To test or not to test? Risk attitudes and prescribing by French GPs

Emmanuel Kemel, Antoine Nebout, Bruno Ventelou

To cite this version:

Emmanuel Kemel, Antoine Nebout, Bruno Ventelou. To test or not to test? Risk attitudes and prescribing by French GPs. 2021. hal-03330153

HAL Id: hal-03330153

https://hal.science/hal-03330153

Preprint submitted on 31 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

To test or not to test? Risk attitudes and prescribing by

French GPs

E. Kemel, A. Nebout $\ddagger \& B$ B. Ventelou ${ }^{\ddagger}$

Preliminary draft, September 2020

Abstract

Risk is a key dimension of economic decisions, but whether risk attitudes can predict real economic behaviour is still subject to investigation. We measure general practitioners' (GPs) risk attitudes and check for a relationship with variations in prescribing practices. Individual-level risk attitudes are elicited from simple survey choices on a representative national panel of 939 French GPs, and are linked to their volume of lab-test prescriptions through administrative records. Specifically, we estimate individual components of a flexible decision model under risk (rank-dependent utility) using random-coefficient estimations, and then treat these components as

[^0]predictors of observed lab-test prescribing. We find that (1) GPs exhibit the usual patterns of risk attitudes: risk aversion and inverse S-shaped probability weighting prevails (2) risk aversion captured by the utility function is positively correlated with lab-test prescribing.

Keywords: General practitioners; risk attitudes; rank-dependent utility; lab-test prescribing; practice variation.

JEL Classifications: C93, D81, I11.
Word count: 5916

1 Introduction

Medical decisions involve many sources of uncertainty, one of the chief being diagnosis. General practitioners (GPs) have to decide whether to base their judgment on information from clinical examination or to reduce uncertainty by prescribing tests. Deciding to search for further information entails a time and monetary cost for both the patient and the health system that may be counterbalanced by increased diagnostic accuracy. A riskseeking GP may therefore avoid this cost by doing without the tests and relying on his clinical judgment, whereas a risk-averse GP may prefer to have the back-up of biological testing. Lab-test prescribing may therefore be related to the GP's attitude towards risk. We investigate this assumption on a representative sample of French GPs, for whom risk attitudes were measured and matched with observed test prescription behaviour obtained through data linkage with the French social security database.

Economists consider risk as a key dimension of many economic situations. Theoretically sound economic models linking risk attitudes to real-life decisions allow for quantitative measurement of risk attitudes from choices. Many elicitation methods have been developed in experimental economics for either laboratory or field use (Binswanger, 1980; Gneezy \& Potters, 1997; Holt \& Laury, 2002; Tanaka et al., 2010; Wakker, 2010). ${ }^{1}$

In a lab setting, they have been extensively used on student populations to explain the strategic or economic behaviours observed in experiments. In the field, they have been used to elicit risk attitudes of specific groups such as farmers (Binswanger, 1980), entrepreneurs and managers (Koudstaal et al., 2016), sex workers (Lépine \& Treibich, 2020) or adolescents (Sutter et al., 2013), as well as in general population studies (Anderson \& Mellor, 2008; Tanaka et al., 2010; Falk et al., 2018). The latest elicitation experiments provide evidence on the cognitive and demographic factors explaining risk attitudes (Dohmen et al., 2018; Falk et al., 2018; l'Haridon \& Vieider, 2019).

In terms of psychometric properties, choice-based measures of risk attitudes appear less

[^1]satisfactory than a qualitative measure based on a Likert scale of willingness to take risks (Dohmen et al., 2011; Pedroni et al., 2017; Mata et al., 2018). Particularly regarding external validity, most of the empirical evidence linking risk attitudes and economic behaviours uses a qualitative measure (see for example, (Beauchamp et al., 2017) for health behaviour, (Dohmen et al., 2011) for financial management at the household level or (Fouarge et al., 2014; Skriabikova et al., 2014) for career orientation). This is because a Likert scale is less costly to apply in large-scale studies and easier for the general population to understand than choice-based methods. The latter require longer instructions and response time and were not originally designed for lab-experiments with convenient samples rather than large scale surveys (Vieider et al., 2015; Galizzi et al., 2016).

Our paper contributes to this literature by implementing a parsimonious choice-based measure of risk attitudes, specifically developed for the investigated population (i.e. French GPs) and the interview mode (telephone interviews), on a large representative sample ($\mathrm{N}=1206$). The method relies on binary choices between a lottery and sure gain to measure risk attitudes both under the expected utility (EU) framework (utility function curvature) and the rank-dependent expected utility (RDU) framework (utility function curvature and shape of the probability function), rapidly and with minimal cognitive effort. In Microeconomics, this incorporation of risk attitude measures in models of individual decision-making offers vital support for the theoretical literature.

Just as choice-based measures of risk attitudes should be preferred to self-reported ones, real observed behaviour should be preferred to stated/declared behaviour. A recent line of research aims at linking data sourced from behavioural experiments with administrative records or large commercial data-sets (Galizzi \& Wiesen, 2018). We contribute to this literature by linking GPs' risk attitudes with one common clinical practice: the prescription of lab-tests. This enables us to provide the first analysis connecting choicebased risk attitudes with a professional behaviour observed through the French Social Security database.

In addition to the implications of our work for the study of risk attitudes in general and their predictive power, understanding GPs' behaviour and preferences under uncertainty is critical for health economics and medicine (Gigerenzer \& Gray, 2014; Verma et al., 2014). While medical decisions primarily impact the health of the patient, they also have a financial impact on the healthcare system, on patients and on the doctors themselves. Medical decision-making thus offers a genuine setting for exploring risk attitudes and their effect on professional practices. GPs' preferences may have direct implications for their professional behaviour in terms of medical decisions and the quality of their medical services (Simpkin \& Schwartzstein, 2016). Understanding the factors impacting the medical decisions of GPs is particularly important, as they are first-line healthcare professionals. They represent the patient's first contact with the health system, and their examination and diagnosis are the first steps in the treatment process. They have to make decisions not only regarding curative care, like specialists, but also on hospitalisation, long-term care, or prescription of further medical tests. These decisions have direct micro-economic consequences on a patient's well-being, as well as macroeconomic consequences on the health care system. Their effect is amplified in the case of epidemics such as COVID 19, where testing and hospitalisation decisions are key to managing the contamination level and death rate.

Prior research on lab-test prescription has focused on the analysis of unwarranted practice variations (Wennberg \& Gittelsohn, 1973), repeatedly showing GPs' responsibility in these variations (Vinker et al., 2007; Sá et al., 2017). A related line of research focuses on ways of controlling over-prescribing; various experiments show how the number of lab-test prescriptions can be significantly reduced through actions addressing doctors ((Eisenberg et al., 1977; Axt-Adam et al., 1993; Bates et al., 1999; Attali et al., 2006)). However, there has been little investigation of the underlying factors that may explain variations in volume of prescriptions.

In the present study, we investigate a behavioural explanation of GPs' lab-test prescribing, specifically exploring the economic psychology of decision-making under risk. In fact, risk aversion may well increase GPs' willingness to gather as much information as
possible before making a diagnosis and taking a prescription decision (see (Michel-Lepage et al., 2013) for a similar result on GPs' use of rapid-antigen diagnostic tests in tonsillitis in children ${ }^{2}$). Risk attitudes may also be intrinsic characteristics that impact the trade-off doctors make when choosing between treatments (see (Bories et al., 2018) for the decision hematologists make between using chemotherapy or less intensive care to treat acute myeloid leukemia) or when deciding on preventive care methods (see (Massin et al., 2015) for pandemic influenza vaccination).

We measured the risk attitudes of the French primary caregivers, general practitioners, and related these attitudes to their lab-test prescribing as recorded in the social security database. To do so, we developed a simple choice-based procedure for elicitation of risk attitudes, and implemented it on a representative national panel survey of 1206 French GPs (the final analysis covers 939 of them). Then, using a record-linkage process involving the Social Security reimbursement data-files, we obtained risk-attitude estimations that can be considered as potential predictors of one aspect of these GPs' real clinical practice: prescribing lab tests.

This analysis enables us to make two original contributions. First, we describe the risk attitudes of a large sample of French GPs under rank-dependent utility (RDU), a flexible descriptive model that encompasses the rational model (EU) as a particular case. Our results show that GPs exhibit the patterns generally observed in convenience samples: risk aversion prevails, but more risk seeking is observed for small probabilities. Second, when we study the relationship between risk attitudes and recorded lab-test prescription volume, we observe a significant impact of risk attitudes (described by the curvature of the utility function), showing that choice-based measurement does have explanatory power for real-life behaviour.

The paper is organised as follows: section 2 describes the role of GPs within the French healthcare system, the French GP panel survey used for data collection and the administrative database we linked with our survey data-set. Section 3 describes the choice-based

[^2]1 procedure for elicitation of risk attitude that was implemented with the panel and the 2 econometric model developed to study risk attitudes and their correlation with lab-test 3 prescriptions. Section 4 shows the results, which are further discussed in section 5 .

2 Material

2.1 GPs in the French healthcare system

In France, GPs are the main primary care providers for more than 98% of the population (Massin et al., 2018). They are self-employed and generally remunerated using a fee-for-service system. There is no ex-ante assignment of patients to primary care services: patients self-select into the GP's practice and change at will. French GPs are independent of the health insurer (the French Social Security and complementary health insurances) and barriers exist against the intervention of any insurers (private or public) in doctors' medical decisions. It is medical professional unions or health authorities (Ordre des Médecins, Haute Autorité de Santé) that regulate the quality of medical practice. The French primary care system was constructed so as to ensure a high level of professional autonomy, although it exposes GPs to some financial risks (market uncertainty) and legal risks. This makes the judgments and decisions of French GPs key to the efficiency of the French healthcare system, and to its evaluation.

In terms of incentives, French GPs are not concerned by the financial implications for the Social Security of their medical decisions. In other words, their "gatekeeper" role has not been associated with significant incentives (Dourgnon \& Naiditch, 2010). One constraint is that GPs have to accept the terms of a national agreement making it possible for their patients to be reimbursed by the public insurer for their consultations; however, this does not greatly limit medical practices. In 2012, a Pay for Performance system was set up, but with limited impact on practices (Michel-Lepage \& Ventelou, 2016).

2.2 Survey data

The panel survey of French GPs used to test our risk-attitude elicitation procedure was set up in June 2010 through a partnership between the research department of the Ministry of Health, the regional health observatories and the representatives of self-
employed GPs. Its aim is to collect data regularly about medical activity and practices. It consists of a national sample and three regional over-samples (Burgundy, Pays de la Loire and Provence-Alpes-Cote d'Azur). The sampling frame ${ }^{3}$ was obtained from the Ministry of Health's exhaustive database of health professionals in France. Sampling was stratified by location (urban, peri-urban, or rural areas), gender, age ${ }^{4}$ and volume of activity ${ }^{5}$ in 2008. Of the $6,304 \mathrm{GPs}$ who were contacted and eligible, 2,496 (39.6\%) agreed to participate in the panel survey and to respond to five consecutive waves on different topics every 6 months. Professional investigators operated using computerassisted telephone interview (CATI) software and standardised questionnaires. Each GP received a monetary compensation equivalent to one consultation fee for each survey wave. To limit the selection bias that might have resulted from particular opinions or attitudes, the specific survey topics were not mentioned to GPs before they were asked to participate in the panel. The National Data Protection Authority (Commission Nationale Informatique et Libertés), responsible for ethical issues and protection of individual data in France, approved the panel survey and its procedures. Information was collected on the GP panel through successive waves starting in 2010. The 5 th and last wave was completed in early 2013; it collected opinion on several policy issues and contained our risk-attitude choice-based elicitation procedure. For this study, we focus on the 939 GPs who answered all the questions of the risk-attitude elicitation module and whose data could be linked to the national database containing all the GPs' expenditures, presented in the next section. All these GPs also participated in the first four cross-sectional survey waves. The sampling scheme and response rates at different stages of the survey are presented in appendix A.

[^3]
2.3 Administrative data: Lab-test prescriptions

To the information obtained from the panel survey, we linked annual data from the Individual Record of Activity and Prescriptions (RIAP in French) for most of the panel. It gives each GP's total workload (total number of consultations and home visits, shortened in the following to 'volume of activity') and the characteristics of their patients (proportion of patients under 16, proportion of patients over 60, proportion of patients covered by the universal healthcare program (CMU in French, i.e. patients with totally free health-care because of their low income) and patients exempt from payment because of long-term illness). It also records all reimbursed expenditure for insured patients, especially the volume/quantity of biological tests prescribed by the GP (measured as the sum of coefficients defined in the classification of medical procedures). In the analysis, we use the patients' characteristics as control variables (see Figure 1) and the quantity of biological tests prescribed as our main medical practice variable to be explained. By linking this administrative electronic database managed by the French national health insurance system (CPAM in French) to our GP survey, we obtain a measurement of medical practice (lab-test prescribing) which is not self-reported like most of the survey items, but is an objectively observed characteristic of the GPs' professional activity.

3 Method

3.1 Measuring risk attitudes

We developed a choice-based risk preference elicitation method, inspired by those used in lab experiments (Abdellaoui et al., 2011), and incorporated it within the 5 th wave of the GP panel survey. The method and its practical implementation are described hereunder.

3.1.1 Notation

We consider binary lotteries $x_{p} y$ that give outcome x with probability p and y with probability $1-p$. A lottery giving outcome x with certainty $(p=1)$ will be denoted x. We study GPs' preferences over lotteries using the standard notation \succ for strict preference and \sim for indifference. Outcomes are expressed in numerical units, so that the expected value (EV) of $x_{p} y$ can be defined as $p x+(1-p) y$. The certainty equivalent $(\mathrm{CE}) c$ of a lottery $x_{p} y$ is the outcome that makes a decision-maker indifferent between receiving a sure c and receiving the lottery: $c \sim x_{p} y$. By definition, a GP exhibits risk aversion (seeking) for a lottery if the CE is lower (higher) than the EV. The difference between the CE and the EV is the risk premium and quantifies the degree of risk preference. The CE therefore allows for simple quantitative measurement of risk attitudes.

For a given lottery $x_{p} y$, we measure the CE using the bisection method. This consists in an iterative series of binary choices between a sure outcome c_{j} and the lottery, with c_{j} varying in $] y, x[$ according to the bisection algorithm (see appendix B.1). CEs measured using the bisection method allow risk attitudes to be quantified from a few simple choices between a sure outcome and a lottery.

3.1.2 Experimental design

Table 1 presents the parameters of the lotteries used to elicit risk attitudes. For each lottery, CE was measured through a 3-step bisection algorithm (presented in more detail
in appendix B.1).

k	x_{k}	p_{k}	y_{k}
1	100	0.5	0
2	100	0.2	0
3	100	0.8	0
4	100	0.5	50
5	50	0.5	10

Table 1: Lotteries used for the elicitation of risk attitudes (Gains are in euros)

The first three lotteries have a fixed maximum outcome, a null minimum outcome and involve various probabilities over the probability interval. Lotteries 4 or 5 involve the same probability and various maximum and minimum outcomes. These two types of stimulus aim at disentangling the role of outcomes and the role of probabilities in risk attitudes (see Sect 3.2.1).

Because of survey constraints, it was not possible to use these 5 stimuli on each respondent. For each respondent, we elicited the CEs of a total of 3 lotteries only. One group (two third) of respondents was assigned lotteries 1,2 and 3 (the fixed outcome lotteries). The other group (one third of respondents) was assigned lotteries 1, 4 and 5 (the fixed probability lotteries).

A specific procedure was designed to implement the risk attitude elicitation task. CATI (computer-assisted telephone interview) software was developed to deal with the constraints of the GP survey, i.e. bisection algorithm, limited amount of time for the interview, standardised phrasing of questions for each professional interviewer, cognitive complexity of the tasks ${ }^{6}$.

We used standard wording where GPs had to choose between a sure monetary gain and a lottery with monetary consequences. An example of a binary choice is:

[^4]Between the following two options, do you prefer: option A that gives you a 50% chance of winning 100 euros and 0 otherwise, or option B that gives you 40 euros for sure?

According to the bisection, option B changed from one iteration to the other. In addition, a graphical aid presenting the choice tasks was mailed to each GP, to support the telephone interview process (see appendix B.2).

3.2 Econometric model

3.2.1 Modelling risk preferences

Our econometric estimations aim at interpreting our measure of risk attitudes (CE) under risky choice models. We consider expected utility (EU), the classical model of decision under risk (von Neumann \& Morgenstern, 1947). We also consider rank-dependent utility (RDU), arguably the most descriptively powerful model of risky choice (Tversky \& Kahneman, 1992). Risk attitudes are measured through certainty equivalents $c_{i, k}$ elicited for each respondent i and for each of the lotteries k. We now present the formula for RDU that encompasses the standard EU model as a particular case.

Under RDU, the theoretical certainty equivalent $c_{i, k}$ of a lottery $\left(x_{k}, p_{k}, y_{k}\right)$ is given by Eq. 1

$$
\begin{equation*}
\hat{c_{i, k}}=u_{i}^{-1}\left[\left[w_{i}\left(p_{k}\right)\left(u_{i}\left(x_{k}\right)-u_{i}\left(y_{k}\right)\right]+u_{i}\left(y_{k}\right)\right]\right. \tag{1}
\end{equation*}
$$

The formula introduces a strictly increasing utility function u_{i}, and a strictly increasing probability weighting function w_{i} is specified. Under EU, there is no probability weighting and $w_{i}(p)=p$.

Under EU, risk attitudes are captured by the shape of the utility function only. Under RDU, risk attitudes depend on both utility and probability weighting.

Our analysis allows for model components (and thereby risk attitudes) to vary across respondents, hence the index i.

We now present the parametric specifications considered for utility and probability weighting. For the utility function, two specifications are considered and compared. The first assumes constant absolute risk aversion (CARA) and is specified by equation $u_{\alpha_{i}}(x)=$ $1-e^{-\alpha_{i} x}$. The second assumes constant relative risk aversion (CRRA) and is specified by equation $u_{\alpha_{i}}(x)=x^{\alpha_{i}}$.

For the probability weighting function, the Prelec (1998) specification is assumed $w_{\gamma_{i}}(p)=$ $e^{-(-\log (p))^{\gamma_{i}}}$. When $\gamma_{i}=1$ the probability weighting function is linear and the model simplifies to EU. Values $\gamma<1$ characterise the commonly observed inverse-S shaped probability weighting.

Regarding the error structure, we assume that theoretical CEs ($c_{i, k}$) and observed CEs $\left(c_{i, k}\right)$ differ by a Fechner error (Eq. 2).

$$
\begin{equation*}
c_{i, k}=\hat{c_{i, k}}+\epsilon_{i, k}, \text { with } \epsilon_{i, k} \sim N\left(0, \sigma_{i}^{2}\right) \tag{2}
\end{equation*}
$$

The variance of errors σ_{i}^{2} can differ across individuals and allows for between-individual heteroscedasticity.

To capture heterogeneity in attitudes, we assume that risk parameters $\alpha_{i, a}$ and $\gamma_{i, a}$ are randomly distributed across individuals. Specifically, (non-negative) parameters are assumed to follow (\log)normal distributions. We denote $\bar{\alpha}$ and σ_{α} the mean and standard deviation of individual parameters α_{i} and $\bar{\gamma}$ and σ_{γ}) the mean and standard deviation of individual parameters γ_{i}

This model specification enables us to derive the likelihood function associated with our measurements.

For each lottery, the bisection procedure produces two bounds $c_{i, k}^{-}$and $c_{i, k}^{+}$such that $c_{i, k}^{-}<c_{i, k}<c_{i, k}^{+}$. Therefore, each observation consists in an interval $\left(c_{i, k}^{-}, c_{i, k}^{+}\right)$, and the
likelihood of a given interval writes:

$$
\begin{align*}
l\left(c_{i, k}^{-}, c_{i, k}^{+}\right) & =p\left(c_{i, k}^{-}<c_{i, k}<c_{i, k}^{+}\right) \\
& =p\left(c_{i, k}^{-}-\hat{c_{i, k}}<\epsilon_{i, k}<c_{i, k}^{+}-\hat{c_{i, k}}\right) \tag{3}\\
& =\Phi\left(\frac{c_{i, k}^{+}-\hat{c_{i, k}}}{\sigma_{i}}\right)-\Phi\left(\frac{c_{i}^{-}-\hat{c_{i, k}}}{\sigma_{i}}\right)
\end{align*}
$$

where Φ is the cumulative function of the normal distribution.

Our econometric specification defines a non-linear random-parameter interval regression model where parameters vary across respondents according to a given distribution. The objective of the estimation is to measure the characteristics of these distributions $\left(\bar{\gamma}, \sigma_{\gamma}, \bar{\alpha}, \sigma_{\alpha}\right)$ and to recover individual parameters α_{i} and γ_{i}. The model is estimated by simulated maximum likelihood ${ }^{7}$, and individual parameters are derived, using the Bayes rule, from the estimated distributions as priors, updated from observed individual choices (see Train (2009)). Random coefficient estimation is increasingly popular in the literature. Murphy \& ten Brincke (2018) show that it yields more stable individual estimates than individual-level estimation. Its main advantage is that each respondent benefits from information about the group, which optimises the use of information and shrinks individual outlying values. The individual parameters α_{i} and γ_{i} characterising the risk attitudes of each GP will be used as explanatory variables in the model of lab-test prescribing as dependent variable, as presented hereunder.

3.2.2 Modelling lab-test prescribing

The second step of our econometric analysis consists in measuring the impact of risk attitudes on prescriptions. We explain the volume of prescriptions per visit, y_{i}, for year 2012, using the log-linear model in Eq. 4:

[^5]\[

$$
\begin{equation*}
\log \left(y_{i}\right)=c+\beta \alpha_{i}+\mu \gamma_{i}+X_{i}^{\prime} \theta+\nu_{i} \tag{4}
\end{equation*}
$$

\]

The vector of control variables X_{i} is composed of GP characteristics that were also used as the four stratification variables for the sampling:

- Gender
- Age: categorical variable with three classes i.e. $<49,49-56,>56$ years old.
- Location of general practice: categorical variable with three classes i.e. rural, periurban and urban areas.
- Annual volume of activity defined by number of consultations and home visits: categorical variable with three classes i.e. $<2,849,2,849-5,494,>5,494$.

The other set of control variables is composed of characteristics of the GP's patients, obtained through the RIAP:

- Age <16 is the proportion of patients under 16.
- Age >70 is the proportion of patients over 70 .
- CMU is the proportion of patients covered by the CMU (free health-care because of low income)
- EXO is the proportion of patients exempt from payment because of long-term illness.

Figure 1: Set of control variables, X_{i}
5 Regressors related to risk attitudes come from individual estimations from the risk model 6 presented in the previous section. The model is a standard cross-section regression and 7 is estimated by OLS. Several variations of the model with subsets of regressors are also 8 considered:

9 - With and without the set of control variables X_{i}.

- Only with the utility curvature parameter (EU specification) and with both utility and probability weighting parameters (RDU specification).
- For robustness, two parametric specifications of the utility functions were used: CARA and CRRA. Regressions with the CARA parameter offer the best fit and are presented in the results section. Regressions with CRRA utility are similar and reported in appendix.

In order to avoid the impact of outlying values, individuals with prescription values corresponding to the 1% of highest or lowest values are removed from the analysis. After removing 2% of observations (20 respondents), a Shapiro test fails to reject that prescription volumes follow a log-normal distribution ($p=0.69$).

4 Results

4.1 Raw data analysis

All subsequent statistical analyses were run on a sample of 939 GPs who completed the risk attitudes elicitation module and for whom administrative data (with prescription information) were available. The sample scheme is available in Figure 4 of appendix A as well as comparison between this sample and the target population and other subsamples (Table 6). Of the 939 respondents, 644 were assigned lotteries 1, 2 and 3 and 295 lotteries 1,4 and 5.

Table 2 reports descriptive statistics for certainty equivalents $c_{i, k}$ with $k=1, \ldots, 5$. $\%$ RA represents the percentage of certainty equivalents that are below the expected value of the evaluated lottery, and therefore represents the percentage of risk-averse GPs for this specific lottery.

k	x	p	y	EV	Mean	Median	Sd	\% RA
1	100	0.5	0	50	31.4	25.0	20.5	82.5
2	100	0.2	0	20	24.5	17.5	22.7	67.5
3	100	0.8	0	80	48.9	55.0	22.2	92.1
4	100	0.5	50	75	63.4	57.5	11.5	85.4
5	50	0.5	10	30	26.2	27.5	10.0	76.3

Table 2: Descriptive statistics on CEs

Lottery 1 was assigned to all the respondents, whereas lotteries 2 and 3 were assigned to one group of respondents and lotteries 4 and 5 were assigned to the other group. The CEs provided for lottery 1 show whether the two groups had similar risk attitudes. This assumption was not rejected by a t-test comparing mean CEs $(p=0.93)$, nor by a χ^{2} test comparing risk attitudes $(p>0.99)$. Overall, risk aversion prevails in our data. For all the lotteries, median CEs are below the EV and more than 60% of respondents exhibit risk aversion. However, despite this overall pattern, both the degree of risk aversion as measured by the risk premium and the share of respondents exhibiting risk
aversion vary significantly depending on the characteristics of the lotteries. In fact, RAs change systematically with lottery probabilities: the lower the probability, the less risk aversion is observed. Variations of RA with probabilities are significant, according to χ^{2} tests comparing RA for $\mathrm{p}=0.2$ versus $\mathrm{p}=0.5(p<0.001)$ and for $\mathrm{p}=0.5$ versus $\mathrm{p}=0.8$ ($p<0.001$). This pattern is a component of the fourfold pattern of risk attitudes and can be accounted for by RDU (Tversky \& Kahneman, 1992).

The standard deviations of the CEs show that preferences are highly heterogeneous in our sample. This justifies the use of a random-coefficient model for the econometric estimations. Overall, these descriptive statistics convey a model-free picture of our main results concerning risk attitudes. Risk attitudes are heterogeneous and probability-dependent. The next section refines the analysis through econometric estimations of risky choice models.

4.2 Model parameters

Table 3 reports the results of the random-coefficient estimations. The first columns assume linear probability weighting ($\gamma_{i}=1$), a case in which our RDU model (Eq.1) simplifies to EU.

		EU				RDU			
		CARA		CRRA		CARA		CRRA	
		Estimate	Stde	Estimate	Stde	Estimate	Stde	Estimate	Stde
Mean	$\bar{\alpha}$	0.026	0.001	0.634	0.020	0.016	0.001	0.815	0.019
	$\overline{\gamma_{o}}$					0.589	0.019	0.473	0.014
	$\bar{\sigma}$	11.454	0.307	14.246	0.258	9.134	0.243	9.461	0.254
Standard deviations	σ_{α}	0.025	0.001	0.518	0.036	0.021	0.001	0.455	0.031
	σ_{γ}					0.303	0.033	0.257	0.024
	σ_{σ}	4.615	0.460	2.153	0.655	3.018	0.334	3.026	0.397
LL			707.68		138.51		435.14		517.05

Table 3: Results of the risk-attitudes model

The CARA exponential utility function provides a better goodness of fit under both EU and RDU. More precisely, under EU, CARA utility provides a better individual likelihood for 711 out of 939 respondents (binomial test $p<0.001$). Under RDU, CARA utility provides a better individual likelihood for 517 out of 939 respondents (binomial test $p=$
0.002). We will therefore focus on this specification, given that similar patterns appear under the CRRA utility specification. We also observe that accounting for probability weighting dramatically increases the likelihood, which leads us to focus on results under RDU. The increase in likelihood is statistically significant according to log-likelihood ratio tests ($p<0.001$ for the CRRA and the CARA utility specifications).

Risk attitudes, as captured by the distribution of model parameters, are consistent with the patterns reported in the literature. The mean utility function is concave, which contributes to risk aversion, and the mean probability weighting function is inverse-S-shaped. In particular, the mean CARA utility parameter is 0.016 and is significantly larger than 0 (Wald test, $p<0.001$). Regarding probability weighting, the mean of the Prelec parameter is significantly lower than 1 (Wald test, $p<0.001$), which is consistent with inverse-S-shaped probability weighting: respondents tend to overweight small probabilities (which implies more risk seeking) and underweight medium and large ones (which implies more risk aversion). Strong heterogeneity across respondents is also captured, with a standard deviation of 0.021 for the CARA parameter and 0.30 for the probability weighting parameter. The estimations of standard deviations are statistically significant and justify the use of a random-coefficient model to capture preference heterogeneity.

The distributions corresponding to these estimated values are plotted in Fig 3. On the left-hand panel, dotted lines plot the distribution of CARA parameters obtained under EU. We can see that omitting probability weighting results in larger (i.e. more riskaverse) utility parameter values. This observation is consistent with the analysis reported by Abdellaoui et al. (2008). The distribution of PWF parameters shows that not only the mean, but a large majority, of individual parameters are lower than 1 , suggesting that inverse-S-shaped probability weighting largely prevails in our sample. Fig 2 illustrates the heterogeneity captured by the random-coefficient estimations, plotting utility and weighting functions for the median and quartile parameters.

Overall, our econometric analysis shows that the risk attitudes of our panel of GPs are similar to those generally observed in the literature on other types of subjects. They

1 exhibit a concave utility function and an inverse-S-shaped probability weighting function.
2 Our random coefficient estimations capture sizeable heterogeneity in risk parameters.
3 This is in line with our hypothesis that this heterogeneity explains heterogeneity in 4 volume of lab-test prescriptions.

Figure 2: Utility and probability weighting for median and inter-quartile interval parameters

Figure 3: Distributions of individual parameters

4.3 Lab-test prescriptions

The dependent variable measuring GPs' test-prescribing behaviour is the volume of biological tests prescribed per visit for 2011. Table 4reports Spearman correlations between this variable and estimated risk parameters. Correlations between prescriptions and utility parameters measured under RDU are statistically significant. Other correlations are not. Interestingly, utility parameters measured under EU have the expected sign and similar magnitude to those measured under RDU, but are not significant. This may be because the former are biased or more noisy when probability weighting is ignored. Wakker (1994) argues that utility measured under expected utility can be too distorted by risk perception to be useful in other contexts. However, if probability weighting is corrected for, the estimated utility function can be useful in other contexts. Our data support this claim. Utility parameters measured under RDU have more explanatory power than utility parameters measured under EU.

	Spearman correlation with Prescription	
	utility (p value)	probability weighting (p value)
EU with CARA	$0.06(0.07)$	
EU with CRRA	$-0.06(0.08)$	
RDU with CARA	$\mathbf{0 . 0 7} \mathbf{(\mathbf { 0 . 0 4 })}$	$-0.02(0.52)$
RDU with CRRA	$\mathbf{- 0 . 0 7} \mathbf{(\mathbf { 0 . 0 3 })}$	$-0.03(0.39)$

Table 4: Spearman correlations between prescriptions and risk parameters

Table 5 reports the results of a series of linear regressions of (the log of) prescriptions on CARA parameters (under EU and under RDU) and controls.

Whether considered alone or with controls, under EU or under RDU, the CARA parameter is found to impact prescriptions. The magnitude of the parameters varies from 1.05 when the CARA parameter measured under EU is considered alone, to 1.2 when the CARA parameter measured under RDU is considered along with controls.

The probability distortion parameter is not statistically significant at the 5% level. Similar results are observed for the CRRA utility (presented in Table 7 in appendix 7).
${ }_{6}$ Location does not significantly impact lab-test prescriptions.

Table 5: Impact of risk attitudes on lab-test prescriptions

The results show that the shape of the utility function explains a small but statistically significant share of variance in lab-test prescribing among GPs. The relationship is stronger when the utility function is estimated under RDU, (i.e. corrected for probability weighting). Our analysis does not detect a significant impact of the probability weighting in lab-test prescribing. Accounting for probability weighting can therefore be considered as a way to refine the measurement of the utility function.

1 Overall, the results support the assumption investigated in this paper. They show that 2 variations in risk attitudes among GPs are related to variations in a specific medical 3 practice: volume of lab-test prescriptions.

5 Discussion

5.1 Main contribution

This paper investigated the explanatory power of choice-based elicitation of risk attitudes by exporting advanced elicitation techniques outside the lab. We surveyed a specific population: general medical practitioners. This population is very hard to reach but particularly relevant for the research field, given the decisions they have to make daily under uncertainty and their consequences for patients. We provide a description of French GPs' risk attitudes using an original and parsimonious elicitation method. Doctors were surveyed through telephone interviews and risk attitudes were elicited using binary choices between a lottery and a sure gain, for several levels of probabilities and gains.

Our approach constitutes a key improvement from existing research measuring risk attitudes in surveys using psychometric scales (Dohmen et al., 2011; Falk et al., 2018) or multiple price lists (Andersen et al., 2008; Galizzi et al., 2016; Falk et al., 2018). Our methodology offers two main advantages. First, binary choices are arguably the simplest task individuals can perform regarding decisions under risk, and therefore reveal preferences with minimal noise. Second, the method provides enough richness to estimate the components of the two main models of decision under risk, Expected Utility and Rank Dependent Utility. The advantage of eliciting the latter is to "de-bias" the measure of utility, by accounting for probability weighting (Wakker, 2010). In this paper, we used a random coefficient model to estimate the utility function as well as the probability weighting function from a limited number of binary choices. In fact, thanks to these models' efficient use of the available information, individual-level parameters of sophisticated models were derived despite the limited number of observations per individual.

We then exploited these individual parameters as predictors of an important medical practice by GPs: lab-test prescribing. We find a positive correlation between risk aversion and number of tests prescribed, which points to the relevance of risk attitudes in
explaining medical practice variation. What's more, the explained behaviour is not selfdeclared or stated, as in the majority of the studies in medicine or economics, but comes directly from the individual administrative record of each GP's prescriptions. To the best of our knowledge, our study is the first to investigate the external validity of risk attitude measures with a real, objectively measured professional behaviour, thereby eliminating the potential desirability bias associated with most survey studies.

5.2 Robustness of the findings

Our results on the utility functions hold whatever decision model is considered: EU or RDU. To that end, our methodological innovation consists in relying on a two-stage estimation of the underlying structural-equation models. The first stage is a non-linear random-coefficient model aimed at eliciting risk preferences and their individual heterogeneity from observed choices. The second stage is a linear model explaining revealed prescribing behaviour by (first-stage estimated) risk preferences and control variables. The first stage is estimated using a likelihood maximisation procedure, and the second by OLS. This fast approach enabled us to explore the robustness of the results to several specifications (CARA vs CRRA utility, EU vs RDU, control or not).

A possible limitation of this approach is that in the second stage, risk preferences are considered as regressors, even though, in practice, they are not observed directly but rather estimated from the first stage, thus being captured with estimation errors. This may create an error-in-measurement bias that can lead to under-estimations of the effect in the second stage. An alternative approach consists in estimating the two structural equations simultaneously. We implement it, as a robustness check. The results are presented in appendix C.2. Both coefficients and inferences are consistent with the results of the two-stage estimations.

5.3 Main results

We obtain two main results concerning the specific population investigated.

First, on average, French GPs overweight small probabilities and underweight intermediate and high probabilities, consistent with the inverse-S-shaped probability weighting commonly observed in experimental and behavioural economics in a laboratory setting (Wakker, 2010). We thus add to the existing evidence showing that the descriptive relevance of Prospect Theory for students' or convenience samples in the lab also holds in the field (Tanaka et al., 2010).

This behavioural investigation of GPs' prescribing practice addresses an important research question in public health and health economics: the existence of significant practice variations in the prescribing and medical behaviour of health professionals. This literature generally provides evidence on the existence -and extent- of variations in practices; for example in the prescribing of laboratory tests (Busby et al., 2013; Verstappen et al., 2004), in the use of certain surgical procedures (Weeks et al., 2015), or in drug prescriptions (Molitor, 2018). These small-area variations cost the American health care system several billions (Sirovich et al., 2008; Weeks et al., 2016) and could be potentially associated with unnecessary care (Fisher et al., 2003; Emanuel \& Fuchs, 2008). However, the literature generally has little to say about the psychological and economic causes of these variations, although several papers stress the need to study the mechanisms of medical decision-making, rather than its consequences (Kristiansen \& Hjortdahl, 1992; Diefenbach et al., 2016).

One contribution of this paper is to provide new evidence on non-biological factors, i.e. GPs' behavioural characteristics, that explain variations in family-medicine practices and may affect patients' outcomes. We show that when it comes to prescribing lab tests, GPs' risk attitudes may lie behind a limited but non-negligible proportion of (over-) prescribing. From a public policy perspective, our results suggest that interventions targeting highly risk-averse practitioners and providing personalised recommendations on lab-test use might help reduce unnecessary healthcare provision.

16 Conclusion

2 In this paper, we find that risk attitudes elicited using a choice-based method have 3 significant external explanatory power for real heath-related medical decisions. Estab-

4 lishing this link between doctors' psychological traits and medical behaviours constitutes 5 a promising break-through towards better understanding practice variation. It should 6 encourage further measurements of health professionals' characteristics in the field or in 7 surveys.

References

Abdellaoui, M., Baillon, A., Placido, L., \& Wakker, P. P. (2011). The rich domain of uncertainty: Source functions and their experimental implementation. American Economic Review, 101 (2), 695-723.

Abdellaoui, M., Bleichrodt, H., \& lHaridon, O. (2008). A tractable method to measure utility and loss aversion under prospect theory. Journal of Risk and uncertainty, 36(3), 245.

Andersen, S., Harrison, G., Lau, M., \& Rutstrom, E. (2008). Eliciting risk and time preferences. Econometrica, $76(3), 583-618$.

URL https://EconPapers.repec.org/RePEc:ecm:emetrp:v:76:y:2008:i:3:p: 583-618

Anderson, L. R., \& Mellor, J. M. (2008). Predicting health behaviors with an experimental measure of risk preference. Journal of Health Economics, 27(5), 1260-1274. URL http://www.sciencedirect.com/science/article/pii/S0167629608000714

Attali, M., Barel, Y., Somin, M., Beilinson, N., Shankman, M., Ackerman, A., \& Malnick, S. D. H. (2006). A cost-effective method for reducing the volume of laboratory tests in a university-associated teaching hospital. The Mount Sinai journal of medicine, New York, 73(5), 787, Äî794.

URL http://europepmc.org/abstract/MED/17008940

Axt-Adam, P., van der Wouden, J. C., \& van der Does, E. (1993). Influencing behavior of physicians ordering laboratory tests: A literature study. Medical Care, 31(9), 784-794. URL http://www.jstor.org/stable/3766205

Bates, D. W., Kuperman, G. J., Rittenberg, E., Teich, J. M., Fiskio, J., Ma,Äôluf, N., Onderdonk, A., Wybenga, D., Winkelman, J., Brennan, T. A., Komaroff, A. L., \& Tanasijevic, M. (1999). A randomized trial of a computer-based intervention to reduce
utilization of redundant laboratory tests. The American Journal of Medicine, 106(2), $144-150$. URL http://www.sciencedirect.com/science/article/pii/S0002934398004100

Beauchamp, J. P., Cesarini, D., \& Johannesson, M. (2017). The psychometric and empirical properties of measures of risk preferences. Journal of Risk and uncertainty, $54(3), 203-237$.

Binswanger, H. P. (1980). Attitudes toward risk: Experimental measurement in rural india. American journal of agricultural economics, 62(3), 395-407.

Bories, P., Lamy, S., Simand, C., Bertoli, S., Delpierre, C., Malak, S., Fornecker, L., Moreau, S., Récher, C., \& Nebout, A. (2018). Physician uncertainty aversion impacts medical decision making for older patients with acute myeloid leukemia: results of a national survey. haematologica, 103(12), 2040-2048.

Busby, J., Schroeder, K., Woltersdorf, W., Sterne, J. A., Ben-Shlomo, Y., Hay, A., \& Hollingworth, W. (2013). Temporal growth and geographic variation in the use of laboratory tests by NHS general practices: using routine data to identify research priorities. British Journal of General Practice, 63(609), e256-e266. URL https://bjgp.org/content/63/609/e256

Diefenbach, M., Miller, S., \& Bowen, D. (2016). Handbook of health decision science.

Dohmen, T., Falk, A., Huffman, D., \& Sunde, U. (2018). On the relationship between cognitive ability and risk preference. Journal of Economic Perspectives, 32(2), 115-34. URL http://www. aeaweb.org/articles?id=10.1257/jep.32.2.115

Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., \& Wagner, G. G. (2011). Individual Risk Attitudes: Measurement, Determinants, And Behavioral Consequences. Journal of the European Economic Association, 9(3), 522-550.

URL https://ideas.repec.org/a/bla/jeurec/v9y2011i3p522-550.html

Dourgnon, P., \& Naiditch, M. (2010). The preferred doctor scheme: A political reading of a french experiment of gate-keeping. Health Policy, 94(2), 129-134. URL http://www.sciencedirect.com/science/article/pii/S0168851009002346

Eisenberg, J. M., Williams, S. V., Garner, L., Viale, R., \& Smits, H. (1977). Computerbased audit to detect and correct overutilization of laboratory tests. Medical Care, 15(11), 915-921. URL http://www.jstor.org/stable/3763695

Emanuel, E. J., \& Fuchs, V. R. (2008). The Perfect Storm of Overutilization. JAMA, 299(23), 2789-2791. URL https://dx.doi.org/10.1001/jama.299.23.2789

Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., \& Sunde, U. (2018). Global Evidence on Economic Preferences*. The Quarterly Journal of Economics, 133(4), 1645-1692.

URL https://dx.doi.org/10.1093/qje/qjy013

Fisher, E. S., Wennberg, D. E., Stukel, T. A., Gottlieb, D. J., Lucas, F. L., \& Pinder, E. L. (2003). The implications of regional variations in medicare spending. part 2: health outcomes and satisfaction with care. Annals of internal medicine, 138(4), 288-298.

Fouarge, D., Kriechel, B., \& Dohmen, T. (2014). Occupational sorting of school graduates: The role of economic preferences. Journal of Economic Behavior Organization, 106, 335-351.

URL http://www.sciencedirect.com/science/article/pii/S016726811400208X
Galizzi, M. M., Machado, S. R., \& Miniaci, R. (2016). Temporal stability, cross-validity, and external validity of risk preferences measures: experimental evidence from a UK representative sample. LSE Research Online Documents on Economics 67554, London School of Economics and Political Science, LSE Library.

URL https://ideas.repec.org/p/ehl/lserod/67554.html

Galizzi, M. M., \& Wiesen, D. (2018). Behavioral experiments in health economics. In Oxford Research Encyclopedia of Economics and Finance.

Gigerenzer, G., \& Gray, J. M. (2014). Better doctors, better patients, better decisions. Envisioning Health Care 2020. The MIT Press.

Gneezy, U., \& Potters, J. (1997). An experiment on risk taking and evaluation periods. The quarterly journal of economics, 112(2), 631-645.

Holt, C. A., \& Laury, S. K. (2002). Risk aversion and incentive effects. American economic review, 92(5), 1644-1655.

Koudstaal, M., Sloof, R., \& Van Praag, M. (2016). Risk, uncertainty, and entrepreneurship: Evidence from a lab-in-the-field experiment. Management Science, 62(10), 28972915.

Kristiansen, I. S., \& Hjortdahl, P. (1992). The general practitioner and laboratory utilization: why does it vary? Family Practice, 9(1), 22-27.
l'Haridon, O., \& Vieider, F. M. (2019). All over the map: A worldwide comparison of risk preferences. Quantitative Economics, 10(1), 185-215.

Lépine, A., \& Treibich, C. (2020). Risk aversion and hiv/aids: Evidence from senegalese female sex workers. Social Science Medicine, (p. 113020). URL http://www.sciencedirect.com/science/article/pii/S0277953620302392

Massin, S., Nebout, A., \& Ventelou, B. (2018). Predicting medical practices using various risk attitude measures. The European Journal of Health Economics, 19(6), 843-860. URL https://doi.org/10.1007/s10198-017-0925-3

Massin, S., Ventelou, B., Nebout, A., Verger, P., \& Pulcini, C. (2015). Cross-sectional survey: risk-averse french general practitioners are more favorable toward influenza vaccination. Vaccine, 33(5), 610-614.

Mata, R., Frey, R., Richter, D., Schupp, J., \& Hertwig, R. (2018). Risk preference: A view from psychology. Journal of Economic Perspectives, 32(2), 155-72. URL http://www.aeaweb.org/articles?id=10.1257/jep.32.2.155

Michel-Lepage, A., \& Ventelou, B. (2016). The true impact of the french pay-forperformance program on physicians' benzodiazepines prescription behavior. The European Journal of Health Economics, 17(6), 723-732.

URL https://doi.org/10.1007/s10198-015-0717-6

Michel-Lepage, A., Ventelou, B., Nebout, A., Verger, P., \& Pulcini, C. (2013). Crosssectional survey: risk-averse french gps use more rapid-antigen diagnostic tests in tonsillitis in children. BMJ Open, 3(10).

Molitor, D. (2018). The evolution of physician practice styles: evidence from cardiologist migration. American Economic Journal: Economic Policy, 10(1), 326-56.

Murphy, R. O., \& ten Brincke, R. H. (2018). Hierarchical maximum likelihood parameter estimation for cumulative prospect theory: Improving the reliability of individual risk parameter estimates. Management Science, 64 (1), 308-326.

Pedroni, A., Frey, R., Bruhin, A., Dutilh, G., Hertwig, R., \& Rieskamp, J. (2017). The risk elicitation puzzle. Nature Human Behaviour, 1(11), 803-809.

Simpkin, A. L., \& Schwartzstein, R. M. (2016). Tolerating uncertainty ,Ä̂̂ the next medical revolution? New England Journal of Medicine, 375(18), 1713-1715. PMID: 27806221. URL https://doi.org/10.1056/NEJMp1606402

Sirovich, B., Gallagher, P. M., Wennberg, D. E., \& Fisher, E. S. (2008). Discretionary decision making by primary care physicians and the cost of US health care. Health affairs, 27(3), 813-823.

Skriabikova, O. J., Dohmen, T., \& Kriechel, B. (2014). New evidence on the relationship between risk attitudes and self-employment. Labour Economics, 30, 176-184.

Sutter, M., Kocher, M. G., Glätzle-Rützler, D., \& Trautmann, S. T. (2013). Impatience and uncertainty: Experimental decisions predict adolescents' field behavior. American Economic Review, 103(1), 510-31.

Sá, L., Teixeira, A. S. C., Tavares, F., Costa-Santos, C., Couto, L., Costa-Pereira, A., Hespanhol, A. P., Santos, P., \& Martins, C. (2017). Diagnostic and laboratory test ordering in northern portuguese primary health care: a cross-sectional study. BMJ open, 7(11), e018509.

Tanaka, T., Camerer, C. F., \& Nguyen, Q. (2010). Risk and time preferences: Linking experimental and household survey data from vietnam. American Economic Review, 100(1), 557-71.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.

Tversky, A., \& Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and uncertainty, 5(4), 297-323.

Verma, A. A., Razak, F., \& Detsky, A. S. (2014). Understanding Choice: Why Physicians Should Learn Prospect TheoryChoice and Why MDs Should Learn Prospect TheoryViewpoint. JAMA, 311 (6), 571-572. URL https://dx.doi.org/10.1001/jama.2013.285245

Verstappen, W. H., ter Riet, G., Dubois, W. I., Winkens, R., Grol, R. P., \& van der Weijden, T. (2004). Variation in test ordering behaviour of GPs: professional or context-related factors? Family practice, 21(4), 387-395.

Vieider, F. M., Lefebvre, M., Bouchouicha, R., Chmura, T., Hakimov, R., Krawczyk, M., \& Martinsson, P. (2015). Common components of risk and uncertainty attitudes across contexts and domains: Evidence from 30 countries. Journal of the European Economic Association, 13(3), 421-452.

Vinker, S., Kvint, I., Erez, R., Elhayany, A., \& Kahan, E. (2007). Effect of the characteristics of family physicians on their utilisation of laboratory tests. Br J Gen Pract, 57(538), 377-382.
von Neumann, J., \& Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton University Press. 2nd edition.

Wakker, P. (1994). Separating marginal utility and probabilistic risk aversion. Theory and decision, 36(1), 1-44.

Wakker, P. P. (2010). Prospect Theory. Cambridge Books. Cambridge University Press.

Weeks, W. B., Jardin, M., \& Paraponaris, A. (2015). Characteristics and patterns of elective admissions to for-profit and not-for-profit hospitals in france in 2009 and 2010. Social Science $\mathfrak{6}$ Medicine, 133, 53-58.

Weeks, W. B., Ventelou, B., \& Paraponaris, A. (2016). Rates of admission for ambulatory care sensitive conditions in france in 2009-2010: trends, geographic variation, costs, and an international comparison. The European Journal of Health Economics, 17(4), 453-470.

Wennberg, J., \& Gittelsohn, A. (1973). Small area variations in health care delivery: a population-based health information system can guide planning and regulatory decision-making. Science, 182(4117), 1102-1108.

1 Appendix

2 A Sampling scheme and comparison of the sample with the target population

4 Of the 1904 GPs who participated in all five waves of the survey, 1568 (82.4%) were 5 offered the risk attitude elicitation questions during the fifth wave. Of the 1206 (76.9\%) 6 who agreed to answer these questions, 966 (80.1\%) performed all 18 binary choices. The 7 survey data was linked to RIAP records for 939 GPs (97.2%). A summary of the sampling

8 scheme and response rates is presented in Figure 4.

Figure 4: Sampling scheme and response rates at the different stages of the survey process

		$\%$ in the target population $(\mathrm{N}=50,898)$	\% in the first survey sample of the panel ($\mathrm{N}=2496$)	\% GPs surveyed in the fifth wave of the panel ($\mathrm{N}=1568$)	Final sample used for the statistical analysis $(\mathrm{N}=939)$
Gender	Male	73.3	72.2	71.7	72.0
	Female	26.9	27.8	28.3	28.0
Age	<49 yo	31.3	34.3 ***	33.6	34.7
	49-56 yo	34.9	37.5***	39.0	38.1
	>56	33.8	28.2***	27.4	27.2
location	rural	18.0	23.9***	22.8	21.8
	peri-urban	17.2	18.9**	19.1	20.1
	urban	64.7	57.2***	58.0	58.0
Volume of activity	<2849	25.0	22.1 ***	22.3	21.6
	2849-5494	50.0	49.5	49.3	50.2
	>5494	25.0	28.4***	28.4	28.2

Table 6: Sample comparisons throughout the selection process
Two-sample tests of proportion were conducted to compare the sample of each column sequentially (1) with (2), (2) with (3) and (3) with (4) . ${ }^{* * *}$, ** or * denote significantly different proportions between samples with χ^{2} test p value at the 1,5 , and 10% levels .

1 We also ran a logit model explaining selection by the stratification variables. A likelihood ratio test failed to reject the hypothesis that none of these variable is significant ($p=$ 0.83).

4 B Details on the risk-attitude elicitation module

5

B. 1 Algorithm for each certainty equivalent

7 lent elicitation procedure. For $k=1, . ., 5$, the lottery parameters are presented in Table
8 x , and the values in the decision-tree squares are the sure gains in the binary choice.
9 Decision A corresponds to the sure gain and B to the lottery. Consistently, if $A(B)$ is chosen the next sure gain is lower (Higher).

Figure 5: Sequence of binary choices for c_{1}

Figure 6: Sequence of binary choices for c_{2}

Figure 7: Sequence of binary choices for c_{3}

Figure 8: Sequence of binary choices for c_{4}

Figure 9: Sequence of binary choices for c_{5}

B. 2 Graphical tool

Ce formulaire est à conserver. Indépendant de l'enquête principale, il ne vous sera utile que lors de la toute dernière partie de l'interview.

Partie "Monnaie"

Question 1 | a) +40€ de façon certaine |
| ---: |
| b) $_€$ de façon certaine |
| c) _ € de façon certaine |

Le symbole " __" signifie que ces montants vous seront communiqués par l'enquêteur au téléphone

Figure 10: Graphical aid mailed to each GP

C Additional results of econometric analysis
${ }_{2}$ C. 1 Results of second-stage estimations with CRRA regressors

Table 7: Impact of risk attitudes on lab-test prescriptions

C. 2 Results of one-stage Maximum Likelihood estimations

We report the results of "one stage" estimations where parameters of risk attitudes and parameters explaining prescription are estimated jointly.

For these estimation, the likelihood of choice data and the likelihood of prescription data are maximized jointly. The former is conditional on choice characteristics and is expressed as a function taking risk-attitude parameters as arguments; the latter is conditional on risk-attitude parameters and control variables and is expressed as a function taking regression parameters as arguments.

Formally, the likelihood of choice data for a respondent writes: $l_{i}^{r i s k}=\prod_{k} l_{k}$ where l_{k} is the likelihood of a choice k detailed in Eq. (3). Assuming that individual volumes of lab-test prescription follow a lognormal distribution, the likelihood of an individual prescription volume is $l_{i}^{\text {prescription }}=\phi\left(\frac{\log \left(y_{i}\right)-c+\beta \alpha_{i}+\mu \gamma_{i}+X_{i}^{\prime} \theta}{\rho}(c f\right.$ Eq. 4). Then, the global likelihood for a given respondent is $l_{i}=l_{i}^{\text {choicedata }} \times l_{i}^{\text {prescriptiondata }}$. Like in the second stage estimations reported in the core part of the paper, individuals with prescription values corresponding to the 1% of highest or lowest values (i.e. 20 individuals) are removed from the analysis. The parameters are estimated using maximization of simulated likelihood with 1000 draws for each respondent. The robust and clustered standard error are computed using the sandwich estimator, with individual clustering taken into account in the mean.

Table 8: One-stage estimations on risk attitudes and prescription (with CRRA and RDU)

Table 9: One-stage estimations on risk attitudes and prescription (with CARA and RDU)

1

C. 3 Stats desc on explanatory variables

Variable	Levels	\%
Gender (is a social construct)	Feminin	28.0
	Masculin	72.0
	1	34.7
tage	2	38.1
	3	27.2
	1	21.8
tau	2	20.1
	3	58.0
	1	21.6
tact	2	50.2
	3	28.2

	Mean	Sd	min	Q1	Q2 (median)	Q3	Q4
clit	1768.20	728.30	117.00	1267.00	1717.00	2168.00	6862.00
cmu	0.10	0.10	0.00	0.00	0.10	0.10	0.70
c16	0.20	0.10	0.00	0.20	0.20	0.20	0.50
c70	0.10	0.10	0.00	0.10	0.10	0.20	0.80
bioc	34.90	28.70	1.80	24.60	31.40	40.30	783.10

C. 4 OLS on RA with gender and age

Table 10:

$[-1.8 \mathrm{ex}]$			
$[-1.8 \mathrm{ex}]$	Dependent variable:		
$[-1.8 \mathrm{ex}]$	u expo EU	u expo RDU	g expo RDU

[-1.8ex] SexeMasculin	-0.0002	0.00002	0.017
	(0.001)	(0.001)	(0.018)
tage2	0.00005	-0.001	$-0.056^{* * *}$
	(0.002)	(0.001)	(0.018)
tage3	0.002		$-0.062^{* * *}$
	(0.002)	$(0.001$	(0.020)
Constant	$0.028^{* * *}$		$-0.651^{* * *}$
	(0.001)	$0.018^{* * *}$	(0.016)
		(0.001)	902
[-1.8ex] Observations	899		901
R^{2}	0.003	0.002	0.014
Adjusted R ${ }^{2}$	-0.0002	-0.001	0.011
Residual Std. Error	$0.019(\mathrm{df}=895)$	$0.016(\mathrm{df}=897)$	$0.225(\mathrm{df}=898)$
F Statistic	$0.930(\mathrm{df}=3 ; 895)$	$0.586(\mathrm{df}=3 ; 897)$	$4.202^{* * *}(\mathrm{df}=3 ; 898)$

[-1.8ex] Note:
${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$

	Sick (with probability p)	Not sick (with probability $1-p$)
Test	u_{1}	u_{2}
No test	u_{3}	u_{4}

2 Under EU, test is the best decision iif :

[^0]: *Kemel, E. CNRS, UMR 2959 GREGHEC, HEC Business School Paris . F78351, Jouy-en-Josas, France. E-mail: emmanuel.kemel@greg-hec.com
 ${ }^{\dagger}$ Nebout, A. University Paris-Saclay, INRAE, UR ALISS, 94205, Ivry-sur-Seine, France. E-mail: antoine.nebout@inrae.fr
 ${ }^{\ddagger}$ Ventelou, B. Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, Aix-Marseille School of Economics, France. E-mail: bruno.ventelou@univ-amu.fr.

 We thank all GPs who participated in the survey as well as members of the supervisory committee of the French Panel of General Practices. We also thank Laurent Mayer who implemented the survey under CATI and all the professional interviewers who addressed the questionnaire. We are grateful to participants in conferences in Zurich, Rotterdam, York and Maastricht and in workshops and seminars in Cologne, Paris and Marseille for their helpful comments.
 Financial support was provided by Direction de la Recherche, des Etudes, de l'Evaluation et des Statistiques (DREES) - Ministère du travail, des relations sociales, de la famille, de la solidarité et de la ville, Ministère de la santé et des sports. The Funding agreement ensured the author's independence in designing the study, interpreting the data, writing and publishing the report. This work was also supported by the French National Research Agency Grant ANR-17-EURE-0020 (and ex-LabEx AMSE).

[^1]: ${ }^{1}$ There are many other methods in the experimental literature but here we limit ourselves to the main methods used outside the lab.

[^2]: ${ }^{2}$ In this study, risk aversion is measured using a Likert scale of willingness to take risks and the test decision is revealed through vignettes presenting clinical cases.

[^3]: ${ }^{3}$ GPs who had not received a fee of at least one euro during the year were excluded from the sampling frame, as well as those planning to cease practising or to move within one year and those with a full-time practice in alternative medicine (e.g., acupuncture or homeopathy.)
 ${ }^{4}$ Three classes $:<49$ [Q1], 49-56, >56 years old [Q3]
 ${ }^{5}$ Annual workload is defined by number of consultations and home visits: $<2,849$ [Q1], 2,849-5,494, $>5,494$ [Q3].

[^4]: ${ }^{6}$ A pilot study was conducted on 50 doctors to evaluate the feasibility of binary lottery choices through telephone interviews. Acceptability and feasibility was tested on the interviewer side too. This pilot study was also intended to optimise the wording of the interviews and limit their length to between 5 and 10 minutes. At the beginning of the survey, the team of interviewers received personal training for this specific section.

[^5]: ${ }^{7} 1000$ Halton draws are taken for each respondents. The likelihood is estimated using the BFGS algorithm. Robust and clustered standard errors are computed using the sandwich estimator with individual clustering taken into account in the meat component

