 and t = T = 6, respectively. Additional estimates337

are provided in Tables ?? and ?? in appendix ??.338

At the aggregate level, the null hypothesis that ϕ is the identity function is rejected by a339

likelihood ratio test (p < 0.001 for studies A and B). This clearly means that temporal risk340

affects the shape of ϕ, thereby showing that REU has more descriptive power than the standard341

EU. As expected, likelihood-ratio tests show that the expo-power specification fits the data342

better than both a power and an exponential ϕ (p < 0.001 in studies A and B). Note that343

Figure ?? shows that while ϕ (as inferred from MPPs under the expo-power specification) is344

globally convex, it also exhibits a slight concavity for small values of the utility scale, i.e., when345

the winning probability is small.5346

At the individual level, Table ?? shows that the median estimates of the expo-power parameters347

are close to the corresponding aggregate estimates (see also Table ??, Appendix ??) and point348

5This result is consistent with the implication of Finding 4 in Masatlioglu et al. (2017) that suggests that the

transformation function ϕ is S-shaped under REU.

15



Figure 5: Individual estimates of ϕ (exponential) under REU: MPPs vs CEs

to a global convexity of ϕ. Binomial tests show that, under both the exponential and power349

specifications, convexity of the transformation function predominates in studies A and B (p <350

0.001). Under the exponential specification, 63 (60) subjects out of 70 (68) exhibited a convex ϕ351

in study A (B). A similar pattern holds when a power transformation is assumed. These findings352

are fully consistent with the model-free findings described in section 4.353

354

5.2. Eliciting ϕ from certainty equivalents355

A traditional method for eliciting the transformation ϕ under KP’s REU model consists in356

determining the CEs of a lottery (X, p, x) in an early vs. late setup (e.g. von Gaudecker et al.,357

2011). In addition to its more demanding nature, CE-based elicitation of ϕ under REU may be358

biased in the presence of nonlinear probability weighting. In particular, the certainty effect (as359

represented by a steeper inverse S-shaped probability weighting function near certainty) would360

result in discrepancies between a CE-based and a MPP-based ϕs, as MPPs exclusively result361

from a comparison between non-degenerate lotteries.362

We use a maximum likelihood procedure to estimate the components of REU in Eqs.(??) at363

both the aggregate and individual levels. Table ?? reports the estimates of the parameters of364

UT and ϕ assuming expo-power parametric forms. The estimates of the power and exponential365

families are reported in Table ?? (Appendix ??).366
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Components
Aggregate Individual

Estimate SE Median IQR

Utility (UT )
α1 0.0003??? 0.0005 0.004 [ 0.001; 0.007]
α2 1.66??? 0.15 1.59 [1.38; 1.83]

Transformation (ϕ)
α1 -1.97??? 0.32 -2.42 [-2.67;-0.74]
α2 0.86??? 0.10 0.71 [ 0.55; 1.29]

???: p < 0.001

Table 6: Estimates of UT and ϕ under REU from CEs

367

At the aggregate level, likelihood ratio tests reject the null hypothesis that ϕ is the identity368

function (p< 0.001). The estimates suggest a (globally) convex transformation ϕ, be it power369

or exponential. Figure ?? shows an exaggerated convexity when ϕ is inferred from CEs rather370

than from the certainty-effect-free MPPs under the exponential specification.371

As for the individual level, the estimates point to a predominance of convex ϕs, thus showing a372

prevalence of preference for early resolution. For instance, under the exponential specification,373

61 subjects out of 68 exhibit a convex ϕ. Even so, the median estimate of the exponential374

parameter from CEs is almost the double of the corresponding median estimate from MPPs.375

Furthermore, Figure ?? shows that a majority of subjects exhibit a more convex ϕ when elicited376

from CEs than when elicited from MPPs.377

6. Attitudes under recursive rank-dependent utility378

This section analyzes temporal risk under recursive rank-dependent utility using the CEs ob-379

tained in study B. Specifically, REU is supplemented with two probability weighting functions380

w0 and wT that could possibly capture the impact of temporal risk on probability weighting.381

We first show that RRDU outperforms REU in terms of descriptive accuracy. Then, we inves-382

tigate whether temporal risk impacts both the utility and probability weighting scales or just383

one of them, i.e., either U0 = UT or w0 = wT . The results of the present section suggest that384

RRDU with an atemporal utility scale performs better than RRDU with atemporal probability385

weighting, in terms of goodness of fit and predictive power.386

6.1. Eliciting RRDU components387

As explained in section 2.4 (Eq. ??), under RRDU, the certainty equivalents c0 and cT of a388

given lottery (X, p, x) are predicted by (U−1
T ◦ ϕ−1 ◦ w0)(p) and (U−1

T ◦ wT )(p), respectively. In389

17



(a) Transformation function (b) Probability weighting

Figure 6: Aggregate estimates of ϕ, w0 and wT under RRDU

the sequel, we assume the Prelec’s (1998) two-parameter specification for w, i.e.,390

w(p) = e−δ(−ln(p))γ , (9)

where parameter δ is an index of optimism / pessimism towards probability, and γ reflects sen-391

sitivity to probabilities. When δ = γ = 1, w reduces to the identity function, i.e. no probability392

weighting. The accumulated experimental evidence shows that, when facing risky gains, people393

exhibit an inverse S-shaped w, overweighting small probabilities, and underweighting moderate394

and high probabilities. In terms of the Prelec specification, this generally results in δ > 1 and395

γ < 1 (Wakker, 2010). As for utility scales, we assign an expo-power specifications to both UT396

and ϕ. Appendix ?? reports estimates assuming power and exponential specifications for ϕ.397

We use maximum likelihood procedures to estimate the parameters of RRDU. The corresponding398

estimates are reported in Table ??. Figure ?? suggests that, at the aggregate level, probability399

weighting captures most of the impact of temporal risk on preferences. This is confirmed by400

likelihood ratio tests. Specifically, while we could not reject the hypothesis of identical utility401

functions U0 and UT (p = 0.46 under an expo-power ϕ), the hypothesis of identical probability402

weighting functions w0 and wT is clearly rejected by our observations (p < 0.001).6403

At the individual level, Table ?? shows that median estimates for the parameters of UT , ϕ,404

w0 and wT are very similar to aggregate estimates. Table ?? in Appendix ?? confirm this405

observation when a power (or an exponential) specification is assigned to ϕ as well. When ϕ is406

6Note that, in both cases, we test a restricted RRDU model (6 parameters) against the “full force” RRDU

model (8 parameters). The statistics of each test has (asymptotically) a χ2 distribution with 2 = 8 − 6 degrees

of freedom.

18



(a) Transformation function (b) Probability weighting

Figure 7: Aggregate estimates of restricted versions of RRDU

assigned a power parametric form, 28 (40) subjects exhibit a convex (concave) shape (binomial407

test, p = 0.18).408

Component
Aggregate Individual

Estimate SE Median IQR

Expo-power utility (UT )
α1 0.0007?? 0.0002 0.00004 [-0.018; 0.0009]
α2 1.43??? 0.06 1.32 [0.96; 1.76]

Expo-power (ϕ)
α1 0.16ns 0.29 0.19 [-2.23;1.59]
α2 0.92??? 0.06 0.91 [0.60;1.35]

Probability weighting (w0)
δ 1.36??? 0.07 1.68 [1.24; 2.00]
γ 0.53??? 0.02 0.58 [ 0.44; 0.69]

Probability weighting (wT )
δ 1.83??? 0.08 1.91 [0.32;0.70]
γ 0.40??? 0.02 0.40 [0.28;0.48]

ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 7: Estimates of UT , ϕ, w0, and wT under RRDU

409

To sum up, both the aggregate and individual-level estimates of RRDU point to a more parsi-410

monious version of RRDU where ϕ is linear, i.e., U0 = UT . This implies that attitudes towards411

temporal risk is captured by probability weighting rather than by the utility scale. This also412

accords with the aggregate estimates for study A assuming RRDU with a linear ϕ (see Appendix413

??).414
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6.2. Goodness of fit and prediction accuracy415

The present section compares three restrictions of RRDU both in terms of goodness of fit and416

prediction accuracy assuming expo-power parametric forms for UT and ϕ, and Prelec parametric417

specifications for w0 and wT . The first consists of REU, the second supplements the latter418

with atemporal probability weighting (w0 = wT ), and the third assumes an atemporal utility419

(U0 = UT ).420

Table ?? reports the the Akaike information criterion (AIC) values corresponding to each of the421

three aforementioned restrictions of RRDU. It allows the comparison of goodness of fit while422

accounting for the difference of the number of involved parameters. In particular, it shows423

that the goodness of fit of REU improves with atemporal probability weighting. This result424

is consistent with the less pronounced curvature of the MPP-based transformation function as425

compared to that inferred from CEs under REU (Figure ??). In contrast to CEs, MPPs avoid426

the certainty effect (one of the major causes of probability weighting), which results in a less427

biased measurement of the transformation function under REU.428

We also compare REU to RRDU with atemporal probability weighting in terms of prediction429

accuracy as measured by the root mean square error (RMSE), an estimator of the standard430

deviation of prediction errors regarding MPPs. Specifically, in study B, we used the models esti-431

mated from CEs to measure the RMSE-based discrepancy between the observed and predicted432

MPPs (Appendix ??). Table ?? reports aggregate and individual level MPP-based RMSE values433

and shows that, in terms of prediction accuracy, RRDU with atemporal probability weighting434

performs slightly better than REU.435

We now consider the comparison of RRDU with atemporal probability weighting vs. RRDU436

with atemporal utility in terms of both goodness of fit and prediction accuracy. Note that each437

of these two models involves the same number of parameters to estimate, i.e. 6 parameters. This438

is illustrated in Figure ?? where delayed resolution clearly impacts the discrepancy between w0439

and wT more strongly than the discrepancy between U0 and UT as measured by the curvature440

of ϕ (under RRDU). As for goodness of fit, measured by AIC, the assumption of RRDU with441

atemporal utility performs better than RRDU with atemporal probability weighting.7 Under442

RRDU, our results also point to a better predictive performance of the assumption U0 = UT443

7Although the full force RRDU has a better predictive performance than RRDU with atemporal utility at

the aggregate level (RMSE: 0.071 vs. 0.09), it does not outperform the latter in terms of AIC (AIC: 5750.92 vs.

5748.47). This conclusion is reminiscent of the likelihood ratio test performed in Section 6.2 showing that the

full force RRDU does not improve significantly goodness of fit as compared to (the nested assumption of) RRDU

with atemporal utility.
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Restriction AIC
MPP-based RMSE

Aggregate Individual

(median)

RRDU
REU 6097.69 0.104 0.115
w0 = wT 5766.28 0.103 0.111
U0 = UT 5748.47 0.090 0.102

Table 8: Goodness of fit and prediction accuracy

as compared to the assumption w0 = wT , both at the both aggregate and individual levels.444

Specifically, the null hypothesis of equal RMSEs across these two models is rejected (paired t-test,445

p < 0.001). Further, the RMSE is smaller under RRDU with atemporal probability weighting446

than under RRDU with atemporal utility for 55 subjects out of 68 (Binomial, p < 0.001).447

7. Discussion and conclusion448

We have analyzed attitudes towards temporal risk in a discounting-free setup through a general-449

ization of recursive expected utility (REU) where preference for early resolution could affect both450

utility and probability weighting. Our contribution is twofold: (i) Proposing a simple method451

(Matching present probabilities, MPPs) to elicit the transformation function under REU; (ii)452

Conducting a “horse race” between two approaches to temporal risk, i.e., utility vs. probability453

weighting, which confirms and extends the early (qualitative) empirical findings that attribute454

temporal risk to probability weighting.455

We show that using MPPs to measure attitudes towards temporal risk is less demanding than456

using certainty equivalents under REU (e.g., Ahlbrecht and Weber, 1997; von Gaudecker et al.,457

2011; Brown and Kim, 2014) and it allows for a simple elicitation of the transformation function458

ϕ. To our knowledge, this method represents the simplest way of eliciting attitudes towards459

temporal risk under REU. We also show that, in contrast to the use of certainty equivalents460

(CEs), the comparison of non-degenerate lotteries involved in MPP elicitations circumvents the461

certainty effect, one of the major sources of probability weighting.462

The paper also proposes and implements two ways of measuring attitudes towards temporal risk463

under recursive rank-dependent utility (RRDU): the first uses MPPs while the second is based464

on CEs. Studies A and B perform a simple probability scale-based measurement of attitudes465

towards temporal risk, using MPPs. Our findings point to a predominance of preference for466

early resolution. Furthermore, this preference declines as the winning probability decreases. In467

study B, where we use both MPPs and CEs, most of the subjects prefer early resolution when468
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the winning delayed probability is moderate or high, but only a minority of them exhibit such469

a preference when the winning probability is low, i.e., pT = 0.10 (Table 2). This result is in line470

with the previous findings by Chew et Ho (1994) and Lovallo and Kahneman (2000) suggesting471

that attitudes towards temporal risk may depend on the magnitude of the winning probability472

(see also the more recent contributions of van Winden et al., 2011; Masatlioglu et al., 2017,473

experiment 3). Descriptively, these findings support adopting the general model proposed in the474

present paper, i.e., RRDU, to investigate attitudes towards temporal risk without committing475

a priori to a utility or a probability weighting-based approach. Under RRDU, our data suggest476

that the attitudes towards temporal risk is carried by temporal probability weighting as initially477

suggested in Wu (1999) and subsequently exploited in Epstein (2008), meaning that capturing478

temporal risk in terms of probability weighting descriptively outperforms the traditional utility-479

driven REU approach.480

Empirical investigations on one-shot resolution of uncertainty (e.g. Ahlbrecht and Weber, 1997;481

von Gaudecker et al., 2011; Brown and Kim, 2014), did not investigate whther the decision-482

makers view the value of information as intrinsic (exhibiting an aversion to prolonged uncer-483

tainty) or instrumental (preferring an early resolution of uncertainty regarding monetary rewards484

to plan future consumption; Ganguly and Tasoff, 2017). This issue is particularly relevant under485

Kreps and Porteus’ (1978) REU where the transformation function ϕ is assumed to capture the486

intrinsic value of information. The risk resolution in our setup presents the question of whether487

the decision-makers consider the instrumental or the intrinsic value of information. While we488

cannot directly answer such a question, we think that an instrumental value of information would489

affect both probability weighting and utility transformation (ϕ). Furthermore, study A suggests490

that the fully informative signals we use in our setup were likely to be assigned an intrinsic491

value. In fact, our subjects exhibit a systematically more pronounced aversion to temporally492

prolonged uncertainty as the delay of resolution is increased. For instance, under REU, table 16493

(Appendix E) shows that the convexity of the transformation function ϕ gets more pronounced494

when the delay of resolution increases from 3 to 12 months. This is consistent with the idea of495

a temporally increasing psychological cost of waiting for uncertainty resolution.496

When individual decision-making involves both time and risk dimensions, a lottery can be either:497

(i) resolved and paid now; (ii) both resolved and paid later; or (iii) resolved now and paid later.498

As compared to the standard case (i), case (ii) involves two additional psychological dimensions.499

The first is related to the delayed receipt of outcomes, and the second has to do with delayed500

resolution of risk, i.e., temporal risk. Noussair and Wu (2006) and Abdellaoui et al. (2011),501

assuming EU and RDU respectively, reported consistent findings pointing to more risk tolerance502

in case (ii) than in case (i). It is however, noteworthy to observe that Abdellaoui et al. (2011)503

found that the increase in risk tolerance was due to a shift in terms of probability weighting504
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rather than in terms of utility. While this is consistent with the findings of the present paper505

focusing on the difference between cases (ii) and (iii), it should also be observed that the impact506

on probability weighting in these studies goes in opposite directions, i.e., more risk tolerance507

between (i) and (ii) and more risk aversion between (ii) and (iii). This suggests a more complex508

interaction between intertemporal tradeoff of outcomes and risk resolution in case (i) vs. case509

(ii) where the overall observed optimism outweighs the pessimism involved by the sole delayed510

risk resolution. We think that further investigation is desirable to understand the factors that511

influence risk attitudes when intertemporal tradeoffs of outcomes are intertwined with delayed512

resolution.513
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APPENDIX593

A. Displays594

A.1. Study A595

(a) Binary choice during the bisection step

During the bisection step, subjects report their preferences by clicking on the preferred lottery in each iteration.

(b) Choice list for confirmation

In this example, the subject shifted from option A to option B for z ∈ [€325,€330] during the bisection process

(step 1); so in step 2, the corresponding choice list was presented. The subject was then asked to scroll the

bar from left to right and thereby to check whether he still preferred to shift between options A and B for

z ∈ [€325,€330]. Otherwise, he could change the “shifting value”.

Figure 8: Steps for eliciting CEs in study A
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(a) Binary choice during the bisection step

During the bisection step, subjects reported their preferences by clicking on the preferred lottery in each

iteration.

(b) Choice list for confirmation

In this example, the subject shifted from option A to option B for q0 ∈ [0.23, 0.24] during the bisection process

(step 1); so in step 2, the corresponding choice list was presented. The subject was then asked to scroll the bar

from the left to the right in order to check whether she still preferred to shift between options A and B for

q0 ∈ [0.23, 0.24]. Otherwise, she could change the “shifting value”.

Figure 9: Steps for eliciting MPPs in study A
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A.2. Study B596

(a) Binary choice during the bisection step

During the bisection step, subjects reported their preferences by clicking on the preferred lottery in each

iteration. The process aims at determining the CE c0 of (X = 100, p0 = 0.75, x = 40).

(b) Choice list for confirmation

In this example, the subject is presented with the completed choice list corresponding to his CE as inferred from

the bisection process. The arrowhead below the slider indicates the position of the latter where the subject is

supposed to shift from option B to the risk-free option A given his choices during the bisection step. The slider

can take on 11 positions from “1” to “11” corresponding to the sure amounts of money €95 to €45 (with a

step-size of €5) respectively.

Figure 10: Elicitation of CEs c0 in study B
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(a) Binary choice during the bisection step

During the bisection step, subjects reported their preferences by clicking on the preferred lottery in each

iteration. The process aims at determining the CE c6 of (X = 100, p6 = 0.25, x = 0).

(b) Choice list for confirmation

In this example, the subject was presented with the completed choice list corresponding to his CE as inferred from

the bisection process. The arrowhead below the slider indicates the choice at which the subject was supposed to

shift from option B to the risk-free option A given his choices during the bisection step. The slider can take on

19 positions from “1” to “19” corresponding to the sure amounts of money €95 to €5 (with a step-size of €5)

respectively.

Figure 11: Elicitation of CEs c6 in study B
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(a) Binary choice during the bisection step

During the bisection step, subjects reported their preferences by clicking on the preferred lottery in each

iteration. The process aims at determining the MPP m0 of (X = 100, p6 = 0.90, x = 0).

(b) Choice list for confirmation

In this example, the subject was presented with the completed choice list corresponding to his MPP as inferred

from the bisection process. The arrowhead below the slider indicates the choice at which the subject was supposed

to shift from option A to option B given his choices during the bisection step. The slider can take on 19 positions

from “1” to “19” corresponding to the winning probabilities 95% to 5% (with a step-size of 5%) respectively.

Figure 12: Elicitation of MPPs m0 in study B
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B. Additional results597

B.1. Reliability and real incentives in study A598

Reliability. In order to verify the reliability of these MPP elicitations, we presented each599

subject in study A with the choice lists corresponding to lotteries (X, p6, x) = (500, 0.90, 0) and600

(X, p12, x) = (500, 0.90, 0) twice. No difference was detected between the corresponding MPPs601

(paired t-tests, respectively p = 0.08 and p = 0.92). Furthermore, the elicited probabilities were602

highly correlated (Pearson’s r = 0.80 for t = 6 and r = 0.83 for t = 12).603

Real incentives for MPPs. To assess the effect of real incentives on subjects’ behavior in604

study A, we performed a 2 × 16 ANOVA test in which presence/absence of incentives was the605

between-subjects factor and the 16 lotteries served as the within-subjects factor. In line with606

our expectation, the MPPs varied across lotteries (p < 0.001). Real incentives had no significant607

effect on MPPs (p = 0.67) and did not interact with the lotteries (p = 0.98).608

Real incentives for CEs. A 2 × 11 ANOVA test, where lotteries (11) were considered as609

a within-subject factor and presence of real incentives (yes / no) as a between-subject factor,610

shows that CEs are not affected by real incentives (p = 0.93). The presence of real incentives611

(yes / no) do not interact with the lotteries (p = 0.76).612

B.2. Baseline risk preferences from CEs613

Tables ?? and ?? report the main characteristics of the empirical distributions of CEs of imme-614

diately resolved lotteries in studies A and B, respectively. At the aggregate level, we observe a615

predominance of risk seeking (aversion) for p0 = 0.10 (p0 > 0.10), i.e., the mean CEs are above616

(below) the corresponding expected values. In other words, risk attitude for immediately resolved617

lotteries is probability-dependent as found in many studies (Bruhin et al., 2010; Wakker, 2010618

and references therein). This dependence accords with an inverse S-shaped baseline probability619

weighting function w0.620
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Lottery
Mean Std #(CE ≶ EV )

X x p0

100 0 0.50 49.64 13.71 47/23???

200 0 0.50 87.67 23.42 60/10???

400 200 0.50 285.21 22.77 58/12???

450 150 0.50 260.14 40.84 63/7???

500 200 0.50 316.14 38.83 61/9???

500 100 0.50 255.36 50.25 64/6???

500 0 0.10 78.57 48.35 31/39ns

500 0 0.20 98.86 51.02 52/18???

500 0 0.50 189.25 61.63 63/7???

500 0 0.80 285.71 73.45 67/3???

500 0 0.90 343.79 77.62 67/3???

ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

(a) Study A

Lottery
Mean Std #(CE ≶ EV )

X x p0

60 0 0.25 16.10 5.80 41/27ns

60 0 0.75 33.80 7.30 62/6???

80 20 0.25 33.50 4.60 55/13???

80 20 0.75 48.10 8.20 66/2???

90 10 0.25 27.40 6.50 51/17???

90 10 0.75 50.30 9.40 66/2???

100 0 0.10 16.10 8.90 29/39ns

100 0 0.25 21.50 22.50 53/15???

100 0 0.50 37.20 6.10 68/0???

100 0 0.75 53.60 12.10 66/2???

100 0 0.90 65.20 11.90 66/2???

ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

(b) Study B

Table 9: Empirical distributions of CEs for immediately resolved lotteries

B.3. Model-free measurement of attitude towards temporal risk621

pt t
Study A (T = 12, n = 70) Study B (T = 6, n = 68)

Mean Median Std #(m0 < pt) Mean Median Std #(m0 < p6)

0.10

3 0.08 0.09 0.03 64??? - - -
6 0.14 0.09 0.14 65??? 0.14 0.12 0.065 29ns

9 0.07 0.07 0.03 65??? - - -
12 0.13 0.09 0.14 62??? - - -

0.25

3 0.22 0.23 0.04 48?? - - -
6 0.26 0.23 0.10 50ns 0.23 0.22 0.042 51???

9 0.21 0.21 0.05 55??? - - -
12 0.24 0.21 0.11 55??? - - -

0.50

3 0.45 0.47 0.06 65??? - - -
6 0.44 0.45 0.07 65??? 0.43 0.42 0.052 64???

9 0.44 0.45 0.07 65??? - - -
12 0.43 0.45 0.08 62??? - - -

0.75

3 0.69 0.71 0.08 54??? - - -
6 0.64 0.69 0.13 54??? 0.65 0.67 0.081 66???

9 0.67 0.69 0.10 59??? - - -
12 0.62 0.67 0.14 67??? - - -

0.90

3 0.83 0.87 0.10 65??? - - -
6 0.74 0.83 0.17 66??? 0.78 0.77 0.089 66???

9 0.80 0.83 0.11 65??? - - -
12 0.72 0.79 0.19 63??? - - -

ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 10: Empirical distributions of MPPs

We denote m0
t the MPP such that (X,m0

t , x) ∼ (X, pt, x). For each probability level pt ∈622

{0.1, 0.25, 0.5, 0.75, 0.9}, we ran a Page test, with the null H0 : m0
12 = m0

9 = m0
6 = m0

3 against623

the alternative H1 : m
0
12 ≤ m0

9 ≤ m0
6 ≤ m0

3 or H2 : m
0
12 ≥ m0

9 ≥ m0
6 ≥ m0

3 with at least one strict624

inequality. The null was rejected for probability 0.1 (p = 0.003) as well as for other probability625

levels (p < 0.001). Median MPPs reported in Table ?? suggest that H1 is more likely to be626
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satisfied for a winning probability pt ≥ 0.25.627

C. Econometric implementation628

We used maximum likelihood methods to estimate each model—REU and different restrictions629

of RRDU,—at both the individual level and the aggregate level.630

For each subject i, a choice list j, involving a vector of stimuli Xj (choice characteristics),631

consisted in the elicitation of an indifference value y?i,j (MPP or CE). Assuming a specific model632

of choice results in a theoretical prediction of y?i,j given by the equation ŷi,j = f(Xj , βi), where633

βi represents the vector of unknown parameters of the given model. We also assume that the634

random variable yi,j is related to the theoretical value ŷi,j through a normally distributed random635

error εi,j with mean 0 and Std σi, i.e. y?i,j is a realization of the random variable yi,j = ŷi,j+ εi,j .636

Observed indifference values were taken as the midpoint of an interval [y?i,j − k/2, y?i,j + k/2],637

where k represents the precision with which y was measured ( 101€7for CEs and 1% for MPPs638

in study A; 51€7for CEs and 5% for MPPs in study B). This means that the likelihood of each639

observation y?i,j corresponding to subject i and choice list j is given by640

πi,j = p(y?i,j −
k

2
< yi,j < y?i,j +

k

2
)

= p(y?i,j −
k

2
− f(Xj , βi) < εi,j < y?i,j +

k

2
− f(Xj , βi))

= F (
y?i,j +

k
2 − f(Xj , βi)

σi
)− F (

y?i,j − k
2 − f(Xj , βi)

σi
),

where F denotes the CDF of the normal distribution. The likelihood of a series of choice lists641

completed by a subject i is therefore642

li(βi) =
∏
j

πi,j .

The function f depends on the dependent variable considered: MPPs or CEs; it also depends643

on the model assumed: REU, RRDU (w0 = wT ), RRDU (U0 = UT ) or “full force” RRDU;644

and the parametric forms assigned to the components of each model. Consequently, a specific645

likelihood function li is defined and maximized for the estimation of the parameters under each646

configuration.647
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For individual-level estimations, the logarithm of each likelihood li is maximized separately,648

leading to individual estimations β̂i for each configuration. For aggregate-level estimations, we649

assume that all subjects have the same (representative agent’s) parameters β and σ such that650

l(β) =
∏
i li(β).651

Each (individual or aggregate-level) likelihood maximization use the BFGS algorithm with 50652

different starting values. For aggregate-level estimations, standard errors are computed from653

the crossproduct of individual scores, thus accounting for the clustering of responses within654

individuals. For both aggregate and individual estimations, we report the sum of individual log655

likelihoods: LL =
∑

i log(li).656

The log-likelihood of estimations are used to assess the goodness of fit and compare models.657

When comparing two nested models, likelihood ratio test are used. When comparing non-658

nested models, the most commonly-used indexes are the Bayesian Information Criterion, BIC =659

−2LL+klog(n); and the Akaike Information Criterion, AIC = −2LL+2k, where n is the number660

of observations and k, the number of parameters. It is worth noting that when comparing two661

non-nested models involving the same number of parameters, and estimated on the same sample,662

the model with the best (i.e., lowest) BIC and AIC is the model with the highest LL.663

We also compare models in terms of prediction accuracy. In study B, estimates β̂i derived from664

CEs are used to make predictions f(β̂i, X) of the 5 MPPs. For a subject i, the accuracy of665

predictions is measured by the commonly-used root mean squared error RMSEi =
√

SSEi
5 ,666

where SSEi is the sum of squared errors: SSEi =
∑5

k=1(f(β̂i, Xk) − yi,k)
2 . For aggregate667

(individual) estimations, the mean (median) individual RMSE is used to measure the prediction668

accuracy.669
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D. Additional parametric results670

D.1. Attitudes towards temporal risk under REU from MPPs671

Study A Study B
Aggregate Individual Aggregate Individual

Estimate SE Median IQR Estimate SE Median IQR
Power α 1.27??? 0.04 1.22 [1.08; 1.42] 1.20??? 0.02 1.21 [1.01; 1.36]
Error σ 0.10??? 0.01 0.03 [0.01; 0.06] 0.09??? 0.01 0.07 [0.03; 0.10]
Log-likelihood -1043.15 -596.14 -694.46 -528.14
Exponential α -0.79??? 0.10 -0.63 [-1.14;-0.23] -0.68??? 0.06 -0.66 [-1.09;-0.15]
Error σ 0.09??? 0.01 0.03 [0.01; 0.05] 0.09??? 0.005 0.06 [0.03; 0.09]
Log-likelihood -1029.32 -557.16 -669.61 -496.43

Expo-power
α1 -1.86??? 0.24 -0.90 [-1.99;-0.21] -2.50??? 0.02 -2.48 [-2.61;-1.10]
α2 0.69??? 0.04 0.96 [ 0.81; 1.01] 0.53??? 0.01 0.62 [ 0.52; 0.76]

Error σ 0.09??? 0.01 0.03 [0.01; 0.05] 0.08??? 0.005 0.05 [0.03; 0.08]
Log-likelihood -1025.27 -531.12 -645.76 -454.25
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 11: Estimates of ϕ under REU from MPPs

672

Table ?? reports information about aggregate and individual estimates of the transformation673

function ϕ under REU. At the aggregate level, a likelihood ratio test shows that the null hy-674

pothesis of a constant ϕ across resolution delays (3, 6, 9, 12) is rejected (p = 0.002). An ANOVA675

test with repeated measures based on individual estimates confirms that the delay of resolution676

affects ϕ (p < 0.05).677

Parameter t
Aggregate Individual

Estimate SE Median Mean Std

α

3 -0.49??? 0.07 -0.41 -0.53 0.68
6 -0.64??? 0.09 -0.52 -0.71 0.92
9 -0.70??? 0.09 -0.63 -0.76 0.90
12 -0.79??? 0.10 -0.62 -0.89 1.13

Error (σ) 0.08 0.01 0.03 0.04 0.04
Log-likelihood -3951.92 -2280.97
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 12: Estimates of an exponential ϕ from MPPs in study A
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D.2. Attitudes towards temporal risk under REU from CEs678

Component
Aggregate Individual

Estimate SE Median IQR

Expo-power utility (UT )
α1 0.004??? 0.0007 0.004 [ 0.002; 0.009]
α2 1.58??? 0.05 1.57 [ 1.32; 1.77]

Power (ϕ) α 1.70??? 0.05 1.68 [1.41; 2.07]
Error (now) σ0 9.06??? 0.36 5.82 [4.92; 7.42]
Error (later) σ6 9.33??? 0.35 6.81 [5.69; 8.17]
Log-likelihood -3052.77 -2512.76

Expo-power utility (UT )
α1 0.003??? 0.0006 0.004 [ 0.001; 0.008]
α2 1.65??? 0.05 1.74 [ 1.50; 2.62]

Exponential (ϕ) α -1.53??? 0.08 -1.22 [-2.10;-0.75]
Error (now) σ0 9.04??? 0.36 6.69 [4.77; 7.28]
Error (later) σ6 9.24??? 0.36 6.72 [5.64; 7.80]
Log-likelihood -3043.06 -2487.44

Expo-power utility (UT )
α1 0.0003??? 0.0005 0.004 [ 0.001; 0.007]
α2 1.66??? 0/05 1.59 [1.38; 1.83]

Expo-power (ϕ)
α1 -1.97??? 0.32 -2.42 [-2.67;-0.74]
α2 0.86??? 0.10 0.71 [ 0.55; 1.29]

Error (now) σ0 9.04??? 0.36 5.59 [4.54; 7.25]
Error (later) σ6 9.23??? 0.36 6.74 [5.63; 7.92]
Log-likelihood -3042.85 -2470.57
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 13: Estimates of UT and ϕ under REU

679
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D.3. Attitudes towards temporal risk under RRDU680

Component
Aggregate Individual

Estimate SE Median IQR

Expo-power Utility (UT )
α1 0.0007??? 0.0002 0.0001 [-0.4827;0.0012]
α2 1.45??? 0.06 1.35 [0.46;1.80]

Power (ϕ) α 0.90??? 0.04 0.91 [0.71;1.21]

Probability weighting (w0)
δ 1.38??? 0.06 1.53 [1.26;1.82]
γ 0.53??? 0.02 0.57 [0.44;0.68]

Probability weighting (wT )
δ 1.82??? 0.08 1.92 [1.49;2.28]
γ 0.41??? 0.02 0.43 [0.29;0.50]

Error (now) σ0 8.16??? 0.38 3.96 [3.12; 4.79]
Error (later) σ6 8.02??? 0.39 4.28 [0.39; 5.80]
Log-likelihood -2865.52 -1911.95

Expo-power utility (UT )
α1 0.0007? 0.0003 0.00004 [-0.078;0.001]
α2 1.38??? 0.04 1.25 [0.76;1.52]

Exponential (ϕ) α 0.36ns 0.21 0.57 [-0.62;1.58]

Probability weighting (w0)
δ 1.39??? 0.07 1.62 [1.08;1.94]
γ 0.54??? 0.02 0.57 [0.44;0.69]

Probability weighting (wT )
δ 1.79??? 0.08 1.87 [1.46;2.36]
γ 0.40??? 0.02 0.39 [0.27;0.48]

Error (now) σ0 8.16??? 0.38 3.76 [3.08; 4.65]
Error (later) σ6 8.02??? 0.39 4.35 [3.31; 5.71]
Log-likelihood -2865.76 -1893.59

Expo-power utility (UT )
α1 0.0007?? 0.0002 0.00004 [-0.018; 0.0009]
α2 1.43??? 0.06 1.32 [0.96; 1.76]

Expo-power (ϕ)
α1 0.16ns 0.29 0.19 [-2.23;1.59]
α2 0.92??? 0.06 0.91 [0.60;1.35]

Probability weighting (w0)
δ 1.36??? 0.07 1.68 [1.24; 2.00]
γ 0.53??? 0.02 0.58 [ 0.44; 0.69]

Probability weighting (wT )
δ 1.83??? 0.08 1.91 [0.32;0.70]
γ 0.40??? 0.02 0.40 [0.28;0.48]

Error (now) σ0 8.16??? 0.38 3.70 [3.01; 4.57]
Error (later) σ6 8.02??? 0.39 4.29 [3.31; 5.68]
Log-likelihood -2865.46 -1858.70

Expo-power utility (UT = U0)
α1 0.001??? 0.0002 0.0003 [-0.311; 0.002]
α2 1.38??? 0.04 1.29 [0.64; 1.50]

Probability weighting (w0)
δ 1.45??? 0.06 1.56 [1.27; 1.79]
γ 0.53??? 0.02 0.56 [0.43; 0.68]

Probability weighting (wT )
δ 1.73??? 0.07 1.90 [1.45; 2.12]
γ 0.41??? 0.02 0.43 [0.30; 0.50]

Error (now) σ0 8.16??? 0.38 4.01 [3.15; 4.95]
Error (later) σ6 8.03??? 0.39 4.35 [3.35; 5.83]
Log-likelihood -2866.23 -1939.67
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 14: Estimates of UT , ϕ, w0, and wT under RRDU

681
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D.4. Attitudes towards temporal risk under RRDU with w0 = wT682

Component
Aggregate Individual

Estimate SE Median IQR

Expo-power utility (UT )
α1 0.0018??? 0.0003 0.0006 [-0.0001; 0.003]
α2 1.39??? 0.04 1.33 [ 1.05; 1.56]

Exponential (ϕ) α -0.98??? 0.06 -1.00 [-1.39;-0.74]

Probability weighting (w)
δ 1.62??? 0.06 1.71 [ 1.30; 2.03]
γ 0.48??? 0.02 0.49 [ 0.34; 0.59]

Error (now) σ0 8.22??? 0.38 4.29 [3.38; 5.27]
Error (later) σ6 8.11??? 0.38 4.73 [3.77; 6.17]
Log-likelihood -2879.78 -2043.45

Expo-power utility (UT )
α1 0.0014??? 0.0003 0.0005 [0.0001; 0.0023]
α2 1.50??? 0.05 1.41 [ 1.20; 1.68]

Expo-power (ϕ)
α1 -2.33??? 0.52 -2.44 [-3.29;-0.93]
α2 0.64??? 0.10 0.63 [ 0.52; 0.95]

Probability weighting (w)
δ 1.65??? 0.07 1.66 [ 1.25; 2.11]
γ 0.48??? 0.02 0.49 [ 0.32; 0.58]

Error (now) σ0 8.19??? 0.38 4.08 [3.27; 4.96]
Error (later) σ6 8.10??? 0.38 4.72 [3.68; 6.03]
Log-likelihood -2875.14 -1991.20
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 15: Estimates of UT , ϕ and w = w0 = wT under RRDU

683

E. Attitudes towards temporal risk in study A684

E.1. Attitudes towards temporal risk under REU685

Table ?? reports information about aggregate and individual estimates of the transformation686

function ϕ under REU. At the aggregate level, a likelihood ratio test shows that the null hy-687

pothesis of a constant ϕ across resolution delays (3, 6, 9, 12) is rejected (p = 0.002). An ANOVA688

test with repeated measures based on individual estimates confirms that the delay of resolution689

affects ϕ (p < 0.05).690
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Parameter t
Aggregate Individual

Estimate SE Median Mean Std

ϕ

3 -0.49??? 0.07 -0.41 -0.53 0.68
6 -0.64??? 0.09 -0.52 -0.71 0.92
9 -0.70??? 0.09 -0.63 -0.76 0.90
12 -0.79??? 0.10 -0.62 -0.89 1.13

Error (σ) 0.08 0.01 0.03 0.04 0.04
Log-likelihood -3951.92 -2280.97
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 16: Estimates of an exponential ϕ from MPPs in study A

E.2. Attitudes towards temporal risk under RRDU691

Table ?? reports aggregate and individual estimates of the probability weighting function wt692

under RRDU (see also Figure ??). We assume Prelec and power specifications for wt (elevation693

δt; sensitivity γt) and U0 = UT , respectively. Note that we cannot estimate the full-force RRDU694

because we only elicited CEs for immediately resolved lotteries.695

Figure 13: wt for the mean parameter estimates

At the aggregate level, a likelihood ratio test shows that the null hypothesis of an invariant wt696

across resolution delays (δ0 = δ3 = δ6 = δ9 = δ12 and γ0 = γ3 = γ6 = γ9 = γ12) is rejected697

(p < 0.001). An ANOVA test with repeated measures based on individual estimates confirms698

that the delay of resolution t affects the log of both the elevation parameter δt (p < 0.001) and699
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the sensitivity parameter γt (p < 0.001).700

Three subjects have outlying estimates for t = 12 (δ12 > 5 or γ12 > 5 ), hence the large standard701

deviations for these individual parameters. The results of the ANOVA tests are unchanged when702

these subjects are excluded from the analysis.703

Parameter t
Aggregate Individual

Estimate SE Median Mean Std
Power utility 12 0.931 ??? 0.036 0.924 1.006 0.383

δt

0 1.118 ??? 0.049 1.104 1.277 0.565
3 1.189 ??? 0.055 1.237 1.401 0.623
6 1.212 ??? 0.057 1.240 1.445 0.617
9 1.220 ??? 0.057 1.266 1.454 0.629
12 1.233 ??? 0.058 1.289 1.957 2.799

γt

0 0.524 ??? 0.025 0.525 0.559 0.215
3 0.454 ??? 0.027 0.446 0.484 0.223
6 0.442 ??? 0.025 0.422 0.465 0.212
9 0.434 ??? 0.026 0.441 0.452 0.209
12 0.428 ??? 0.026 0.447 0.653 1.194

Error CE 49.811 ??? 0.131 19.831 20.762 4.565
Error MP 0.076 ??? 0.008 0.029 0.034 0.023
Log-likelihood -5466.589 -3607.882
ns: non-significant; ?: p < 0.05;??: p < 0.01; ???: p < 0.001

Table 17: Estimates of U0 = UT and wt from CE (t = 0) and MPPs (t > 0) in study A

F. Data recovery analysis704

We focus on the “full force” RRDU that was estimated using the CEs collected in study B705

(see Table 1). We assume expo-power specifications for UT and ϕ, and a two-parameter Prelec706

weighting functions w0 and wT . Specifically, in order to check that our stimuli warrant reliable707

estimates of the resulting vector β of 8 parameters, we used our econometric procedures to708

estimate RRDU from simulated CEs provided by a virtual sample of 68 subjects.We used the709

vector of RRDU parameters β̂i that was estimated for subject i in our experimental sample710

to generate the CEs of lotteries reported in Table 1 for subject i in the simulated sample.711

Further, in order to reproduce response errors, we add a random noise to the simulated CEs,712

with a variance σsi corresponding to the estimated individual variances in the experimental data713

(σsi = σ̂i). Finally, for the CEs of prospects xpy, we censor the simulated values that are outside714

the interval (y, x) and we round the values to multiples of 5 euros, in order to simulate values with715

the same (im)precision as our experimental measures. We denote β̂si the vector of parameters716

of the virtual subject i estimated from the simulated CEs.717

Aggregate level analyses compare the vectors β̂s and β̂ of the representative subjects in the718
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simulated and experimental samples, respectively (Table ??). Individual level analyses compare719

β̂si and β̂i the vectors of estimated parameters for the experimental and simulated subject,720

respectively (Table ??).721

Parameter
Experimental data Simulated data

Estimate Std Error Estimate Std Error

Expo-power utility (UT )
α1 0.0007 0.0002 0.000 0.001
α2 1.43 0.06 1.30 0.070

Expo-power (ϕ)
α1 0.16 0.29 0.89 0.317
α2 0.92 0.06 1.05 0.079

Probability weighting (w0)
δ 1.36 0.07 1.32 0.084
γ 0.53 0.02 0.54 0.027

Probability weighting (wT )
δ 1.83 0.08 1.83 0.107
γ 0.40 0.02 0.38 0.021

LL -2865.46 -2842.86

Table 18: Aggregate estimates on experimental and simulated data

A likelihood ratio test does not reject the assumption that β̂s = β̂ (p = 0.69). This suggests that722

there is no statistically significant difference between the simulated values and the experimental723

ones.724

Table ?? reports the main characteristics of the empirical distributions of parameters estimated725

(at the individual level) from experimental vs. simulated CEs. A series of paired t-tests do726

not reject the null hypotheses β̂s[j] = β̂[j] for j = 1, ..., 8. Similarly, Kolmogorov-Smirnov tests727

cannot reject the equality of empirical distributions of parameters for experimental vs. simulated728

data. Table ?? also reports Spearman correlation coefficients.729

Parameter
Experimental data Simulated data Comparison

Median IQR Median IQR t-test (p) Spearman KS-test (p)

Expo-power α1 0.000 [-0.018; 0.001] -0.000 [-0.072; 0.002] 0.760 0.072 0.457
utility (UT ) α2 1.316 [0.960; 1.756] 1.198 [0.748; 1.664] 0.914 0.352 0.594
Expo-power α1 0.189 [-2.229; 1.589] 0.857 [-0.235; 2.516] 0.252 0.939 0.112
utility (ϕ) α2 0.911 [0.596; 1.346] 1.066 [0.719; 1.495] 0.080 0.729 0.112
Probability δ 1.681 [1.236; 2.001] 1.618 [1.039; 2.338] 0.117 0.538 0.457
weighting (w0) γ 0.580 [0.441; 0.689] 0.576 [0.413; 0.755] 0.605 0.649 0.338
Probability δ 1.905 [1.524; 2.434] 1.980 [1.322; 2.926] 0.135 0.711 0.241
weighting (wT ) γ 0.400 [0.284; 0.480] 0.406 [0.298; 0.504] 0.553 0.471 0.994

Table 19: Individual estimates on experimental and simulated data
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