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Abstract. Atmospheric inversion approaches are expected to
play a critical role in future observation-based monitoring
systems for surface fluxes of greenhouse gases (GHGs), pol-
lutants and other trace gases. In the past decade, the research
community has developed various inversion software, mainly
using variational or ensemble Bayesian optimization meth-
ods, with various assumptions on uncertainty structures and
prior information and with various atmospheric chemistry–
transport models. Each of them can assimilate some or all of
the available observation streams for its domain area of in-
terest: flask samples, in situ measurements or satellite obser-
vations. Although referenced in peer-reviewed publications
and usually accessible across the research community, most
systems are not at the level of transparency, flexibility and

accessibility needed to provide the scientific community and
policy makers with a comprehensive and robust view of the
uncertainties associated with the inverse estimation of GHG
and reactive species fluxes. Furthermore, their development,
usually carried out by individual research institutes, may in
the future not keep pace with the increasing scientific needs
and technical possibilities. We present here the Community
Inversion Framework (CIF) to help rationalize development
efforts and leverage the strengths of individual inversion sys-
tems into a comprehensive framework. The CIF is primar-
ily a programming protocol to allow various inversion bricks
to be exchanged among researchers. In practice, the ensem-
ble of bricks makes a flexible, transparent and open-source
Python-based tool to estimate the fluxes of various GHGs
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and reactive species both at the global and regional scales. It
will allow for running different atmospheric transport mod-
els, different observation streams and different data assimi-
lation approaches. This adaptability will allow for a compre-
hensive assessment of uncertainty in a fully consistent frame-
work. We present here the main structure and functionalities
of the system, and we demonstrate how it operates in a sim-
ple academic case.

1 Introduction

The role of greenhouse gases (GHGs) in climate change
has motivated an exceptional effort over the last couple of
decades to densify the observations of GHGs around the
world (Ciais et al., 2014): from the ground (e.g., with the Eu-
ropean Integrated Carbon Observation System, ICOS; https:
//www.icos-cp.eu/, last access: 23 August 2021), from mo-
bile platforms (e.g., from aircraft or balloons equipped with
Aircore sampling; Filges et al., 2016; Karion et al., 2010) and
from space (e.g., Crisp et al., 2018; Janssens-Maenhout et al.,
2020), despite occasional budgetary difficulties (Houweling
et al., 2012). These observations quantify the effect of ex-
change between the surface and the atmosphere on GHG
concentrations (e.g., Ramonet et al., 2020) and can thus be
used to determine the surface fluxes of GHGs through the in-
version of atmospheric chemistry and transport (e.g., Peylin
et al., 2013; Houweling et al., 2017). Alongside improved
observation capabilities, national and international initiatives
pave the way towards an operational use of atmospheric in-
versions to support emissions reporting to the United Na-
tions Framework Convention on Climate Change (UNFCCC;
e.g., Say et al., 2016; Henne et al., 2016; Bergamaschi et al.,
2018a; Janssens-Maenhout et al., 2020, or the EU projects
CHE – CO2 Human Emissions; http://che-project.eu, last ac-
cess: 23 August 2021 – or VERIFY – http://verify.lsce.ipsl.fr,
last access: 23 August 2021).

In the past, research groups have developed various atmo-
spheric inversion systems based on different techniques and
atmospheric transport models, targeting specific trace gases
or types of observations, as well as at various spatial and tem-
poral scales, according to the particular scientific objectives
of the study. All these systems have their own strengths and
weaknesses and help explore the range of systematic uncer-
tainty in the surface to atmosphere fluxes. Intercomparison
exercises are regularly conducted to assess the strengths and
weaknesses of various inversion systems (e.g., Gurney et al.,
2003; Peylin et al., 2013; Locatelli et al., 2013; Babenhauser-
heide et al., 2015; Brunner et al., 2017; Bergamaschi et al.,
2018b; Chevallier et al., 2019; Crowell et al., 2019; Mon-
teil et al., 2020; Schuh et al., 2019; Saunois et al., 2020).
Intercomparisons also provide an assessment of the system-
atic uncertainty on final flux estimates induced by the va-
riety of options and choices in different inversion systems.

However, although the inversion systems are referenced in
peer-reviewed literature and are usually accessible to the re-
search community, they are typically not at the level of trans-
parency, documentation, flexibility and accessibility required
to provide both the scientific community and policy makers
with a comprehensive and robust view of the uncertainties
associated with the inverse estimation of trace gas (primarily
GHGs and reactive species) fluxes. In particular, the differ-
ences between inversion systems (such as the atmospheric
transport model, prior and observation space uncertainties,
and inversion algorithm) make comparing their results par-
ticularly challenging, even when they are applied to the same
problem. Moreover, research inversion systems are so far not
ready for operational use, and their development, usually car-
ried out by individual research institutes or limited consortia,
may not keep pace with the scientific and technical needs to
come, such as those linked to the increasing availability of
high-resolution satellite GHG and reactive species observa-
tions (Janssens-Maenhout et al., 2020). A unified system, as
a community platform running multiple transport models and
with diverse inversion methods, would provide new possibili-
ties to effectively and comprehensively assess GHG and var-
ious reactive species budgets, trends and their uncertainties
as well as quantifying limitations and development needs re-
lated to different approaches, all of which is needed in order
to properly support emission reporting. Collaborative efforts
towards unified systems are already happening in other data
assimilation communities, with, for example, the Object-
Oriented Prediction System (OOPS; coordinated by the Eu-
ropean Centre for Medium-Range Weather Forecasts, UK) or
the Joint Effort for Data Integration (led by UCAR/JCSDA;
https://www.jcsda.org/jcsda-project-jedi, last access: 23 Au-
gust 2021). The Data Assimilation Research Testbed (DART;
Anderson et al., 2009) is also an example of collective effort
proposing common data assimilation scripts for diverse ap-
plications (e.g., Earth system or reactive species inversions;
Gaubert et al., 2020). The Community Inversion Framework
(CIF) is an initiative by members of the GHG atmospheric
inversion community to bring together the different inver-
sion systems used in the community, and it is supported by
the European Commission H2020 project VERIFY. The CIF
will also support operational applications of atmospheric in-
versions in the CoCO2 project (http://coco2-project.eu, last
access: 23 August 2021), which will design an operational
inversion system based on OOPS and interfaced with the re-
search community through the CIF.

Despite their differences in methodology, application and
implementation, almost all inversion systems rely on the
same conceptual and practical bases: in particular, they use
model–observation mismatches in a statistical optimization
framework (most of the time based on Bayes’ theorem) and
numerical atmospheric tracer transport and chemistry mod-
els to simulate mixing ratios of GHGs and trace gases based
on surface fluxes. The objectives of the CIF are to develop
a consistent input–model interface, to pool development ef-
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forts, and to have an inversion tool that is well documented,
open-source and ready for implementation in an operational
framework. The CIF is designed to be a flexible and transpar-
ent tool to estimate the fluxes of different GHGs (e.g., carbon
dioxide, CO2; methane, CH4; nitrous oxide, N2O; or halocar-
bons) and other species, such as reactive species (e.g., CO,
NO2, HCHO), based on atmospheric measurements. In par-
ticular, although primarily designed for GHG applications,
the CIF is based on a general structure that will allow for
applications in air quality data assimilation. It is also de-
signed to run at any spatial and temporal scale and with dif-
ferent atmospheric (chemistry–)transport models (global and
regional, Eulerian and Lagrangian), with various observation
data streams (ground-based, remote sensing, etc.) and a va-
riety of data assimilation techniques (variational, analytical,
ensemble methods, etc.). It will be possible to run it on multi-
ple computing environments, and corresponding set-ups and
tutorials will be well documented. Community development
will help in tackling the challenges in set-up and running
and accelerate adoption of the tool into wider use. One of
the main foreseen advantages of the CIF is the capability
to quantify and compare the errors due to the modelling of
atmospheric transport and the errors due to the choice of a
given inversion approach and set-up to solve a specific prob-
lem, in a fully consistent framework. The CIF will provide
a common platform for quickly developing and testing new
inversion techniques with several transport models, and it is
hoped that, with the combined community effort, it will be
continuously improved and revised, keeping it state of the
art.

In the present paper, we lay out the basis of the CIF,
giving details on its underlying principles and overall im-
plementation. The proof of concept focuses on the imple-
mentation of several inversion methods, illustrated with a
test case. We will dedicate a future paper to the evalu-
ation of the system on a real-life problem with a num-
ber of interfaced atmospheric (chemistry–)transport mod-
els. At the time of writing the present article, the follow-
ing models are interfaced with the CIF: the global circula-
tion models LMDZ (Chevallier et al., 2005) and TM5 (Krol
et al., 2005; van der Laan-Luijkx et al., 2017), the regional
chemistry–transport Eulerian model CHIMERE (Fortems-
Cheiney et al., 2021), and the Lagrangian particle disper-
sion models FLEXPART (Pisso et al., 2019) and STILT
(Trusilova et al., 2010). For the sake of simplicity, we re-
fer to all types of (chemistry–)transport models generically
as CTMs in the following. In Sect. 2, we describe the general
theoretical framework for atmospheric inversions and how
the CIF will include the theory in a flexible and general way.
In Sect. 3, the practical implementation of the general design
rules is explained, with details on the Python implementa-
tion of the CIF. In Sect. 4, we demonstrate the capabilities
of the CIF in a simple test case, applying various inversion
techniques in parallel.

2 General principle

The version of the CIF presented here is implemented around
Bayesian data assimilation methods with Gaussian assump-
tions, which constitute the main framework used in the at-
mospheric inversion systems for GHG fluxes and other trace
gases (e.g., Enting, 2002; Bocquet et al., 2015). However,
some studies have proposed possible extensions to more gen-
eral probability density functions beyond the classical Gaus-
sian case (e.g., truncated Gaussian densities, log-normal dis-
tributions, etc.; Michalak and Kitanidis, 2005; Bergamaschi
et al., 2010; Miller et al., 2014; Zammit-Mangion et al., 2015;
Lunt et al., 2016; Miller et al., 2019). Therefore, we pro-
pose here a general and flexible structure for our system that
will be independent of limiting assumptions, as described in
Sect. 2.3, to allow for future extensions to more general theo-
retical frameworks. In the following, mathematical formulas
are written following the notation based on Ide et al. (1997)
and Rayner et al. (2019). We present the theoretical basis and
several inversion methods that are implemented in the CIF as
demonstrators.

2.1 General Bayesian data assimilation framework

The Bayesian approach consists of estimating the following
conditional probability density function (pdf):

pa(x)= p
(
x | yo

−H(xb),xb
)
∝ p

(
yo
−H(x) | x

)
pb(x), (1)

with x being the target vector, pa(x) the posterior distribu-
tion of the target vector, pb(x) the prior knowledge of the
target vector (characterized by its mode xb), yo the obser-
vation vector gathering all observations implemented in the
inversion and H the observation operator linking the target
vector to the observation vector. In the following, we also
refer to X and Y as the target and observation spaces, re-
spectively, from where the target and observation vectors
are sampled. Classically, for atmospheric inversions, the ob-
servation vector yo includes ground-based measurements of
trace gas mixing ratios on fixed or mobile platforms and
remote sensing observations such as satellite observations.
The target vector x includes the variables to be optimized
by the inversion; it includes the main variables of interest,
such as the surface fluxes, but also variables related to at-
mospheric chemical sources and sinks, background concen-
trations in the case of limited-area transport models, model
parameters, etc., which are required to make the inversion
physically consistent. The observation operator H mainly in-
cludes the computation of atmospheric transport and chem-
istry (if relevant) by numerical (chemistry–)transport models.
These can be of various types: global transport models (e.g.,
LMDZ, Chevallier et al., 2010; TM5, Houweling et al., 2014;
GEOS-Chem, van der Laan-Luijkx et al., 2017; Liu et al.,
2015; Palmer et al., 2019; Feng et al., 2017; NICAM, Niwa
et al., 2017), regional Eulerian chemistry–transport mod-
els (e.g., CHIMERE, Broquet et al., 2011; Fortems-Cheiney
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et al., 2021; WRF-Chem, Zheng et al., 2018; COSMO-GHG,
Kuhlmann et al., 2019; LOTOS-EUROS, Curier et al., 2012)
or Lagrangian particle dispersion models (e.g., FLEXPART,
Thompson and Stohl, 2014; STILT, Bagley et al., 2017;
Brioude et al., 2013; Trusilova et al., 2010). It also includes
pre- and post-processing operations required to project the
target vector to a format compatible with the model input and
the model outputs to the observation vector; these operations
can be the applications of, for example, averaging kernels in
the case of satellite operations or interpolation of the target
vector to higher resolution model inputs.

As errors in inversion systems come from a large variety
of independent causes superimposing on each other, it is of-
ten assumed that the most relevant way of representing the
distributions in Eq. (1) is to assume prior and observation
spaces to be normal distributions, noted N (·, ·) below, with
the first argument representing the average of the distribution
and the second argument the covariance matrix. In addition,
when assuming that the distributions in the state vector space
and the observation space are independent from each other
and that errors in the observation and the state vector spaces
have Gaussian, unbiased distributions, it is possible to math-
ematically derive the Bayes’ theorem and to represent the
distributions of Eq. (1) as follows: pb(x) ∼ N (xb, B)
p
(
yo
−H(xb)

)
∼ N (0, R)

pa(x) ∼ N (xa, A)
(2)

with B and A being the prior and posterior covariance matri-
ces of uncertainties in the target vector respectively, xb and
xa the prior and posterior target vectors respectively, and R
the covariance matrix of uncertainties in the observation vec-
tor and the observation operator.

The assumption that errors are unbiased, which makes it
possible to write normal distributions in Eq. (1) with means
xb, 0 and xa, is needed to simplify the formulation of the
Bayesian problem in atmospheric inversions. Neglecting er-
ror biases have known impacts on inversion results (e.g.,
Masarie et al., 2011); they can be accounted for online as
an unknown to be solved by the inversion (e.g., Zammit-
Mangion et al., 2021), but they are often treated offline from
the inversion, either through pre-processing of inputs or post-
processing of outputs.

2.2 Computation modes in the CIF

The present version of the CIF includes three main categories
of inversion methods: (1) analytical, i.e., algebraic solution
of the unbiased Gaussian Bayesian problem; (2) ensemble
methods with the ensemble square root filter (EnSRF); and
(3) variational with two examples of minimizing algorithms
(M1QN3 and CONGRAD). Other types of data assimilation
methods (e.g., direct sampling of probability density func-
tions through Monte Carlo approaches) are also used by the
community. The choice of implementing the three aforemen-

tioned methods first is motivated by their dominant use and
because these three use very different approaches for solv-
ing the Bayesian inversion problem, i.e., with/without ran-
dom sampling of probability distributions and with/without
the use of the adjoint of the observation operator. The adjoint
of the observation operator, noted H∗, is built following the
mathematical definition of the adjoint; heuristically, it oper-
ates backwards compared to the observation operator (e.g.,
Errico, 1997) in the sense that it determines the sensitivity
to inputs (e.g., fluxes) given an incremental perturbation to
outputs (e.g., concentrations). In addition to the mentioned
data assimilation methods, the CIF also includes the possi-
bility to run forward simulations and to test the adjoint and
the tangent linear of the observation operator for given in-
version configurations. In the following we call all inversion
methods and other types of computation in the CIF “compu-
tation modes”. With these computation modes implemented
in a flexible and general manner, it is anticipated that other
inversion methods could be easily added to the CIF in the
future (see Sect. 2.3).

2.2.1 Data assimilation methods

Analytical inversions

Analytical inversions compute the algebraic solution of the
Gaussian Bayesian problem when it is linear, and they are
used extensively at all scales (e.g., Stohl et al., 2009; Turner
and Jacob, 2015; Kopacz et al., 2009; Bousquet et al., 2011;
Wang et al., 2018; Palmer et al., 2006). When the observation
operator is linear, H equals its Jacobian matrix H; conversely,
its adjoint H∗ is the transpose of the Jacobian HT. In that
case, xa and A can be explicitly written as matrix products.
There are two equivalent formulations of the matrix products
for the solution of the problem (e.g., Tarantola and Valette,
1982):{
xa
= xb

+K(yo
−Hxb)

A= B−KHB (3)

or{
xa
= xb

+
(
HTR−1H+B−1)−1HTR−1 (yo

−Hxb)
A=

(
HTR−1H+B−1)−1

,

with K the Kalman gain matrix as K= BHT(R+HBHT)−1.
Analytical inversions can also be used on slightly non-

linear problems, by linearizing the observation operator
around a given reference point using the tangent linear of the
observation operator. It formulates as follows:

H
(
xb
+ δx

)
≈H

(
xb
)
+ dHxb (δx)=H

(
xb
)
+Hxbδx, (4)

with δx a small deviation from xb within a domain where
the linear assumption is valid, dHxb the tangent linear of H
at xb and Hxb the Jacobian matrix of H at xb.
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Then Eq. (3) can be easily adapted by replacing (yo
−Hxb)

by (yo
−H(xb)) and H by Hxb .

The computation of an analytical inversion faces two main
computational limitations. First, the matrix H representing
the observation operator H must be built explicitly. This
can be done either column by column, in the so-called re-
sponse function method, or row by row, in the so-called foot-
print method. The two approaches require dim(X ), the di-
mension of the target space, and dim(Y), the dimension of
the observation space, independent simulations. In the re-
sponse function method, each column is built by computing{
dHxb(δxi)\∀δxi ∈ Bχ

}
with Bχ being the canonical ba-

sis of the target space. For a given increment δxi , the cor-
responding column gives the sensitivity of observations to
changes in the corresponding component of the target space.
In the footprint method, each row is built by computing{
H∗
xb(δyi) \ ∀δyi ∈ BY

}
with BY the canonical basis of the

observation space. For a given perturbation of δyi of a com-
ponent of the observation vector, the corresponding row of H
gives the sensitivity of the inputs to that perturbation.

Depending on the number of available observations or the
size of the target vector, one of the two is preferred to limit
the number of observation operator computations to be car-
ried out explicitly. When the dimension of the target vector is
relatively small, the response function is generally preferred;
conversely, when the observation vector is small, the foot-
print approach is preferred. The type of transport model used
to compute the matrix H also plays a role in the choice of
the approach; for Eulerian models, the response function ap-
proach is preferred for multiple reasons: (i) their adjoint is
often much more costly than their forward, (ii) the adjoint
may not be available for some models or is difficult to gen-
erate, and (iii) the computation time of the forward is con-
stant no matter how numerous the observations are; for La-
grangian models, the footprint approach is preferred as they
often compute backward transport simulations for each ob-
servation, allowing a straightforward computation of the ad-
joint (Seibert and Frank, 2004). In both cases, the explicit
construction of the matrix H requires numerous independent
simulations, which can be an insurmountable computational
challenge.

The second obstacle consists of the fact that the compu-
tation of the Kalman gain matrix in Eq. (3) (left) requires
inverting a matrix of the dimension of the observation space,
dim(Y), while for the other formulation (Eq. 3, right) the ma-
trix is of dimension dim(X ), which is the dimension of the
target space. If the dimensions of both the observation and
the target spaces are very high, as in many inversion applica-
tions, the explicit computation of Eq. (3) with matrix prod-
ucts and inverses is not computationally feasible. For this rea-
son, smart adaptations of the inversion framework (including
approximations and numerical solvers) are often necessary
to tackle problems even when they are linear; in the follow-
ing, we choose to elaborate on some of the most frequent ap-

proaches used in the atmospheric inversion community: the
variational approach and one ensemble method, the Ensem-
ble Square Root Filter (EnSRF). Less frequently, intermedi-
ate adaptations of the analytical inversion also include se-
quential applications (e.g., Michalak, 2008; Bruhwiler et al.,
2005; Brunner et al., 2012), which are a compromise between
tackling the above-mentioned computational obstacles while
maintaining the simplicity of the analytical inversion; how-
ever, such sequential analytical inversions are limited to spe-
cific linear and simple cases.

Ensemble methods

Ensemble methods are commonly used to tackle high-
dimensional problems and to approximately characterize the
optimal solution. In ensemble methods, such as ensemble
Kalman filters (EnKFs) or smoothers (e.g., Whitaker and
Hamill, 2002; Peters et al., 2005; Zupanski et al., 2007; Zu-
panski, 2005; Feng et al., 2009; Chatterjee et al., 2012), the
issue of high dimensions in the system of Eq. (3) is avoided
using the two following main procedures:

– Observations are first assimilated sequentially in the
system to reduce the dimension of the observation
space, making it possible to explicitly compute matrix
products and inverses, and thus propagating informa-
tion from the target space to the observation space; the
overall inversion period is processed incrementally us-
ing a smaller running assimilation window including a
manageable number of observations; intermediate in-
versions are solved on the smaller running window that
is gradually moved from the beginning to the end of the
overall data assimilation window; the running assimila-
tion window with so-called analysis and forecast steps
introduces complex technical challenges to rigorously
propagate errors from one iteration of the running win-
dow to the next one; moreover, the sequential assimi-
lation of observations is valid only under the assump-
tion that observation errors are not correlated between
assimilation windows, which may prove incorrect for
high-density data sets, but is an assumption also done in,
for example, variational inversions. For very dense ob-
servations, such as datasets from new-generation high-
resolution satellites, the sequential assimilation of ob-
servations may not be sufficient, or at least methods may
be needed to make the observation errors between se-
quential assimilation windows independent, e.g., by ap-
plying a whitening transformation to the observations to
form a new set with uncorrelated errors as suggested by
Tippett et al. (2003). The challenge is exacerbated for
long-lived species such as CO2, for which assimilation
windows must be long enough to maintain the propa-
gation of information on the fluxes over long distances
through transport; propagating a covariance matrix from
assimilation windows to assimilation windows as accu-
rate as possible could in principle limit the later issue, as
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suggested in Kang et al. (2011, 2012), but this could still
prove hard to apply in very high resolution problems.

– The posterior distribution at a given step of the filter
is then characterized explicitly by applying Eq. (1) on
each member of the ensemble; the new intermediate
posterior distribution is then sampled and propagated to
the next data assimilation window.

In the atmospheric inversion community, another ensem-
ble method is widely used, based on the CarbonTracker sys-
tem (Peters et al., 2005), which uses an ensemble square
root filter (EnSRF; Whitaker and Hamill, 2002). In that ap-
proach, the observations are split using running data assim-
ilation windows as for other ensemble methods, but instead
of directly characterizing the posterior distribution from the
ensemble, the statistics of the ensemble are used to solve the
analytical equation, Eq. (3), approximately. Thus, the EnSRF
method is less general than EnKFs methods, as it relies on
the Gaussian assumption, as well as limited non-linearity in
the inversion problem, but it proves very efficient at comput-
ing an approximated solution of the inversion problem. Ma-
trix products in Eq. (3) involving the target vector covariance
matrix B (HBHT and BHT) are approximated by reducing
the space of uncertainties to a low-rank representation; this
is done in practice by using a Monte Carlo ensemble of pos-
sible target vectors sampling the distribution N (xb,B); with
such an approximation, matrix products can be written as fol-
lows:

HBHT
'

1
N − 1

(H(x1), H(x2), . . .,H(xN ))
·(H(x1),H(x2), . . .,H (xN ))T

BHT
'

1
N − 1

(x1,x2, . . .,xN )

·(H(x1),H(x2), . . .,H(xN ))T

(5)

where N is the size of the ensemble.
From there, Eq. (1) is solved analytically by replacing

HBHT and BHT by their respective approximations.
By using random sampling, ensemble methods are able to

approximate large dimensional matrices at a reduced cost
without using the adjoint of the observation operator (see
variational inversion below) that can be challenging to im-
plement. Small ensembles generally cause the posterior en-
semble to collapse; i.e., the posterior distribution is domi-
nated by one or a very small number of members, which does
not allow for a reliable assessment of the posterior uncertain-
ties (Morzfeld et al., 2017); moreover, small ensembles intro-
duce spuriousness in the posterior uncertainties, with unreal-
istic correlations being artificially generated. In the EnSRF,
small ensembles rather cause a misrepresentation of uncer-
tainty structures, which limits the accuracy of the computed
solution and may require fixes as described in, for example,
Bocquet (2011). In any case, the level of approximation nec-
essary for this approach to work is strongly different for each

problem, which requires preliminary studies before consis-
tent application. In particular, the so-called localization of
the ensemble can be used to improve the consistency of the
inversion outputs (e.g., Zupanski et al., 2007; Babenhauser-
heide et al., 2015).

In the current version, only the EnSRF approach is im-
plemented in the CIF. One should note that the EnSRF, as a
direct approximation of the analytical solution, can be very
sensitive to non-linearity in the observation operator (e.g.,
Tolk et al., 2011). It can generally cope only with slight non-
linearity over the assimilation window; thus, the assimilation
window length has to be chosen appropriately, contrary to
other ensemble methods which are usually not sensitive to
non-linearity.

Variational inversions

Variational inversions use the fact that finding the mode
of the posterior Gaussian distribution pa(x)∼N (xa, A) in
Eq. (2) is equivalent to finding the minimum xa of the cost
function J :

J (x)=
1
2

(
x− xb

)T
B−1(x− xb)

+
1
2

(
yo
−H(x)

)TR−1 (yo
−H(x)

)
. (6)

In variational inversions, the minimum of the cost function
in Eq. (6) is numerically estimated iteratively using quasi-
Newtonian algorithms based on the gradient of the cost func-
tion:

∇Jx = B−1
· (x− xb)+H∗

(
R−1
·
(
yo
−H(x)

))
. (7)

Quasi-Newtonian methods are a group of algorithms de-
signed to compute the minimum of a function iteratively. It
should be noted that in high-dimensional problems it can
take a very large number of iterations to reach the mini-
mum of the cost function J , forcing the user to stop the al-
gorithm before convergence, thus reaching only an approx-
imation of xa; in addition, iterative algorithms can reach
local minima without ever reaching the global minimum,
making it essential to thoroughly verify variational inver-
sion results; this can happen in non-linear cases but also due
to numerical artefacts in linear cases (some points in the
cost function have gradients so close to zero that the algo-
rithm sees them as convergence points, whereas the unique
global minimum is somewhere else). In the community, ex-
amples of quasi-Newtonian algorithms commonly used are
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
(Zheng et al., 2018; Bousserez et al., 2015), M1QN3 (Gilbert
and Lemaréchal, 1989) and the CONGRAD algorithm (ap-
plicable only to linear or linearized problems; Fisher, 1998;
Chevallier et al., 2005) based on the Lanczos method, which
iterates to find the eigenvalues and eigenvectors of the Hes-
sian matrix, which is then used (in a single step) to calculate
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the analysis vector, xa. In general, quasi-Newtonian meth-
ods require an initial regularization, or “pre-conditioning” of
x, the vector to be optimized, for better efficiency. In atmo-
spheric inversions, such a regularization is generally made by
optimizing χ = B−1/2

·(x−xb) instead of x; we denote A as
the regularization space: χ ∈ A. This transformation trans-
lates in Eqs. (6) and (7) as follows:
Jχ =

1
2χ

Tχ + 1
2

(
yo
−H

(
B1/2
·χ + xb))T

R−1 (yo
−H

(
B1/2
·χ + xb))

∇Jχ = χ +B1/2
·H∗(

R−1
·
(
yo
−H

(
B1/2
·χ + xb)))

(8)

Solving Eqs. (6) and (7) in the target vector space or
Eq. (8) in the regularization space is mathematically fully
equivalent, but the solution in the regularization space is of-
ten reached in fewer iterations. Moreover, in the regulariza-
tion space, one can force the algorithm to focus on the main
modes of the target vector space by filtering the smallest
eigenvalues of the matrix B. This reduces the dimension of χ
and accelerates further the rate of convergence, although the
solution of the reduced problem is only an approximation of
the solution of the full problem. In the following we thus pre-
fer calling the “regularization space” the “reduction space”.
The link between the two can be written as follows:

χ full =Q3−1/2(x− xb)

χ reduced =Q′3′−1/2
(x− xb)

(9)

with B1/2
=Q31/2QT, Q and 3 being the matrices of the

eigenvector and the matrix of the corresponding eigenvalues
of the matrix B respectively. Q′ and 3′ are the reduced ma-
trices of eigenvalues and eigenvectors with a given number
of dominant eigenvalues.

Overall, variational inversions are a numerical approxi-
mation to the solution of the inversion problem: they in-
volve the gradient of the cost function in Eq. (7) and require
us to run forward and adjoint simulations iteratively (e.g.,
Meirink et al., 2008; Bergamaschi et al., 2010; Houweling
et al., 2017, 2014; Fortems-Cheiney et al., 2021; Chevallier
et al., 2010, 2005; Thompson and Stohl, 2014; Monteil and
Scholze, 2021; Wang et al., 2019).

The variational formulation does not require calculation
of complex matrix products and inversions, contrary to the
analytical inversion, and is thus not limited by vector dimen-
sions. Still, the inverses of the uncertainty matrices B and R
need to be computed, potentially prohibiting the use of very
large and/or complex general matrices; this challenge is often
overcome by reducing B and R to manageable combinations
of simple matrices (e.g., Kronecker products of simple shape
covariance matrices; see Sect. 2.3.1).

When the observation operator is linear, the posterior un-
certainty matrix A is equal to the inverse of the Hessian ma-
trix at the minimum of the cost function. In most cases the
Hessian cannot be computed explicitly because of memory

limitations, which is a major drawback of variational inver-
sions. But some variational algorithms such as CONGRAD
provide a coarse approximation of the Hessian: in the case
of CONGRAD based on the Lanczos method, leading eigen-
vectors of the Hessian can be computed, together with their
eigenvalues (Fisher, 1998). The approximation of the poste-
rior uncertainty matrix A in the case of CONGRAD reads as
follows:

A= Hess(J )−1
xa ≈ VT

xa3
−1
xa Vxa , (10)

with Vxa being the dominant eigenvectors of the Hessian ma-
trix at the point xa, and3xa being the matrix of the dominant
eigenvalues of the Hessian matrix. Please note that the dom-
inant eigenvalues of the Hessian matrix correspond to com-
ponents with low posterior uncertainties in A.

Another approach to quantify the posterior uncertainty
matrix A, valid for both linear and non-linear cases, is to
carry out a Monte Carlo ensemble of independent inver-
sions with sampled prior vectors from the prior distribution
N (xb,B) (e.g., Liu et al., 2017). An ensemble of posterior
vectors are inferred and used to compute the posterior matrix
as follows:

A≈
1

N − 1

(
xa

1− x
a
ref, x

a
2− x

a
ref, . . . x

a
N − x

a
ref
)

·
(
xa

1− x
a
ref, x

a
2− x

a
ref, . . . x

a
N − x

T) , (11)

with N being the size of the Monte Carlo ensemble, xa
i the

posterior vector corresponding to the prior xb
i of the Monte

Carlo ensemble and xa
ref the average over sampled posterior

vectors.

2.2.2 Auxiliary computation modes

Forward simulations

Forward simulations simply use the observation operator to
compute simulated observation equivalents. It reads as

(xb, yo) → H(xb). (12)

This mode is used to make quick comparisons between
observations and simulations to check for inconsistencies be-
fore running a full inversion. It is also used by the analytical
inversion mode to build response functions.

Test of the adjoint

The test of the adjoint is a crucial diagnostic for any inversion
system making use of the adjoint of the observation operator.
Such a test is typically required after making any edits to
the code (to the forward observation operator or its adjoint)
before running an inversion. Coding an adjoint is prone to er-
rors and even small errors can have significant impacts on the
computation of the gradient of the cost function in Eq. (7).
Thus, one needs to make sure that the adjoint rigorously cor-
responds to the forward. This test consists of checking the
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definition of the mathematical adjoint of the observation op-
erator. It writes as follows for a given target vector x and
incremental target perturbation δx:

〈dHx(δx) | dHx(δx)〉 = δx |
(
H∗ ◦ dHx

)
(δx)〉, (13)

where dHx(δx) is the linearization of the observation opera-
tor H at the point x for a given increment δx; it is computed
with the tangent linear model, which is the numerical adap-
tation of dHx(δx). Then, (H∗ · dHx)(δx) is calculated with
the adjoint of the tangent linear of H at the point x.

In practice, the two terms of the equation are rarely exactly
equal. Nevertheless, the difference should never exceed a few
times the machine epsilon. Besides, Eq. (13) should be veri-
fied for any given target vector and increment. In practice, it
is not possible to explicitly verify all possible combinations;
but as the result of the test is highly sensitive to any error in
the code, it is assumed that a few typical couples (x, δx) are
sufficient to certify the validity of the adjoint.

2.3 Identification of common elementary
transformations

2.3.1 General purpose operations

Each inversion algorithm and computation mode mentioned
above can be decomposed into a pipeline of elementary trans-
formations. These transformations are listed in Table 1 and
include the observation operator and its adjoint (their matrix
representations in linear cases), matrix products with target
and observation error covariance matrices as well as corre-
sponding adjoints, and random sampling of normal distri-
butions. To limit redundancy in the CIF as much as pos-
sible, these elementary transformations are included in the
CIF as generic transformation blocks on the same concep-
tual level. Overall, the decomposition of computation modes
presently implemented in the CIF into elementary transfor-
mations leads to the structure in Fig. 1.

Avoiding redundancy makes the maintenance of the code
much easier and provides a clear framework for extensions
to other inversion methods or features. For instance, inverse
methods based on probability density functions other than
normal distributions could be easily implemented by updat-
ing the random ensemble generator or by implementing new
cost functions representing non-Gaussian distributions while
keeping the remaining code unmodified. In particular, non-
Gaussian cost functions still rely on the computation of the
observation operator. New combinations of elementary trans-
formations can also directly lead to new methods. For in-
stance, ensemble variational inversion (e.g., Bousserez and
Henze, 2018) is a direct combination of the available varia-
tional pipeline and the random sampling pipeline. Inversions
estimating hyper-parameters through maximum-likelihood
or hierarchical Bayesian techniques (e.g., Michalak et al.,
2005; Berchet et al., 2015; Ganesan et al., 2014) could be in-

tegrated into the CIF by adapting the Gaussian cost function
and by implementing a corresponding computation pipeline.

The complexity of the selected elementary transforma-
tions spans a wide range, from one-line straightforward code
to computationally expensive and complex code implemen-
tation. In small dimensional and/or linear problems, the
computation of the observation operator using its Jacobian
and matrix products may be computationally expensive, but
it is in principle rather straightforward to implement. For
non-linear and/or high-dimensional problems, these trans-
formations require simplifications and numerous intermedi-
ate steps. For instance, applying matrix products to the er-
ror covariance matrices R and B and computing their in-
verse is easy in small dimensions but can be limiting in high-
dimensional problems. For that reason, the error covariance
matrices are often reduced to particular decompositions; for
instance, the error covariance matrix on the target vector B
is often written as a Kronecker product of multiple spatial
and/or temporal covariance matrices of lower dimensions,
making matrix products manageable (e.g., Chevallier et al.,
2005; Meirink et al., 2008; Yadav and Michalak, 2013).

In any case, the observation operator (see details in
Sect. 2.3.2) appears as the centre piece of any inversion
method.

2.3.2 Observation operator

The observation operator is a key component of all inversion
methods. It links the target space to the observation space,
and conversely, its adjoint links the observation space to the
target space. To do so, the observation operator projects its
inputs through various intermediate spaces to the outputs. As
atmospheric inversions need a representation of the atmo-
spheric transport (and chemistry if relevant) to link the tar-
get vector (including surface fluxes, atmospheric sources and
sinks, initial and boundary conditions for limited domains
and time windows, etc.) to the observation vector (including
some form of atmospheric concentration measurements), the
observation operator is built around a given CTM in most
cases: Eq. (14) illustrates the various projections in the com-
mon case.

x
5

F
X
−−→ f

5F
F
−−→ inputs

model
−−−→ outputs

5M
C
−−→ c

5Y
M
−−→H(x), (14)

with f being the target vector projected at the CTM’s resolu-
tion (includes fluxes but also other types of inputs required by
the CTM), and c being the raw outputs extracted from the run
of the CTM’s executable (in general four-dimensional con-
centration fields). 5 operators are intermediate projectors:
5

F
X projects the target vector at the spatial and temporal res-

olutions of the CTM’s inputs, 5F
F dumps the input vector in

files usable by the CTM’s executable, 5M
C reads the CTM’s

outputs, and 5Y
M reprojects the raw outputs at the observa-

tion vector resolution (mostly the temporal resolution as the
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Table 1. Elementary operations required for each data assimilation method. An: analytical inversion; EnKF: ensemble Kalman filter; Var:
variational; Fwd: forward simulation; AdTest: test of the adjoint. We note X and Y the target and observation spaces respectively, A the
regularization space in the minimization algorithm of variational inversions; the (·)∗ symbol depicts the adjoint of corresponding spaces.

Data assimilation method

Elementary operation Mathematical formulation An EnKF Var Fwd AdTest

Forward observation operator
X → Y
x → H(x) or Hx X X X X X

Adjoint observation operator
Y∗ → X ∗
δy → H∗(δy) or HT δy X X X

Normalization of the observation increments
Y∗ → Y∗
δy → R−1δy

X

Regularization of the target space
A → X
χ → x = B1/2χ + xb X

Adjoint of the target space regularization
X ∗ → A∗

δx → δχ ≡ B1/2δx
X

Target space sampling X ×X 2
→ XN

(x, B) → (x1, x2, . . ., xN )
X

Figure 1. Call structure of the CIF.

model and the observation worlds do not follow the same
time line).

The targeted structure of the CIF should allow for a full
flexibility of observation operators, from the straightforward
widely used decomposition detailed in Eq. (14) to more

elaborated approaches including multiple transport models
and/or complex super-observations (e.g., in Bréon et al.,
2015; Staufer et al., 2016, authors implemented differences
between observation sites and time in the observation vector
instead of observations from individual sites in order to fo-
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cus on spatial/temporal gradients, thus allowing them to limit
the influence of background concentrations in the computa-
tion of local fluxes) and hyper-parameters (e.g., emission fac-
tors and model parameters used to produce emission maps;
Rayner et al., 2010; Asefi-Najafabady et al., 2014). There-
fore, the observation operator is designed as a pipeline of el-
ementary interchangeable transformations with standardized
input and output formats such that

H=H1 ◦H2 ◦ . . . ◦HN . (15)

In such a formalism, all intermediate transformations have
the same conceptual level in the code. They are functions
ranging from spatial reprojection to temporal interpolations
and to more complex operations such as the reconstruction of
satellite total columns from concentrations simulated at in-
dividual levels in the transport model. In the CIF, all these
transformations have the same input and output structure;
thus, their order can be changed seamlessly to execute a given
configuration. Please note that the commutative property of
elementary transformations as pieces of code does not guar-
antee the commutative property of the corresponding physi-
cal operators.

Such a transformation-based design allows us to rigor-
ously separate transformations and thus to implement and
test their respective adjoints more easily. Once adjoints for
each individual operation are implemented, the construction
of the general adjoint is straightforward by reversing the or-
der of forward operations:

H∗ =H∗N ◦H
∗

N−1 ◦ . . . ◦H
∗

1. (16)

Figure 2 shows an example of a typically targeted obser-
vation operator. Operators from Eq. (14) are reported for the
illustration. It includes two numerical models chained with
each other; they can be for instance a coarse global CTM
and a finer-resolution regional CTM, such as in Rödenbeck
et al. (2009) or Belikov et al. (2016). The system applies a se-
ries of transformations to the target vector, including spatial
de-aggregation for the optimization of emissions by regions,
sector de-aggregation to separate different activity sectors,
reprojection to the CTM’s resolution (a simple interpolation
of mass-conserving regridding is available so far, with reg-
ular and irregular domains), application of temporal profiles
(which is critical in air quality and anthropogenic CO2 ap-
plications) and unit conversions to the required inputs for the
CTMs. On the observation vector side, observations can span
multiple model time steps, requiring posterior temporal aver-
ages. In the case of super-observations (satellites retrievals,
images, spatial gradients, etc.) in the observation vector, it
is often necessary to combine multiple simulated point ob-
servations in given grid cells and time stamps into a single
super-observation, to limit redundant observations and hence
the size of the observation vector but also to limit represen-
tativeness issues. Super-observations are commonly used in
the case for satellite observations being compared to all the

model levels above a given location; concentration gradients
comparing observations at different times and locations (see
e.g., Bréon et al., 2015; Staufer et al., 2016) are another ex-
ample of observation aggregation to reduce representative-
ness errors; isotopic ratios are also super-observations as they
require researchers to simulate separate isotopologues and
recombine them after the simulation (as done in, for exam-
ple, van der Velde et al., 2018; Peters et al., 2018). The case
of Fig. 2 also includes background concentrations in the tar-
get vector: a background is often used to fix some biases in
initial and lateral concentrations in limited-area models, and
in observations (mostly satellites); the background variables
are processed at the very end of the pipeline when recon-
structing the observations vector.

The mathematical formalism of Eqs. (15) and (16) sug-
gests that transformations are necessarily computed in a se-
rialized way, thus limiting applications to simple target vari-
ables upstream of the transport model. However, each ele-
mentary transformation handles components of the inputs it
is concerned with, leaving the rest identical and forwarding
them to later transformations. Typically, it does not actually
limit applications to simple target variables upstream of the
CTM. For instance, in the case of target variables optimizing
biases in the observations, the corresponding components of
the target vector x are forwarded unchanged by all transfor-
mations in Fig. 2 until the very last operation, where they are
used for the final comparison with the observation vector.

3 Practical implementation

3.1 General rules

The Community Inversion Framework project follows the or-
ganization scheme of Fig. 3. A centralized website is avail-
able at http://community-inversion.eu, last access: 23 Au-
gust 2021. The website includes all information given in
the present paper, as well as further documentation details,
practical installation instructions, tutorials and examples of
possible set-ups. To foster the collaborative dynamics of our
project, all open-access scripts and code files are available
on a GitLab server at http://git.nilu.no/VERIFY/CIF, last ac-
cess: 23 August 2021, where updates are published regu-
larly. The frozen version of the code, documentation and data
used for the present publication is available in Berchet et al.
(2021). The repository includes the documentation, sources
for the CTMs implemented in the CIF and the Python li-
brary pyCIF. Our project is distributed as an open-source
project under the CeCILL-C licence of the French law (http:
//cecill.info, last access: 23 August 2021). The licence grants
full rights for the users to use, modify and redistribute the
original version of the CIF, conditional to the obligation to
make their modifications available to the community and to
properly acknowledge the original authors of the code. The
authors of modifications own intellectual property of their
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Figure 2. Observation operator structure. Emissions are processed from the target vector to generate model inputs, as well as other inputs,
not optimized by the inversion; in this example, some background for the simulations is also optimized by the inversion and is added to
simulations at the end of the pipeline just before stacking outputs to the observation vector format.

Figure 3. Organization of the Community Inversion Framework.

modifications but under the same governing open licence.
Software that may be built around the CIF in the future can
have different licensing, but all parts of the code originat-
ing from the CIF will be governed by the original CeCILL-C
licence; hence, it must remain open source. Similarly, some
constituting pieces of the CIF can be adapted from other soft-
ware governed by other licenses and simply interfaced to the
CIF (e.g., transport models, minimizing algorithms, etc.); in
that case, the corresponding software keeps its original li-
cence, and its use and distribution in the CIF is subject to
authorization by its owners (although open distribution and
integration in the standard version of the CIF is encouraged).
This is the case of the CONGRAD and M1QN3 algorithms
which are used as minimizing algorithms in the variational

inversions of the demonstration case in Sect. 4. The M1QN3
algorithm is distributed under the GNU General Public Li-
cense, whereas CONGRAD is owned by ECMWF and is not
open source; the later was interfaced with the CIF but is not
openly distributed.

The pyCIF library, written in Python 3, is the practical em-
bodiment of the CIF project. All theoretical operations de-
scribed in Sect. 2 are computed by this module. It includes
inversion computations, pre- and post-processing of CTM in-
puts and outputs, and target and observation vector repro-
jections, aggregation, etc., as written in Eq. (15). Python
coding standards follow the community standards PEP-8
(http://python.org/dev/peps/pep-0008/, last access: 23 Au-
gust 2021).
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Test cases (including the ones presented in Sect. 4) are
distributed alongside the CIF code files and scripts. To fos-
ter portability and dissemination, a dedicated Docker image
is distributed with pyCIF, providing a stable environment to
run the system and enabling full reproducibility of the results
from one machine to the other.

3.2 Plugin-based implementation

To reflect the theoretical flexibility required in the computa-
tion of various inversion methods and observation operators,
we made the choice of implementing pyCIF following an ab-
stract structure with a variety of so-called Python plugins,
which are dynamically constructed and inter-connected de-
pending on the set-up.

3.2.1 Objects and classes in pyCIF

General classes of objects emerge from the definition of the
abstract structure of the inversion framework. These classes
are defined by the data and metadata they carry, as well as
by the methods they include and their interaction with other
classes. The main classes are the following:

– Computation modes. Forward computations, the test of
the adjoint, variational inversions, EnSRF and analytical
inversions are available (see details in Sect. 2.2).

– Models. These interface with CTMs and include gen-
eration of input files, executing the code and post-
processing outputs; included are a Gaussian model de-
scribed in Sect. 4 for the demonstration of the system,
as well as CHIMERE, LMDZ, FLEXPART, TM5, and
STILT, all of which will be described in a dedicated fu-
ture publication.

– Platforms. These deal with specific configurations on
different clusters; it includes a standard platform as well
as two supercomputers where the CIF was tested.

– Target vectors. These store and apply operations related
to the target vector, including spatial and temporal ag-
gregation, de-aggregation and regularization of the tar-
get vector.

– Observation vectors. These store and apply operations
related to the observation vector, including application
of observation errors.

– observation operators. These drive CTMs and apply el-
ementary operations between the control and observa-
tion vectors.

– Transformations. These are elementary operations used
to build the observation operator; they include temporal
averaging or de-aggregating of the target and observa-
tion vectors, projection of the target vector at the model
input resolution, etc.

– Data vectors. These store all information on inputs for
pyCIF; this vector is used by the observation and target
vector classes to build themselves.

– Minimizers. These are the algorithms used to minimize
cost functions, including M1QN3 and CONGRAD al-
gorithms so far.

– Simulators. These are the cost functions to minimize
in variational inversions; they only include the standard
Gaussian cost function so far.

– Domains. These store information about the CTM’s
grid, including coordinates of grid cell centres and cor-
ners, vertical levels, etc.

– Fluxes, fields and meteo-data. These fetch, read and
write different formats of inputs for CTMs (surface
fluxes, 3D fields and meteorological fields respectively);
so far they include only inputs specific to included
CTMs, but they will ultimately include standard data
streams, such as widely used emission inventories or
meteorological fields such as those from ECMWF.

– Measurements. These fetch, read and write different
types of observation data streams; they only include the
World Data Centre for Greenhouse Gases so far (https:
//gaw.kishou.go.jp/, last access: 23 August 2021) but
classical data providers such as ICOS (http://icos-cp.eu,
last access: 23 August 2021) or ObsPack (Masarie et al.,
2014) will also be implemented in the CIF. Satellite
products, in particular the formatting of averaging ker-
nels and other metadata, should also be included in the
CIF in the near future as they play a growing role in the
community.

Details on metadata and operations for each class are given
in the Supplement, Table S1. Our objective was to design a
code that is fully recursive in the sense that modifying some
instance of a class does not require users to update other
classes calling or being called by the modified class. Thus,
each class is built so that it only needs internal data, as well
as data from the execution level just before and after it, in
order to avoid complex dependencies while allowing proper
recursive behaviour in building the transformation pipeline.
For instance, the observation operator applies a pipeline of
transformations from the target vector to the observation vec-
tor. Some transformations will use the model class to run
the model or the domain class to carry out reprojections,
or the target vector to aggregate/de-aggregate target dimen-
sions, etc. Despite the many complex transformations carried
out under the umbrella of the observation operator, only the
sub-transformations of the pipeline are accessible at the ob-
servation operator level, which do not have to directly carry
information about, for example, the model or other classes
required at sub-levels. This makes the practical code of the
observation operator much simpler and as easy to read as
possible.

Geosci. Model Dev., 14, 5331–5354, 2021 https://doi.org/10.5194/gmd-14-5331-2021

https://gaw.kishou.go.jp/
https://gaw.kishou.go.jp/
http://icos-cp.eu


A. Berchet et al.: The Community Inversion Framework 5343

Figure 4. (a) Prior fluxes and observation sites. (b) Perturbation from the prior data used to generate “true” observations. Observation sites
are shown as circles coloured according to their height in metres above ground level (m a.g.l.). Fluxes are reported in arbitrary units (a.u.).

3.2.2 Automatic construction of the execution pipeline

To translate the principle scheme of Fig. 1, pyCIF is not built
in a sequential rigid manner. Plugins are interconnected dy-
namically at the initializing step of pyCIF depending on the
chosen set-up (see Sect. 3.3 for details on the way to con-
figure the CIF). The main strength of such a programming
structure is the independence of all objects in pyCIF. They
can be implemented separately in a clean manner. The devel-
oper only needs to specify what other objects are required to
run the one being developed, and pyCIF makes the links to
the rest. It avoids unexpected impacts elsewhere in the code
when modifying or implementing a feature in the system. In
the following, we call this top-down relationship in the code
a dependency.

For each plugin required in the configuration (primarily
the computation mode), pyCIF initializes corresponding ob-
jects following simple rules. Following dependencies de-
tailed in Table S1, for every object to initialize, pyCIF will
fetch and initialize required plugins and attach them to the
original plugin. If the required plugin is explicitly defined in
the configuration, pyCIF will fetch this one. In some cases,
some plugins can be built on default dependencies, which
do not need to be defined explicitly in the configuration file.
In that case, the required plugin can be retrieved using de-
fault plugin dependencies specified in the code itself and not
needed in the configuration.

For instance, in the call graph in Fig. 1, “variational” (in-
version) is a “computation mode” object in pyCIF. To exe-
cute, it requires a “minimizer” object (CONGRAD, M1QN3,
etc.) that is initialized and attached to it. The minimizer re-
quires a “simulator” object (the cost function) that itself will
call functions in the “control vector” object and the “obser-
vation operator” object. Then the observation operator will
initialize a pipeline of transformations including running the
model and so on and so forth.

3.3 Definition of configurations in the CIF

In practice, pyCIF is configured using a YAML configuration
file (http://yaml.org, last access: 23 August 2021). This file
format was primarily chosen for its flexibility and intuitive
implementation of hierarchical parameters. In the YAML
language, key words are specified with associated values
by the user. Indentations indicate sub-levels of parameters,
which makes it a consistent tool with the coding language
Python.

To set up a pyCIF computation, the user needs to define the
computation mode and all related requirements in the YAML
configuration file. Every plugin has mandatory and optional
arguments. The absence of one mandatory argument raises
an error at initialization. Optional arguments are replaced by
corresponding default values if not specified. Examples of
YAML configuration files used to carry out the demonstra-
tion cases are given in Supplement Sect. S3.

4 Demonstration case

In the following we describe a demonstration case based
on a simple implementation of a Gaussian plume disper-
sion model and simple inversion set-ups. The purpose of this
demonstration case is a proof of concept of the CIF, with var-
ious inversion methods. We comment and compare inversion
set-ups and methods for the purpose of the exercise, but con-
clusions are not made to be generalized to any inversion case
study due to the simplicity of our example. The test appli-
cation with a simple Gaussian plume model allows users to
quickly carry out the test cases themselves, even on desk-
top computers, to familiarize themselves with the system.
Nevertheless, the Gaussian plume model is not only relevant
for teaching purposes but also for real applications, as it is
used in many inversion studies from the scale of industrial
sites with in situ fixed or mobile measurements (e.g., Kumar
et al., 2020; Foster-Wittig et al., 2015; Ars et al., 2017) to the
larger scales with satellite measurements to optimize indi-
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vidual clusters of industrial or urban emissions (e.g., Nassar
et al., 2017; Wang et al., 2020). Other models implemented
in the CIF will be presented in a future paper evaluating the
differences when using different transport models with all
other elements of the configuration identical. The purpose of
such an evaluation is to produce a rigorous intercomparison
exercise identifying the effect of transport errors on inversion
systems.

4.1 Gaussian plume model

Gaussian plume models approximate real turbulent transport
by a stable average Gaussian state (Hanna et al., 1982). Such
models are not always suitable to compare with continuous
measurements but can be adapted when using observations
averaged over time. In the following, we consider the Gaus-
sian plume assumption to be valid for comparing to hourly
averaged observations. A simple application of the Gaus-
sian plume model was implemented in the CIF as a testing
and training utility. It is computationally easy to run, even
on desktop computers. It includes the most basic Gaussian
plume equations. In that application, concentrations C at lo-
cation (x0, y0, z0) downwind from a source of intensity f at
(x1, y1, z1) are given by

C(x0, y0, z0)=
f

2 π · σy · σz · u

exp

(
−
y2

σ 2
y

)
· exp

(
−
z2

σ 2
z

)
, (17)

with

σz = a · x
b

σy = |465.11628× x · tan(0.017653293 (c− d · lnx))|

x =
〈u
u
| v(source, receptor)

〉
y =

(u
u
× v(source, receptor)

)
,

(18)

where x is the downwind distance between the source and
receptor points along the wind axis, y is the distance be-
tween the wind axis and the receptor point, v(source, receptor)
is the vector linking the source and the receptor point, and
z is the difference between the source and the receptor alti-
tudes. u is the vectoral wind speed, with u being the average
wind speed in the domain of simulation. Symbols < · | · >
and ( · × · ) depict the scalar and the vector products re-
spectively. Parameters a,b,c, and d are depending on the
Pasquill–Gifford atmospheric vertical stability classes. There
are seven Pasquill–Gifford stability classes, from (a) ex-
tremely unstable (mostly in summer during the afternoon)
to (g) very stable (occurring mostly during nighttime in win-
ter). As the purpose of the demonstration case is primarily to
work on coarsely realistic concentration fields, with a com-
putational cost as low as possible, our implementation of the

Gaussian plume model does not include any representation
of particle reflection on the ground or on the top of the plan-
etary boundary layer.

To illustrate atmospheric inversions, we use a grid of point
surface fluxes to simulate concentrations using the Gaussian
plume equation. Thus, the concentration at a given point and
time t is the sum of Gaussian plume contributions from all
individual grid points:

C(x0, y0, z0, t)

=

∑
(x1, y1, z1)∈ grid

f (x1, y1, z1, t)

2 π · σy(t) · σz(t) · u(t)

exp
(
−

y2

σy(t)2

)
exp

(
−

z2

σz(t)2

)
=

∑
(x1, y1, z1)∈ grid

H(x1, y1, z1, t)× f (x1, y1, z1, t)

=H(t) ·f (t). (19)

This formulation highlights the linear relationship be-
tween concentrations and fluxes. As the concentrations can
be expressed as a matrix product, the computation of the ad-
joint of the Gaussian model is straightforward and does not
require extra developments:

δf (x1, y1, z1, t)

=

∑
(x0, y0, z0)∈ obs

δC(x0, y0, z0, t)

2 π σy(t) σz(t) u(t)
exp

(
−

y2

σy(t)2

)

exp
(
−

z2

σz(t)2

)
=H(t)T ·C(t). (20)

For the purpose of our demonstration cases, meteorolog-
ical conditions (wind speed, wind direction and stability
class) are randomly generated for the simulation time win-
dow. Fixed seeds are selected for the generation of random
conditions in order to make them reproducible.

4.2 Configuration

4.2.1 Modelling set-up

Cases discussed in Sect. 4.3 are based on the Gaussian model
computed on a domain of 2.5× 2 km2 with a grid of 18× 12
grid cells. Surface point sources are located at the centre of
the corresponding grid cells, with flux intensities as repre-
sented in Fig. 4. Five virtual measurement sites are randomly
located in the domain with randomly selected altitudes above
ground level as shown in Fig. 4. The inversion time window
spans a period of 5 d with hourly observations and meteoro-
logical forcing conditions. Meteorological conditions are a
combination of a wind speed, a wind direction and a stabil-
ity class applicable to the whole simulation domain for each
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Figure 5. Posterior increments for analytical, EnSRF, variational with CONGRAD and variational with M1QN3 (from top to bottom, left to
right) for an inversion set-up at the pixel resolution with horizontal correlation length of 500 m.

hour. The three parameters are generated randomly for the
period, without respect for realistic relatively smooth transi-
tions in wind speed and direction or stability class.

Truth observations are generated by running the Gaussian
model in forward mode with known fluxes defined as the sum
of prior fluxes f (used later in the inversions) in Eq. (21) and
an arbitrary perturbation as defined in Eq. (22), illustrated in
Fig. 4 (left and right respectively).

f = f0 ·

cos
(

2π
x

σ 1
x

)
+ sin

(
2π

y

σ 1
y

)
+

(
x

σ 2
x

)2

+

(
y

σ 2
y

)2
, (21)

δf = 0.2× f0 ·

{
cos

(
2π

x

σ 3
x

)
+ sin

(
2π

y

σ 3
y

)}
, (22)

with f0 being an arbitrary reference flux, and scaling lengths
σ 1
x , σ 2

x , σ 3
x , σ 1

y , σ 2
y and σ 3

y equal to 500, 1000, 200, 1000,
1000 and 300 m respectively. Reference fluxes and perturba-
tions are constant over time.

A random noise of 1 % of the standard deviation of the for-
ward simulations was added to the truth observations to gen-
erate measurements. Please note that the perturbation of the
fluxes is generated using an explicit formula and not a ran-
dom perturbation with a given covariance matrix. We discuss
results with different possible target vectors and covariance
matrices.

4.2.2 Inversion set-ups

The objective of our test case is to prove that our system
enables users to easily compare the behaviour of different
inversion methods in various configurations. To do so, we
conduct three sets of four inversions for the demonstration
of our system. Each set includes one analytical inversion,
one EnSRF-based inversion and two variational inversions
based on M1QN3 and CONGRAD minimization algorithms
respectively. The sequential aspect of the EnSRF is not im-
plemented in the CIF; hence, the comparison with the other
inversion methods only includes the random sampling of the
target vector distribution to solve Eq. (5).

The three sets of inversions differ by the dimension of
the target vector and the spatial correlations of errors. The
first set uses a target vector based on a grid of 3× 3 pixel-
aggregated regions or “bands” independent from each other,
i.e., with no spatial error correlations. The target vectors of
the second and third sets are defined at the grid cell’s res-
olution with horizontal isotropic error correlations, follow-
ing an exponential decay with a horizontal scale of 500 and
200 000 m respectively; the latter case is used to demonstrate
that the implementation of correlation lengths is correct as
very long correlations are equivalent to having only one spa-
tial scaling factor in the target vector. For all inversion set-
ups, the target vectors are defined as constant over time, i.e.,
only one coefficient per spatial dimension is optimized for
the 5 d× 24 h, computed by the model. In all set-ups, the
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Figure 6. Uncertainty reduction for analytical, EnSRF, variational with CONGRAD and variational with M1QN3 (from top to bottom, left
to right) with the same set-up as in Fig. 5.

magnitude of the observation noise used to generate true ob-
servations is chosen as observation errors in the matrix R for
consistency. In all cases, the diagonal terms of the B matrix
are set to 100 %.

To assess the sensitivity of each set-up to the allocated
computational resources, we computed the EnSRF and the
two variational inversions with varying numbers of simula-
tions N . In the case of the EnSRF, N simply depicts the
size of the Monte Carlo ensemble. For variational inversions,
each step, i.e., each computation of the cost function and
its gradient, requires one forward simulation and one ad-
joint simulation. The Gaussian model is a simple auto-adjoint
model, which makes the adjoint simulations as long as the
forward one. Therefore, N is equal to twice the number of
computations of the cost function (one for the forward and
one for the adjoint) in the minimization algorithm. Note that
in many real application cases, the adjoint of a CTM is more
costly than the forward, reducing the number of iterations
possible in N times the cost of a forward. Indeed, despite the
adjoint being mathematically as expensive as the forward,
in practice the computation of adjoint operations often re-
quires the recomputation of intermediate forward computa-
tions, therefore increasing the computational burden of the
adjoint model. More precisely, users and developers of ad-
joint transport models choose the number of forward recom-
putations to be carried out, based on a space–speed trade-off:
by saving all forward intermediate states, the adjoint is as
costly as the forward, but the disk space burden can be ex-

tremely challenging to manage, thus increasing the overall
computation time in return.

4.3 Results and discussion

In the following, we present detailed figures for the test case
at the pixel resolution with a correlation length of 500 m. For
the sake of readability, figures for other test cases are grouped
in Sect. S2 of the Supplement.

Posterior increments are presented in Fig. 5. Observa-
tion locations and heights are reported for information. The
colour scale of flux increments is the same as in Fig. 4, which
represent the true “increments” to be retrieved. In Fig. 8,
we present the evolution of the cost function of Eq. (6) de-
pending on the number of simulations used for each inver-
sion method for the three demonstration cases (see details on
the corresponding number of simulations of each inversion
method in Sect. 4.2.2). The x axis has been cropped at the
origin as the EnSRF value for small sizes of random ensem-
bles diverges to infinity.

In the case with the target vector aggregated on groups of
pixels, all inversion methods converge towards a very similar
solution. In this case, the posterior increments reproduce the
overall structure of the truth–prior difference, with one local
minimum in the centre of the domain. However, the aggre-
gated target vector results in too coarse patterns which are
not representative of the actual truth–prior difference. In the
case with the target vector at the grid’s resolution with spa-
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Figure 7. Prior (a) and posterior (b–e) uncertainty matrices for analytical, EnSRF, variational with CONGRAD and variational with M1QN3
(from top to bottom, middle and right columns), with the same set-up as in Fig. 5. All matrices are reported with unitless values; i.e., a “1”
on the diagonal corresponds to a 100 % uncertainty.

tial correlations of 500 m, all methods capture well the true-
prior difference structure. However, posterior increments are
rather noisy compared to the truth. This is due to the spa-
tial correlations being inconsistent with the smooth pertur-
bation with fixed length scales in Eq. (22). Correlations help
smoothing the posterior fluxes but not perfectly consistent
with the truth. For the case with the target vector at the
grid’s resolution with spatial correlations of 200 000 m, all
methods converge towards a very smooth and similar solu-
tion, consistent with what is expected with a very long cor-
relation length. However, they do not converge towards the
same solution, probably because a larger number of itera-
tions/members would be needed to fully converge.

In all cases, CONGRAD converges at a faster pace than the
other two methods, and after a limited number of iterations,
the convergence rate is close to zero, suggesting additional
simulations do not provide significant additional information
to CONGRAD (although additional iterations bring new con-
straints on the posterior uncertainty matrix).

Overall, CONGRAD appears to be the most cost-efficient
algorithm to estimate the analytical solution in the case of
a linear inversion in our very simple demonstration case.
Though not as efficient, the EnSRF method can approximate
the analytical solution at a reduced cost. By design, its com-
putation can easily be parallelized, which can allow for a
faster computation than CONGRAD when computational re-

sources are available in parallel. M1QN3 proves not as effi-
cient as its CONGRAD counterpart, but contrary to CON-
GRAD, it can accommodate non-linear cases.

The reduction of uncertainties and posterior uncertainty
matrices are shown in Figs. 6 and 7 (and equivalents in the
Supplement). Regarding posterior uncertainties, CONGRAD
proves relatively efficient to approximate the analytical solu-
tion, especially at the pixel resolution. The variational inver-
sion with Monte Carlo and M1QN3 computations and the
inversion with EnSRF are much noisier. Approximating pos-
terior matrices requires a large number of Monte Carlo mem-
bers and proves very challenging in real-world applications.

5 Conclusions

We have introduced here a new generic inversion framework
that aims at merging existing inversion systems together, in
order to share development and maintenance efforts and to
foster collaboration on inversion studies. It has been im-
plemented in a way that is fully independent from the in-
version configuration: from the application scales, from the
species of interest, from the CTM used, from the assump-
tions for data assimilation, and from the practical operations
and transformations applied to the data in pre- and post-
processing stages. This framework will prevent redundant
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Figure 8. Cost function evaluation for varying numbers of com-
puted simulations for analytical (red), EnSRF (green), variational
with CONGRAD (orange) and variational with M1QN3 (blue)
methods. (a) Inversion set-up with aggregated regions of 3 × 3 pix-
els; (b) inversion set-up at the pixel resolution with horizontal cor-
relation length of 500 m; (c) inversion set-up at the pixel resolution
with horizontal correlation length of 200 000 m.

developments from participating research groups and will al-
low for a very diverse range of applications within the same
system. New developments will be made in an efficient man-
ner with limited risks of unexpected side effects, and thanks
to the generic structure of the code, specific developments
for a given application can be directly applied to other appli-
cations. For instance, new inversion methods implemented
in the CIF can be directly tested with various transport mod-
els. With modern inversion methods moving towards a hybrid
paradigm of variational and ensemble methods, the flexibil-
ity of the CIF will be a valuable asset as abstract methods can
be easily mixed with each other.

We have presented the first version of this Community In-
version Framework (CIF) alongside its Python-dedicated li-
brary pyCIF. As a first step, analytical inversions, variational
inversions with M1QN3 and CONGRAD, and EnSRF have
been implemented to demonstrate the general applicability of
the CIF. The four inversion techniques were tested here on a
test case with a Gaussian plume model and with observations
generated from known true fluxes. The impact of spatial cor-
relations and of spatial aggregation, which drive the shape
of the control vectors used in this scientific community, has
been illustrated. The analytical inversion is the most accurate
approach to retrieve the true fluxes, as expected, followed by
variational inversions with the CONGRAD algorithm in our
simple linear case. In our simple case, EnSRF and M1QN3
generally take longer to converge towards the true pattern of

the fluxes, even though EnSRF inversions have the advan-
tage to be fully parallelizable, in contrast to variational inver-
sions, that are sequential by design and therefore harder to
parallelize (e.g., Chevallier, 2013).

The next step of the CIF is the implementation of a large
variety of CTMs. The implementation of new CTMs already
interfaced with other inversion systems should not bring par-
ticular conceptual challenges as all interface operations are
already written in their original inversion system; in most
cases, re-arranging existing routines is sufficient to interface
a model to the CIF. One particular challenge concerns I/O
optimizations: the generation of inputs and the processing
of outputs can be time consuming and in some very heavy
applications require specific numerical and coding optimiza-
tions. The very general formalism of the CIF may hamper the
ability of applying these particular optimizations for some
models. Best efforts will have to be deployed to take full ad-
vantage of advanced I/O and data manipulation libraries in
Python to limit this weakness.

CHIMERE, LMDZ, TM5, FLEXPART, and STILT have
already been implemented, and a sequel paper will evalu-
ate and compare their behaviour in similar inversion set-ups.
COSMO-GHG and WRF-Chem are also planned to be im-
plemented in the near future to widen the developer and/or
user community of the system. The use of various CTMs
in identical inversion configurations (inversion method, ob-
servation and target vector, consistent interface, etc.) will al-
low for extensive assessments of transport errors in inver-
sions. Despite many past efforts put into inter-comparison
exercises, such a level of inter-comparability has never been
reached and will be a natural by-product of the CIF in the
future. In addition, comparing posterior uncertainties from
different inversion methods and set-ups will make it possible
to fully assess the consistency of different inversion results.

The flexibility of the CIF allows very complex operations
to be included easily. They include the use of satellite obser-
vations, which will be evaluated in a future paper, inversions
using observations of isotopic ratios and optimizing both sur-
face fluxes and source signatures (Thanwerdas et al., 2021).
In addition, even though greenhouse gas studies have been
the main motivation behind the development of the CIF, the
system will also be tested for multi-species inversions includ-
ing air pollutants.
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