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Introduction

Many real-world choices involve the resolution of uncertainty over time. Examples include such economically important decisions as consumption, savings, investment, portfolio management, and production. Temporal resolution of uncertainty also plays a role in most medical decisions such as when patients undergo genetic tests to determine the likelihood of getting a disease in the future. In all of these cases, we expect that the decision maker is not indifferent to temporal resolution of uncertainty because he assigns a value to informative signals about it. This value is instrumental when it allows taking actions conditional on information [START_REF] Mossin | A note of uncertainty and preference in a temporal context[END_REF][START_REF] Spence | The Effect of the Timing of Consumption Decisions and the Resolution of Lotteries on the Choice of Lotteries[END_REF]. Alternatively, the value assigned to such information is intrinsic when it is psychological in nature, involving attitudes toward knowing (or not) about future consequences, even when it is impossible to act on these consequences [START_REF] Ganguly | Fantasy and Dread: The Demand for Information and the Consumption Utility of the Future[END_REF]. For some decisions (e.g., prenatal diagnosis, whether to sell stocks during a financial crisis), delayed resolution of uncertainty may result in anxiety about the final outcome [START_REF] Wu | Anxiety and Decision Making with Delayed Resolution of Uncertainty[END_REF][START_REF] Epstein | Living with risk[END_REF]. For some others, e.g. a submission to a top journal, the decision maker may actually prefer delayed resolution in order to keep up his hope of winning under an unlikely high-stakes event [START_REF] Chew | Hope: An empirical study of attitude toward the timing of uncertainty resolution[END_REF]. [START_REF] Kreps | Temporal resolution of uncertainty and dynamic choice theory[END_REF], "KP" hereafter, developed the first extension of expected utility (EU), called recursive expected utility (REU), that accounts for the intrinsic value of information as related to attitudes towards risk resolution (or "temporal risk" for short)-that is, attitudes towards uncertainty resolution with known probabilities. Basically, under REU, preference for early resolution of uncertainty can be modelled as higher certainty equivalents (more risk seeking) for early lotteries than for delayed ones. Preference for late resolution is the converse. Formally, KP opted for an EU-based evaluation of lotteries and introduced a transformation function ϕ that relates (recursively) the utility U 0 for immediately resolved lotteries to utility U T for delayed lotteries resolved at some future given date T , i.e., U 0 = ϕ • U T . The convexity (concavity) of the transformation function ϕ reveals preference for early (late) resolution of risk. This model and [START_REF] Epstein | Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework[END_REF] parametric specification, is widely used for macroeconomic and finance applications as it explains, inter alia, many asset-pricing anomalies [START_REF] Epstein | Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis[END_REF][START_REF] Bansal | Risks For the Long Run: A Potential Resolution of Asset Pricing Puzzles[END_REF][START_REF] Epstein | How Much Would You Pay to Resolve Long-Run Risk?[END_REF]. Yet, from a descriptive standpoint, KP's model may fail to accurately depict behavior when EU is violated [START_REF] Gonzalez | On the shape of the probability weighting function[END_REF][START_REF] Wakker | Prospect Theory for Risk and Ambiguity[END_REF][START_REF] L'haridon | All over the map: A Worldwide Comparison of Risk Preferences[END_REF].

Assuming a rank-dependent utility framework (henceforth RDU; [START_REF] Quiggin | A theory of anticipated utility[END_REF], Wu (1999, Section 2) proposed an alternative model to REU in which preferences are represented by a temporal RDU functional. 1 In this model, nonlinear probability weighting (for delayed lotteries) plays a key role with regard to attitudes towards temporal risk [START_REF] Epper | The missing link: Unifying risk taking and time discounting[END_REF]. Specifically, the latter is captured through the difference between the probability weighting used in the RDU-evaluation of early resolved lotteries and the probability weighting involved in the RDUevaluation of lotteries resolved at a later date. 2 Wu (1999) argued that, in addition to a better descriptive accuracy [START_REF] Tversky | Advances in Prospect Theory: Cumulative Prospect Theory[END_REF], this approach also accounts for experimental findings showing a decline in the percentage of subjects exhibiting preference for early resolution when facing small-gain probabilities than high-gain ones [START_REF] Chew | Hope: An empirical study of attitude toward the timing of uncertainty resolution[END_REF]. Along the same lines, Epstein (2008, Section 5.3) argued that allowing for an early vs. late resolution probability weighting in his general KP's setup could explain the anxiety (hopefulness) that results from delayed resolution when a risky favorable outcome is likely (unlikely). Descriptively, however, the issue of whether and how temporal risk affects utility or probability weighting requires a systematic investigation in order to provide a reliable measurement of attitudes towards temporal risk in empirical applications.

The present paper proposes a simple measurement method to elicit preferences for temporal risk.

Two experiments are conducted to compare the descriptive power of REU and a more generalized version of it, a recursive RDU model (RRDU, Epstein 2008, Sections 4 and 5 therein). Basically we assume a RDU-evaluation of two-outcome lotteries, where both probability weighting and utility depend on the timing of uncertainty resolution. Similar to REU, RRDU implies that the utility index U 0 (for early resolution lotteries) is related to the utility index U T (for delayed resolution lotteries) through a transformation ϕ, i.e., U 0 = ϕ • U T . In the absence of probability weighting, RRDU reduces to REU.

We first show that, under REU, the evaluation of two-outcome lotteries using matching probabilities allows for a simple elicitation of the transformation function ϕ. We also show how this function can be elicited from certainty equivalents of early vs. late resolution lotteries. Second, we investigate the descriptive power of different strategies to capture attitudes towards temporal resolution under RRDU in terms of goodness of fit and prediction accuracy.

Overall, the elicited matching probabilities show a predominant preference for early resolution of temporal risk both at the aggregate and individual levels. 3 Furthermore, matching probabilitybased evaluations reveal a more pronounced preference for early resolution when subjects face 1 Wu (1999, Lemma 1) assumed EU for immediately resolved lotteries (t = 0) and proposed an axiomatization that allows for a temporal risk-based probability weighting. Specifically, lotteries resolved at two different future dates (t1 > t2 > 0) are evaluated using two different probability weighting functions.

2 A recursive version of RDU was introduced to analyze ambiguity through two-stage lotteries in [START_REF] Segal | The Ellsberg paradox and risk aversion: An anticipated utility approach[END_REF][START_REF] Segal | Two-stage lotteries without the reduction axiom[END_REF]).

3 Aggregate level analyses assume that all the choices of the different subjects in the sample can be considered as the choices of one "representative subject."

moderate and high delayed-winning probabilities than small ones. Among other things, this result could explain the previous empirical findings of [START_REF] Chew | Hope: An empirical study of attitude toward the timing of uncertainty resolution[END_REF] and [START_REF] Lovallo | Living with uncertainty: Attractiveness and resolution timing[END_REF] showing that the percentage of subjects exhibiting preference for early resolution declines when the winning probability decreases (see also [START_REF] Masatlioglu | Intrinsic Information and Skewness[END_REF]. Similar model-free results are obtained when attitudes towards temporal risk is inferred from certainty equivalents.

We use matching probabilities to directly estimate different parametric specifications of the transformation function ϕ under REU. We observe that ϕ is convex at the aggregate level and predominantly convex at the individual level, thus showing that REU captures the previously elicited model-free preference for early resolution. On the other hand, the estimation of REU from certainty equivalents reveals a more convex ϕ than from matching probabilities. When REU is supplemented with atemporal probability weighting, i.e., we allow for a single probability weighting function under RRDU, we still observe that ϕ exhibits more convexity than when elicited from matching probabilities, but in a less pronounced manner. Furthermore, this RRDU version performs better than REU in terms of both goodness of fit and prediction accuracy.

Under "full force" RRDU where attitudes towards temporal risk can be revealed through both utility and probability weighting, our data cannot reject the null hypothesis of an identity transformation ϕ, be it a power, an exponential, or an expo-power function. This points to a more parsimonious version of RRDU, where attitudes towards temporal risk is exclusively revealed through a change in early vs. late probability weighting. Finally, we find that in terms of both goodness of fit and prediction accuracy, this parsimonious version of RRDU outperforms RRDU with an atemporal probability weighting.

The rest of our paper proceeds as follows. In section 2 we introduce the theoretical framework and explain how attitudes towards temporal resolution can be elicited under REU through matching probabilities and certainty equivalents. Section 3 describes the experimental design. Section 4 reports the model-free results measuring attitudes towards temporal risk through matching probabilities (in studies A and B) and certainty equivalents (study B). Section 5 focuses on the parametric measurement of the transformation function ϕ under REU. Section 6 provides a comparative analysis of the different descriptive extensions in terms of goodness of fit and prediction accuracy. Section 7 discusses our results and concludes.

Figure 1: Matching present probability vs. certainty equivalent

Theoretical framework

Notation and Definitions

We consider both delayed and immediately resolved two-outcome lotteries. All outcomes are nonnegative monetary amounts (i.e., gains). To avoid considerations related to discounting (when outcomes are received at different dates), both type of lotteries pay out at a fixed future date T > 0 [START_REF] Ahlbrecht | Preference for gradual resolution of uncertainty[END_REF][START_REF] Von Gaudecker | Heterogeneity in risky choice behavior in a broad population[END_REF]. Outcomes are elements of an interval [0, M ] of monetary amounts, with M > 0. We use (X, p t , x) to denote a lottery, resolved at some time t ∈ [0, T ], that yields outcome X with a "winning probability" p t , and outcome x ≤ X otherwise. When the probability superscript is set at 0, it means that the lottery is immediately resolved; otherwise t > 0, e.g. t = T , meaning that the resolution is delayed (Figure ??). In our setup, uncertainty is resolved in one-shot through one-stage lotteries. 4 The indifference between two lotteries l A and l B is denoted by

l A ∼ l B .
The certainty equivalent (CE) c t of a lottery (X, p t , x) is a monetary amount defined by c t ∼ (X, p t , x). As all outcomes, c t is received at time T . Similarly, for (X, p t , x), m 0 denotes the probability (referring to an immediate resolution) such that (X, m 0 , x) ∼ (X, p t , x); m 0 is called a matching present probability (MPP). Under standard assumptions of continuity and monotonicity, c t and m 0 exist and are unique. Figure ?? illustrates the two types of evaluations used for a lottery (X, p t , x) with t = T . 4 Ahlbrecht and Weber (1997) investigated temporal risk under REU in a setup where uncertainty can also be gradually resolved through two-stage lotteries. More recently, Nielsen (2020) reports model-free experimental results showing that attitudes towards temporal resolution may depend on whether the uncertainty is framed as a two-stage lottery or information structure. 

Formal setup

We elicit attitudes towards temporal risk in two different ways. The first is based on the probability premium p t -m 0 . A positive (negative) probability premium implies preference for a lower winning probability in return for an immediate (delayed) resolution of uncertainty. The second method used to elicit attitudes towards temporal risk employs the outcome scale. Specifically, we compare the certainty equivalents c 0 and c t of a two-outcome lottery resolved either now or later, respectively. Here, a positive (negative) premium c 0 -c t implies preference for early (late) resolution. Figure ?? illustrates how p t -m 0 and c 0 -c t affect the shape of utility under REU (with t = T ).

Recursive expected utility

In our setup, we assume REU with two dates of risk resolution: t = 0 (early) and t = T (late).

The model assumes EU for both immediately and delayed lotteries with two possibly different von Neumann and Morgenstern utility functions U 0 and U T , respectively. We assume that the utility functions are continuous and strictly increasing over the set of monetary outcomes [0, M ].

The certainty equivalent c T of a delayed lottery (X, p T , x) is consequently given by

c T = U -1 T (p T U T (X) + (1 -p T )U T (x)). (1) 
Similarly, the certainty equivalent c 0 of the immediately resolved lottery (X, p 0 , x) is given by

c 0 = U -1 0 (p 0 U 0 (X) + (1 -p 0 )U 0 (x)). (2) 
The CEs and transitivity, establish the preferences between delayed and non-delayed lotteries.

We next assume that the two outcomes X and x are fixed at M and 0, respectively, and adopt the normalization U 0 (X) = U T (X) = 1 and U 0 (x) = U T (x) = 0. If m 0 is the MPP corresponding to lottery (X, p T , x), Eqs. ( 1) and (2) -with m 0 instead of p 0 -give the same CE, implying U -1 0 (m 0 ) = U -1 T (p T ). In other words, there exists a strictly increasing transformation

ϕ = U 0 • U -1 T : [0, 1] → [0, 1], i.e., U 0 = ϕ • U T , such that m 0 = ϕ(p T ).
Consequently, determining the matching present probability m 0 allows for a direct elicitation of the transformation function ϕ; so there is no need to elicit the utility functions U 0 and U T . In our setup, when the shape of ϕ is modelled by a single parameter, it can be revealed by a single choice list. As illustrated in Figure ?? (left-hand side panel), preference for early resolution (i.e., m 0 < p T ) is represented by a convex transformation ϕ.

Note that under REU with normalized utility functions U 0 and U T , we can also elicit ϕ from the CEs of the lottery (X, p, x) resolved at 0 and T , respectively. In other words, Eqs. ( 1) and

(2) result in

     c 0 = (ϕ • U T ) -1 (p) c T = U -1 T (p), & (3) 
as illustrated in the right-hand side panel of Figure ??. In other words, the elicitation of the transformation function ϕ requires the prior measurement of U 0 and U T .

Recursive rank-dependent utility

Inspired by [START_REF] Wu | Anxiety and Decision Making with Delayed Resolution of Uncertainty[END_REF] and [START_REF] Epstein | Living with risk[END_REF], our general model (for two-outcome lotteries), RRDU, reveals attitudes towards temporal risk through both the utility and the probability weighting scales. In addition to the two utility indexes U 0 and U T , RRDU supplements REU with probability weighting, based on two assumptions. The first postulates that nonlinear probability weighting represents the main source of deviations from EU in choice settings involving twooutcome lotteries [START_REF] Tversky | Advances in Prospect Theory: Cumulative Prospect Theory[END_REF][START_REF] Wakker | Prospect Theory for Risk and Ambiguity[END_REF]. Note that assuming RDU-like preferences for two-outcome lotteries also subsumes other non-EU models for risk as [START_REF] Gul | A Theory of Disappointment Aversion[END_REF] disappointment aversion and Birnbaum's (1988) configural weight models (see also [START_REF] Miyamoto | Generic utility theory: Measurement Foundations and Applications in Multiattribute Utility Theory[END_REF]. The second assumption postulates that temporal risk in our early vs. late setup results in two probability weighting functions w 0 and w T for the evaluation of immediately resolved and delayed lotteries, respectively (Epstein, 2008, Section 4). In the sequel, w 0 and w T are strictly increasing over the probability interval and satisfy w i (0) = 0 and w i (1) = 1 for i = 0, T .

In other words, RRDU assumes RDU with utility U 0 (U T ) and weighting function w 0 (w T ) for immediately resolved (delayed) lotteries.

Under RRDU, the certainty equivalent c T of a delayed lottery (X, p T , x) is given by

c T = U -1 T [w T (p T )U T (X) + (1 -w T (p T ))U T (x)]. (4) 
Similarly, the certainty equivalent c 0 of the immediately resolved lottery (X, p 0 , x) is given by

c 0 = U -1 0 [w 0 (p 0 )U 0 (X) + (1 -w 0 (p 0 ))U 0 (x)]. (5) 
As under REU, the CEs and transitivity, establish the preferences between delayed and nondelayed lotteries.

Taking into account the utility normalizations we introduce in the previous Section, if m 0 is the MPP corresponding to lottery (X, p T , x), Eqs. ( 4) and ( 5) -with m 0 instead of p 0 -give the same CE, implying

U -1 0 (w 0 (m 0 )) = U -1 T (w T (p T )).
In other words, there exists a strictly

increasing transformation ϕ = U 0 • U -1 T : [0, 1] → [0, 1], such that w 0 (m 0 ) = ϕ[w T (p T )]. (6) 
Consequently, the attitudes towards temporal risk, as elicited through MPPs, involves the trans-

formation function ϕ = U 0 • U -1
T on the one hand, and the two probability weighting functions w 0 and w T on the other hand. Note that in the presence of neutrality towards temporal risk, i.e., U 0 = U T and w 0 = w T , matching probabilities m 0 should coincide with the corresponding

p T s.
Under RRDU, the determination of certainty equivalents c 0 T and c T T of a lottery (x T , p, y T ) with p = p 0 and p = p T , respectively, implies the following two equations

     c 0 = (ϕ • U T ) -1 (w 0 (p)) c T = U -1 T (w T (p)). & (7) 
Note that a CE-based elicitation of attitudes towards temporal risk under RRDU requires in principle that the four components ϕ, U 0 , w 0 , and w T of RRDU, to be elicited. In the absence of nonlinear probability weighting, Eqs.(??) reduce to Eqs.(??).

In sections 4 and 5 of the present paper, we investigate the descriptive power and prediction accuracy of RRDU and three of its restrictions. The first restriction is the standard REU, i.e., RRDU with no probability weighting at all. The second restriction supplements REU by an atemporal probability weighting w 0 = w T ; meaning that attitudes towards temporal resolution is exclusively revealed through the transformation ϕ. The third restriction of RRDU assumes an extension of REU where attitudes towards temporal risk is exclusively revealed through probability weighting functions w 0 and w T (with an atemporal utility U 0 = U T , i.e., ϕ is the identity function).

Experimental setup

We To test whether the presence of real incentives affected individual behavior, subjects were divided into two subsamples of 35 subjects each: the "real incentives" group and the "hypothetical choices" group. At the beginning of the individual interview, each subject in the real incentive group was informed that, at the end of the session, a random draw from an urn containing one winning ball out of a total of 20 balls would take place to decide whether he was selected to have one choice question (randomly drawn and) played out for real.

Subjects and procedure

Two subjects in the real incentive group had one of their choices played out for real. For one, it resulted into a sure gain of 25 euros. For the other, a lottery was resolved 9 months after the experiment and resulted in no gain.

The subjects in study B were 68 undergraduate students from ESSEC Business School (France); each of them received a participation fee of 1€7 Upon arrival, the subjects were shown a 10minutes video with the instructions for the experiment. This was followed by a survey with comprehension questions, in order to determine whether or not the subject needed further explanations. The experiment began with a few practice questions to familiarize the subjects with the software used to display and collect choices. Each individual interview took about one hour.

Real incentives were implemented for all of the subjects, and the related procedure was explained in the instructions. Each of the subjects had one of their choices played out for real at the end of the experiment. According to the Prince principle [START_REF] Johnson | Prince: An Improved Method For Measuring Incentivized Preferences[END_REF], the number of the question to be played out for real was selected before the beginning of the experiment, and only revealed at the end of it. For t = 0, lotteries were resolved the day after the experiment, producing a small front-end delay. When t = 6, lotteries were resolved 6 months after the experiment.

For both immediate and late resolution, uncertainty was resolved by drawing from a physical random device (a bingo cage). In order to avoid suspicion or transaction costs, it was up to the subject to choose between watching the resolution through a Skype session or coming to the lab (the day after the experiment, in the case of an immediate resolution). In the case of a gain, money was paid by Paypal transfer. Overall, the procedure systematically separates the experiment from the resolution and the payment, and ensures that the conditions "now" (t = 0)

and "later" (t = 6) do not differ in terms of transaction cost or one-vs-multiple-shot resolution of uncertainty.

The total payment in study B was 1€795 (excluding the show-up fees). Specifically, 36% of the subjects got an average sure gain of 1€7.54; 42% got the sooner resolution, with an average value of 1€7.43 euros; 22% got the later resolution, with an average value of 1€7.

Stimuli

As shown in Tables ?? and ??, both studies A and B elicited baseline risk preferences, i.e., risk preferences for immediately resolved lotteries (t = 0). Specifically, studies A and B elicited 11

CEs of each for the lotteries (X, p 0 , x), where the date of receipt of outcomes T was fixed at 12 and 6 months, respectively. The elicitation of CEs with a fixed (variable) probability p t and varying (fixed) outcomes X, x was mainly devoted to capture the utility (probability weighting) curvature.

To elicit attitudes towards temporal risk, both studies elicited MPPs of delayed lotteries for 5 levels of the winning probability p t . Specifically, studies A and B elicited MPPs for t = 3, 6, 9, 12 and t = 6, respectively (last five rows of Tables ?? and ??). Furthermore, study B elicited 11 CEs for lotteries (X, p t , x) with t = 6. This allowed us to check whether the elicitation of attitudes Table 1: Stimuli towards temporal risk is robust to the scale used to evaluate lotteries: the probability scale for MPPs vs. the outcome scale for CEs. The elicitation of CEs for delayed lotteries in study B also allowed us to compare the descriptive power of the utility vs. the probability weighting approach to temporal risk.

In both studies, CEs and MPPs were determined using an iterative bisection choice process in a first step. Then, in a second step, the subjects were presented with an already completed choice list and were asked to either validate or change it (Appendices ?? and ??). This means that any error that might have occurred during the bisection process could be fixed before validation.

Both the subjects in the real incentive group of study A and the subjects in study B were informed that all the decisions made in each choice list were eligible and equally likely to be selected and played out for real. CEs were elicited with a precision of 5 euros in both studies.

MPPs were elicited with a precision of 0.02 in study A and 0.05 in study B.

The following section reports a model-free analysis of the data. Sections 5 and 6 report econometric estimations from likelihood maximization of structural equations (see Appendix C).

Model-free measurement of attitudes towards temporal risk

Attitudes towards temporal risk can be measured model-free by means of MPPs of delayed lotteries in studies A and B, and by comparing CEs of lotteries resolved now and later in study 

Measurement from certainty equivalents

Study B also elicited CEs, c 0 and c 6 , of lotteries (100, p 0 = p, 0) and (100, p 6 = p, 0), respectively, for five different values of probability p. Here, preference for early resolution of uncertainty corresponds to a positive difference c 0 -c 6 , meaning that, lottery (100, p, 0) is assigned a higher value (CE) when resolved now (p 0 = p) as compared to later (p t = p). At the aggregate level, we observe that the null hypothesis of equal CEs, c 0 = c T , is rejected by paired t-tests (Table ??, column 8). This conclusion accords with the observation that the mean CEs are systematically lower for delayed lotteries as compared to immediately resolved ones, and this for each of the five winning probability levels (p t = 0.10, 0.25, 0.50, 0.75, 0.90). At the individual level, Table ??

(last column) shows that a majority of subjects assign a higher value to lotteries resolved now than the equivalent lotteries resolved later.

Figure ?? confirms the results obtained from MPPs, displaying that preference for early resolution, as inferred from CEs, is predominant at the aggregate level. A Fisher test shows that the regression line of c 0 on c 6 does not coincide with the 451€7line materializing neutrality towards temporal risk (p < 0.01). Furthermore, as the regression line have a slope below the unit and an intercept which is positive, the magnitude of the difference c 0 -c 6 declines when the delayed-winning probability is decreased (Page trend test, p < 0.01).

Power Exponential

Expo-power

x α (1 -e -αx )/(1 -e -α ) (1 -e -α 1 x α 2 )/(1 -e -α 1 )
Table 4: Parametric specifications for ϕ and U T

Attitudes towards temporal risk under REU

As explained in section 2.3, REU uses two utility functions: U T and U 0 = ϕ • U T , where the transformation ϕ reveals the impact of temporal risk. The present section elicits the transformation function using two different methods. The first directly determines ϕ from MPPs. Based on CEs, the second method infers ϕ from the elicitation of both U T and U 0 = ϕ • U T . We use the two-parameter expo-power family reported in Table ?? to estimate REU components. This family has the advantage of including the power and the exponential specifications as a limiting case (α 1 → 0), and particular case (α 2 = 1) respectively [START_REF] Peel | The Expo-power Value Function as a Candidate for the Workhorse Specification in Parametric Versions of Cumulative Prospect Theory[END_REF]. In addition to their popularity in the empirical literature, the power and the exponential specifications are used to detect simple convex / concave shapes. The expo-power is particularly suitable for goodness of fit comparisons when the data set is rich enough. 

m 0 = ϕ(p T ) + , (8) 
where ∼ N (0, σ). Table ?? reports MPP-based estimates of ϕ assuming an expo-power specification in studies A and B for t = T = 12 and t = T = 6, respectively. Additional estimates are provided in Tables ?? and ?? in appendix ??.

At the aggregate level, the null hypothesis that ϕ is the identity function is rejected by a likelihood ratio test (p < 0.001 for studies A and B). This clearly means that temporal risk affects the shape of ϕ, thereby showing that REU has more descriptive power than the standard EU. As expected, likelihood-ratio tests show that the expo-power specification fits the data better than both a power and an exponential ϕ (p < 0.001 in studies A and B). Note that Figure ?? shows that while ϕ (as inferred from MPPs under the expo-power specification) is globally convex, it also exhibits a slight concavity for small values of the utility scale, i.e., when the winning probability is small.5 

At the individual level, Table ?? shows that the median estimates of the expo-power parameters are close to the corresponding aggregate estimates (see also Table ??, Appendix ??) and point in study A (B). A similar pattern holds when a power transformation is assumed. These findings are fully consistent with the model-free findings described in section 4.

Eliciting ϕ from certainty equivalents

A traditional method for eliciting the transformation ϕ under KP's REU model consists in determining the CEs of a lottery (X, p, x) in an early vs. late setup (e.g. von [START_REF] Von Gaudecker | Heterogeneity in risky choice behavior in a broad population[END_REF]. In addition to its more demanding nature, CE-based elicitation of ϕ under REU may be biased in the presence of nonlinear probability weighting. In particular, the certainty effect (as represented by a steeper inverse S-shaped probability weighting function near certainty) would result in discrepancies between a CE-based and a MPP-based ϕs, as MPPs exclusively result from a comparison between non-degenerate lotteries.

We use a maximum likelihood procedure to estimate the components of REU in Eqs.(??) at both the aggregate and individual levels. ?? shows an exaggerated convexity when ϕ is inferred from CEs rather than from the certainty-effect-free MPPs under the exponential specification.

As for the individual level, the estimates point to a predominance of convex ϕs, thus showing a prevalence of preference for early resolution. For instance, under the exponential specification, 61 subjects out of 68 exhibit a convex ϕ. Even so, the median estimate of the exponential parameter from CEs is almost the double of the corresponding median estimate from MPPs.

Furthermore, Figure ?? shows that a majority of subjects exhibit a more convex ϕ when elicited from CEs than when elicited from MPPs.

Attitudes under recursive rank-dependent utility

This section analyzes temporal risk under recursive rank-dependent utility using the CEs obtained in study B. Specifically, REU is supplemented with two probability weighting functions w 0 and w T that could possibly capture the impact of temporal risk on probability weighting.

We first show that RRDU outperforms REU in terms of descriptive accuracy. Then, we investigate whether temporal risk impacts both the utility and probability weighting scales or just one of them, i.e., either U 0 = U T or w 0 = w T . The results of the present section suggest that RRDU with an atemporal utility scale performs better than RRDU with atemporal probability weighting, in terms of goodness of fit and predictive power.

Eliciting RRDU components

As explained in section 2.4 (Eq. ??), under RRDU, the certainty equivalents c 0 and c T of a given lottery (X, p, x) are predicted by (U -1

T • ϕ -1 • w 0 )(p) and (U -1 T • w T )(p)
, respectively. In 

where parameter δ is an index of optimism / pessimism towards probability, and γ reflects sensitivity to probabilities. When δ = γ = 1, w reduces to the identity function, i.e. no probability weighting. The accumulated experimental evidence shows that, when facing risky gains, people exhibit an inverse S-shaped w, overweighting small probabilities, and underweighting moderate and high probabilities. In terms of the Prelec specification, this generally results in δ > 1 and γ < 1 [START_REF] Wakker | Prospect Theory for Risk and Ambiguity[END_REF]. As for utility scales, we assign an expo-power specifications to both U T and ϕ. Appendix ?? reports estimates assuming power and exponential specifications for ϕ.

We use maximum likelihood procedures to estimate the parameters of RRDU. The corresponding estimates are reported in Table ??. Figure ?? suggests that, at the aggregate level, probability weighting captures most of the impact of temporal risk on preferences. This is confirmed by likelihood ratio tests. Specifically, while we could not reject the hypothesis of identical utility functions U 0 and U T (p = 0.46 under an expo-power ϕ), the hypothesis of identical probability weighting functions w 0 and w T is clearly rejected by our observations (p < 0.001).6 

At the individual level, Table ?? shows that median estimates for the parameters of U T , ϕ, w 0 and w T are very similar to aggregate estimates. Table ?? in Appendix ?? confirm this observation when a power (or an exponential) specification is assigned to ϕ as well. When ϕ is To sum up, both the aggregate and individual-level estimates of RRDU point to a more parsimonious version of RRDU where ϕ is linear, i.e., U 0 = U T . This implies that attitudes towards temporal risk is captured by probability weighting rather than by the utility scale. This also accords with the aggregate estimates for study A assuming RRDU with a linear ϕ (see Appendix ??).

Goodness of fit and prediction accuracy

The present section compares three restrictions of RRDU both in terms of goodness of fit and prediction accuracy assuming expo-power parametric forms for U T and ϕ, and Prelec parametric specifications for w 0 and w T . The first consists of REU, the second supplements the latter with atemporal probability weighting (w 0 = w T ), and the third assumes an atemporal utility

(U 0 = U T ).
Table ?? reports the the Akaike information criterion (AIC) values corresponding to each of the three aforementioned restrictions of RRDU. It allows the comparison of goodness of fit while accounting for the difference of the number of involved parameters. In particular, it shows that the goodness of fit of REU improves with atemporal probability weighting. This result is consistent with the less pronounced curvature of the MPP-based transformation function as compared to that inferred from CEs under REU (Figure ??). In contrast to CEs, MPPs avoid the certainty effect (one of the major causes of probability weighting), which results in a less biased measurement of the transformation function under REU.

We also compare REU to RRDU with atemporal probability weighting in terms of prediction accuracy as measured by the root mean square error (RMSE), an estimator of the standard deviation of prediction errors regarding MPPs. Specifically, in study B, we used the models estimated from CEs to measure the RMSE-based discrepancy between the observed and predicted MPPs (Appendix ??). Table ?? reports aggregate and individual level MPP-based RMSE values and shows that, in terms of prediction accuracy, RRDU with atemporal probability weighting performs slightly better than REU.

We now consider the comparison of RRDU with atemporal probability weighting vs. RRDU with atemporal utility in terms of both goodness of fit and prediction accuracy. Note that each of these two models involves the same number of parameters to estimate, i.e. 6 parameters. This is illustrated in Figure ?? where delayed resolution clearly impacts the discrepancy between w 0 and w T more strongly than the discrepancy between U 0 and U T as measured by the curvature of ϕ (under RRDU). As for goodness of fit, measured by AIC, the assumption of RRDU with atemporal utility performs better than RRDU with atemporal probability weighting. 7 Under RRDU, our results also point to a better predictive performance of the assumption U 0 = U T 7 Although the full force RRDU has a better predictive performance than RRDU with atemporal utility at the aggregate level (RMSE: 0.071 vs. 0.09), it does not outperform the latter in terms of AIC (AIC: 5750.92 vs.

5748.47

). This conclusion is reminiscent of the likelihood ratio test performed in Section 6.2 showing that the full force RRDU does not improve significantly goodness of fit as compared to (the nested assumption of) RRDU with atemporal utility. as compared to the assumption w 0 = w T , both at the both aggregate and individual levels.

Specifically, the null hypothesis of equal RMSEs across these two models is rejected (paired t-test, p < 0.001). Further, the RMSE is smaller under RRDU with atemporal probability weighting than under RRDU with atemporal utility for 55 subjects out of 68 (Binomial, p < 0.001).

Discussion and conclusion

We have analyzed attitudes towards temporal risk in a discounting-free setup through a generalization of recursive expected utility (REU) where preference for early resolution could affect both utility and probability weighting. Our contribution is twofold: (i) Proposing a simple method (Matching present probabilities, MPPs) to elicit the transformation function under REU; (ii) Conducting a "horse race" between two approaches to temporal risk, i.e., utility vs. probability weighting, which confirms and extends the early (qualitative) empirical findings that attribute temporal risk to probability weighting.

We show that using MPPs to measure attitudes towards temporal risk is less demanding than using certainty equivalents under REU (e.g., [START_REF] Ahlbrecht | Preference for gradual resolution of uncertainty[END_REF][START_REF] Von Gaudecker | Heterogeneity in risky choice behavior in a broad population[END_REF][START_REF] Brown | Do Individuals Have Preferences Used in Macro-Finance Models? An Experimental Investigation[END_REF] and it allows for a simple elicitation of the transformation function ϕ. To our knowledge, this method represents the simplest way of eliciting attitudes towards temporal risk under REU. We also show that, in contrast to the use of certainty equivalents (CEs), the comparison of non-degenerate lotteries involved in MPP elicitations circumvents the certainty effect, one of the major sources of probability weighting.

The paper also proposes and implements two ways of measuring attitudes towards temporal risk under recursive rank-dependent utility (RRDU): the first uses MPPs while the second is based on CEs. Studies A and B perform a simple probability scale-based measurement of attitudes towards temporal risk, using MPPs. Our findings point to a predominance of preference for early resolution. Furthermore, this preference declines as the winning probability decreases. In study B, where we use both MPPs and CEs, most of the subjects prefer early resolution when the winning delayed probability is moderate or high, but only a minority of them exhibit such a preference when the winning probability is low, i.e., p T = 0.10 (Table 2). This result is in line with the previous findings by [START_REF] Chew | Hope: An empirical study of attitude toward the timing of uncertainty resolution[END_REF] and [START_REF] Lovallo | Living with uncertainty: Attractiveness and resolution timing[END_REF] suggesting that attitudes towards temporal risk may depend on the magnitude of the winning probability (see also the more recent contributions of [START_REF] Van Winden | Investment, resolution of risk, and the role of affect[END_REF]Masatlioglu et al., 2017, experiment 3). Descriptively, these findings support adopting the general model proposed in the present paper, i.e., RRDU, to investigate attitudes towards temporal risk without committing a priori to a utility or a probability weighting-based approach. Under RRDU, our data suggest that the attitudes towards temporal risk is carried by temporal probability weighting as initially suggested in [START_REF] Wu | Anxiety and Decision Making with Delayed Resolution of Uncertainty[END_REF] and subsequently exploited in [START_REF] Epstein | Living with risk[END_REF], meaning that capturing temporal risk in terms of probability weighting descriptively outperforms the traditional utilitydriven REU approach.

Empirical investigations on one-shot resolution of uncertainty (e.g. [START_REF] Ahlbrecht | Preference for gradual resolution of uncertainty[END_REF][START_REF] Von Gaudecker | Heterogeneity in risky choice behavior in a broad population[END_REF][START_REF] Brown | Do Individuals Have Preferences Used in Macro-Finance Models? An Experimental Investigation[END_REF], did not investigate whther the decisionmakers view the value of information as intrinsic (exhibiting an aversion to prolonged uncertainty) or instrumental (preferring an early resolution of uncertainty regarding monetary rewards to plan future consumption; [START_REF] Ganguly | Fantasy and Dread: The Demand for Information and the Consumption Utility of the Future[END_REF]. This issue is particularly relevant under [START_REF] Kreps | Temporal resolution of uncertainty and dynamic choice theory[END_REF] REU where the transformation function ϕ is assumed to capture the intrinsic value of information. The risk resolution in our setup presents the question of whether the decision-makers consider the instrumental or the intrinsic value of information. While we cannot directly answer such a question, we think that an instrumental value of information would affect both probability weighting and utility transformation (ϕ). Furthermore, study A suggests that the fully informative signals we use in our setup were likely to be assigned an intrinsic value. In fact, our subjects exhibit a systematically more pronounced aversion to temporally prolonged uncertainty as the delay of resolution is increased. For instance, under REU, table 16 (Appendix E) shows that the convexity of the transformation function ϕ gets more pronounced when the delay of resolution increases from 3 to 12 months. This is consistent with the idea of a temporally increasing psychological cost of waiting for uncertainty resolution.

When individual decision-making involves both time and risk dimensions, a lottery can be either:

(i) resolved and paid now; (ii) both resolved and paid later; or (iii) resolved now and paid later.

As compared to the standard case (i), case (ii) involves two additional psychological dimensions.

The first is related to the delayed receipt of outcomes, and the second has to do with delayed resolution of risk, i.e., temporal risk. Noussair and Wu (2006) and Abdellaoui et al. (2011), assuming EU and RDU respectively, reported consistent findings pointing to more risk tolerance in case (ii) than in case (i). It is however, noteworthy to observe that Abdellaoui et al. (2011) found that the increase in risk tolerance was due to a shift in terms of probability weighting rather than in terms of utility. While this is consistent with the findings of the present paper focusing on the difference between cases (ii) and (iii), it should also be observed that the impact on probability weighting in these studies goes in opposite directions, i.e., more risk tolerance between (i) and (ii) and more risk aversion between (ii) and (iii). This suggests a more complex interaction between intertemporal tradeoff of outcomes and risk resolution in case (i) vs. case (ii) where the overall observed optimism outweighs the pessimism involved by the sole delayed risk resolution. We think that further investigation is desirable to understand the factors that influence risk attitudes when intertemporal tradeoffs of outcomes are intertwined with delayed resolution. 

B. Additional results

B.1. Reliability and real incentives in study A

Reliability. In order to verify the reliability of these MPP elicitations, we presented each subject in study A with the choice lists corresponding to lotteries (X, p 6 , x) = (500, 0.90, 0) and (X, p 12 , x) = (500, 0.90, 0) twice. No difference was detected between the corresponding MPPs (paired t-tests, respectively p = 0.08 and p = 0.92). Furthermore, the elicited probabilities were highly correlated (Pearson's r = 0.80 for t = 6 and r = 0.83 for t = 12).

Real incentives for MPPs. To assess the effect of real incentives on subjects' behavior in study A, we performed a 2 × 16 ANOVA test in which presence/absence of incentives was the between-subjects factor and the 16 lotteries served as the within-subjects factor. In line with our expectation, the MPPs varied across lotteries (p < 0.001). Real incentives had no significant effect on MPPs (p = 0.67) and did not interact with the lotteries (p = 0.98).

Real incentives for CEs. A 2 × 11 ANOVA test, where lotteries (11) were considered as a within-subject factor and presence of real incentives (yes / no) as a between-subject factor, shows that CEs are not affected by real incentives (p = 0.93). The presence of real incentives (yes / no) do not interact with the lotteries (p = 0.76).

B.2. Baseline risk preferences from CEs

Tables ?? and ?? report the main characteristics of the empirical distributions of CEs of immediately resolved lotteries in studies A and B, respectively. At the aggregate level, we observe a predominance of risk seeking (aversion) for p 0 = 0.10 (p 0 > 0.10), i.e., the mean CEs are above (below) the corresponding expected values. In other words, risk attitude for immediately resolved lotteries is probability-dependent as found in many studies [START_REF] Bruhin | Risk and rationality: Uncovering heterogeneity in probability distortion[END_REF]Wakker, 2010 and references therein). This dependence accords with an inverse S-shaped baseline probability weighting function w 0 .

satisfied for a winning probability p t ≥ 0.25.

C. Econometric implementation

We used maximum likelihood methods to estimate each model-REU and different restrictions of RRDU,-at both the individual level and the aggregate level.

For each subject i, a choice list j, involving a vector of stimuli X j (choice characteristics), consisted in the elicitation of an indifference value y i,j (MPP or CE). Assuming a specific model of choice results in a theoretical prediction of y i,j given by the equation ŷi,j = f (X j , β i ), where β i represents the vector of unknown parameters of the given model. We also assume that the random variable y i,j is related to the theoretical value ŷi,j through a normally distributed random error i,j with mean 0 and Std σ i , i.e. y i,j is a realization of the random variable y i,j = ŷi,j + i,j .

Observed indifference values were taken as the midpoint of an interval [y i,j -k/2, y i,j + k/2],

where k represents the precision with which y was measured ( 101€7for CEs and 1% for MPPs in study A; 51€7for CEs and 5% for MPPs in study B). This means that the likelihood of each observation y i,j corresponding to subject i and choice list j is given by π i,j = p(y i,j -k 2 < y i,j < y i,j + k 2 )

= p(y i,j -k 2 -f (X j , β i ) < i,j < y i,j + k 2 -f (X j , β i ))

= F (

y i,j + k 2 -f (X j , β i ) σ i ) -F ( y i,j -k 2 -f (X j , β i ) σ i ),
where F denotes the CDF of the normal distribution. The likelihood of a series of choice lists completed by a subject i is therefore

l i (β i ) = j π i,j .
The function f depends on the dependent variable considered: MPPs or CEs; it also depends on the model assumed: REU, RRDU (w 0 = w T ), RRDU (U 0 = U T ) or "full force" RRDU;

and the parametric forms assigned to the components of each model. Consequently, a specific likelihood function l i is defined and maximized for the estimation of the parameters under each configuration.

For individual-level estimations, the logarithm of each likelihood l i is maximized separately, leading to individual estimations βi for each configuration. For aggregate-level estimations, we assume that all subjects have the same (representative agent's) parameters β and σ such that l(β) = i l i (β). The log-likelihood of estimations are used to assess the goodness of fit and compare models.

When comparing two nested models, likelihood ratio test are used. When comparing nonnested models, the most commonly-used indexes are the Bayesian Information Criterion, BIC = -2LL+klog(n); and the Akaike Information Criterion, AIC = -2LL+2k, where n is the number of observations and k, the number of parameters. It is worth noting that when comparing two non-nested models involving the same number of parameters, and estimated on the same sample, the model with the best (i.e., lowest) BIC and AIC is the model with the highest LL.

We also compare models in terms of prediction accuracy. In study B, estimates βi derived from CEs are used to make predictions f ( βi , X) of the 5 MPPs. For a subject i, the accuracy of predictions is measured by the commonly-used root mean squared error RM SE i =

SSE i 5 ,
where SSE i is the sum of squared errors: SSE i = 5 k=1 (f ( βi , X k ) -y i,k ) 2 . For aggregate (individual) estimations, the mean (median) individual RM SE is used to measure the prediction accuracy.
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 2 Figure 2: Eliciting attitudes towards temporal risk resolution under REU

  conducted two experiments. Study A investigates attitudes towards temporal risk through MPPs in an incentivized experiment. Study B goes one step further and uses both MPPs and CEs to elicit attitudes towards temporal risk from incentivized choices. The CEs collected in study B also allow for an investigation of the goodness of fit and prediction accuracy of the different versions of RRDU (including REU).

  Subjects in study A were 70 undergraduate students from the University of Paris Descartes (France). Each of them received a participation fee of 1€7 for a one-hour computer-based interview. Instructions concerning the experiment were communicated to the subjects through a power point presentation. The experiment began with a few practice questions to familiarize the subjects with the software used to display and collect choices. Each individual interview took about one hour.

  t = T = 12; n = 70) Study B (t = T = 6; n = 68)
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 3 Figure 3: attitudes towards temporal risk from linear regression
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 4 Figure 4: Aggregate estimates assuming an expo-power ϕ (Study B)

Figure 5 :

 5 Figure 5: Individual estimates of ϕ (exponential) under REU: MPPs vs CEs
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 6 Figure 6: Aggregate estimates of ϕ, w 0 and w T under RRDU

Figure 7 :

 7 Figure 7: Aggregate estimates of restricted versions of RRDU

  (a) Binary choice during the bisection step During the bisection step, subjects reported their preferences by clicking on the preferred lottery in each iteration. (b) Choice list for confirmation In this example, the subject shifted from option A to option B for q0 ∈ [0.23, 0.24] during the bisection process (step 1); so in step 2, the corresponding choice list was presented. The subject was then asked to scroll the bar from the left to the right in order to check whether she still preferred to shift between options A and B for q0 ∈ [0.23, 0.24]. Otherwise, she could change the "shifting value".

Figure 9 :

 9 Figure 9: Steps for eliciting MPPs in study A

Figure 10 :

 10 Figure 10: Elicitation of CEs c 0 in study B

Figure 11 :

 11 Figure 11: Elicitation of CEs c 6 in study B

Figure 12 :

 12 Figure 12: Elicitation of MPPs m 0 in study B

  Each (individual or aggregate-level) likelihood maximization use the BFGS algorithm with 50 different starting values. For aggregate-level estimations, standard errors are computed from the crossproduct of individual scores, thus accounting for the clustering of responses within individuals. For both aggregate and individual estimations, we report the sum of individual log likelihoods: LL = i log(l i ).

  

  

  

  

Table 2 :

 2 Empirical distributions of MPPs B. Both methods of measurement consistently point to a predominance of preference for early resolution that declines in intensity for small winning probabilities. More details about reliability and real incentives in study A are given in Appendix ??. Appendix ?? reports details about baseline risk preferences in studies A and B.

		Lottery		t = 0		t = 6		Comparison of CEs
	p t	X	x	Median	Std	Median	Std	t-test	#(c 6 ≶ c 0 )
	0.25 60	0	12.50	5.80	12.50	5.00	3.82	28/9
	0.75 60	0	32.50	7.30	27.50	6.70	8.31	51/4
	0.25 80 20	32.50	4.60	32.50	3.90	4.17	28/5
	0.75 80 20	47.50	8.20	37.50	6.50	11.64	59/4
	0.25 90 10	27.50	6.50	22.50	5.80	3.42	27/7
	0.75 90 10	52.50	9.40	37.50	9.70	9.19	56/4
	0.10 100 0	15.00	8.90	7.50	7.20	4.43	27/8
	0.25 100 0	22.50	6.20	17.50	5.90	4.68	29/5
	0.50 100 0	37.50	6.10	32.50	6.60	8.92	52/4
	0.75 100 0	52.50	12.10	42.50	11.70	10.26	58/2
	0.90 100 0	65.00	11.90	57.50	13.80	7.07	58/4

ns: non-significant; : p < 0.05; : p < 0.01; : p < 0.001; sample size: n = 68

Table 3 :

 3 Empirical distributions of CEs in study B 4.1. Measurement from matching present probabilities

Table ? ?

 ? reports the medians and standard deviations of the elicited MPPs in studies A and B for t = T = 12 and t = T = 6 respectively (see also Table??, Appendix ??, for intermediary resolution dates t = 3, 6, 9 in study A). At the aggregate level we observe that, in both studies, median MPPs are consistently lower than the corresponding delayed probabilities. Onesample t-tests confirm that, overall, MPPs differ from the corresponding delayed probabilities

in both studies A and B. At the individual level, MPPs were below the corresponding delayed probabilities for a large majority of subjects (Table ??: columns 5 and 9 for studies A and B, respectively). This suggests a predominance of preference for early resolution.

Table 5 :

 5 Estimates of ϕ under REU from MPPs

				Study A				Study B
	Component	Aggregate	Individual	Aggregate	Individual
		Estimate SE Median	IQR	Estimate SE Median	IQR
	Transformation (ϕ)	α 1 -1.86 α 2 0.69	0.24 0.04	-0.90 0.96	[-1.99;-0.21] -2.50 [ 0.81; 1.01] 0.53	0.02 0.01	-2.48 0.62	[-2.61;-1.10] [ 0.52; 0.76]
	SE: standard error;	: p < 0.001						

Table 6 :

 6 Estimates of U T and ϕ under REU from CEs At the aggregate level, likelihood ratio tests reject the null hypothesis that ϕ is the identity function (p< 0.001). The estimates suggest a (globally) convex transformation ϕ, be it power or exponential. Figure

	Components		Aggregate Estimate	SE	Median	Individual IQR
	Utility (U T )	α 1 α 2	0.0003 1.66	0.0005 0.15	0.004 1.59	[ 0.001; 0.007] [1.38; 1.83]
	Transformation (ϕ)	α 1 α 2	-1.97 0.86		0.32 0.10	-2.42 0.71	[-2.67;-0.74] [ 0.55; 1.29]
	: p < 0.001					

Table ?? reports the estimates of the parameters of U T and ϕ assuming expo-power parametric forms. The estimates of the power and exponential families are reported in Table ?? (Appendix ??).

Table 7 :

 7 Estimates of U T , ϕ, w 0 , and w T under RRDU

	Component		Aggregate Estimate	SE	Median	Individual IQR
	Expo-power utility (U T )	α 1 α 2	0.0007 1.43	0.0002 0.06	0.00004 1.32	[-0.018; 0.0009] [0.96; 1.76]
	Expo-power (ϕ)	α 1 α 2	0.16 ns 0.92	0.29 0.06	0.19 0.91	[-2.23;1.59] [0.60;1.35]
	Probability weighting (w 0 )	δ γ	1.36 0.53	0.07 0.02	1.68 0.58	[1.24; 2.00] [ 0.44; 0.69]
	Probability weighting (w T )	δ γ	1.83 0.40	0.08 0.02	1.91 0.40	[0.32;0.70] [0.28;0.48]

ns: non-significant; : p < 0.05; : p < 0.01; : p < 0.001

Table 8 :

 8 Goodness of fit and prediction accuracy

		Restriction	AIC	MPP-based RMSE Aggregate Individual
					(median)
		REU	6097.69	0.104	0.115
	RRDU	w 0 = w T	5766.28	0.103	0.111
		U 0 = U T	5748.47	0.090	0.102

This result is consistent with the implication of Finding 4 in[START_REF] Masatlioglu | Intrinsic Information and Skewness[END_REF] that suggests that the transformation function ϕ is S-shaped under REU.

Note that, in both cases, we test a restricted RRDU model (6 parameters) against the "full force" RRDU model (8 parameters). The statistics of each test has (asymptotically) a χ 2 distribution with 2 = 8 -6 degrees of freedom.

under RRDU (see also Figure ??). We assume Prelec and power specifications for w t (elevation δ t ; sensitivity γ t ) and U 0 = U T , respectively. Note that we cannot estimate the full-force RRDU because we only elicited CEs for immediately resolved lotteries. Three subjects have outlying estimates for t = 12 (δ 12 > 5 or γ 12 > 5 ), hence the large standard deviations for these individual parameters. The results of the ANOVA tests are unchanged when these subjects are excluded from the analysis. 

F. Data recovery analysis

We focus on the "full force" RRDU that was estimated using the CEs collected in study B (see Table 1). We assume expo-power specifications for U T and ϕ, and a two-parameter Prelec weighting functions w 0 and w T . Specifically, in order to check that our stimuli warrant reliable estimates of the resulting vector β of 8 parameters, we used our econometric procedures to estimate RRDU from simulated CEs provided by a virtual sample of 68 subjects.We used the vector of RRDU parameters βi that was estimated for subject i in our experimental sample to generate the CEs of lotteries reported in Table 1 for subject i in the simulated sample.

Further, in order to reproduce response errors, we add a random noise to the simulated CEs, with a variance σ s i corresponding to the estimated individual variances in the experimental data (σ s i = σi ). Finally, for the CEs of prospects x p y, we censor the simulated values that are outside the interval (y, x) and we round the values to multiples of 5 euros, in order to simulate values with the same (im)precision as our experimental measures. We denote βs i the vector of parameters of the virtual subject i estimated from the simulated CEs.

Aggregate level analyses compare the vectors βs and β of the representative subjects in the simulated and experimental samples, respectively (